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Abstract: Benefitting from exceptional energy storage performance, dielectric-based capacitors are
playing increasingly important roles in advanced electronics and high-power electrical systems.
Nevertheless, a series of unresolved structural puzzles represent obstacles to further improving the
energy storage performance. Compared with ferroelectrics and linear dielectrics, antiferroelectric
materials have unique advantages in unlocking these puzzles due to the inherent coupling of struc-
tural transitions with the energy storage process. In this review, we summarize the most recent
studies about in-situ structural phase transitions in PbZrO3-based and NaNbO3-based systems. In
the context of the ultrahigh energy storage density of SrTiO3-based capacitors, we highlight the ne-
cessity of extending the concept of antiferroelectric-to-ferroelectric (AFE-to-FE) transition to broader
antiferrodistortive-to-ferrodistortive (AFD-to-FD) transition for materials that are simultaneously
ferroelastic. Combining discussion of the factors driving ferroelectricity, electric-field-driven metal-
to-insulator transition in a (La1−xSrx)MnO3 electrode is emphasized to determine the role of ionic
migration in improving the storage performance. We believe that this review, aiming at depicting
a clearer structure–property relationship, will be of benefit for researchers who wish to carry out
cutting-edge structure and energy storage exploration.

Keywords: energy storage; in situ; antiferrodistortive-to-ferrodistortive; phase transition; metal-to-
insulator transition; ionic migration

1. Introduction

Renewable energies harvested from solar, wind and chemical fuels are playing ever-
greater roles in our lives [1,2]. However, their widespread utilization is largely impeded
by the underdeveloped energy storage technologies. Thus far, popular electrical energy
storage systems consist of the following categories: (1) solid oxide fuel cells (SOFCs), (2)
batteries, (3) electrochemical capacitors and (4) dielectric capacitors. From the Ragone
plot, one can see that the SOFCs have the highest energy density, while the electrostatic
capacitors possess the highest power density, which is up to 107 W/kg. In between, the
electrochemical capacitors show a tendency of partially replacing batteries due to their
fast-growing energy density; see Figure 1. Specifically, the ultrafast charging/discharging
rates, at microsecond level, make dielectric capacitors widely used in devices such as
motor starters, high-power lasers, signal processing and sensors [3]. In retrospect, the
technological advancement may date back to the ferroelectric (FE) phenomena of Rochelle
salt found by Valasek in 1921 [4,5]. During World War II [6], the discovery of BaTiO3
and its usage in high-energy-density capacitors launched a research boom in the field of
FE materials. Possibly enlightened by the whimsical concept of antimatter introduced
by Schuster in 1898 [7], Néel and Kittel proposed the concepts of antiferromagnet and
antiferroelectric (AFE) in 1936 and 1951, respectively, to explain magnetic and dielectric
anomalies at Curie temperature (TC) [8,9].
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Although receiving less attention than FEs, AFE materials have been investigated
for their intriguing physical properties, including the origin of antiferroelectricity [10–13],
electromechanical coupling [14], electrocaloric effect [15–17] and negative capacitance [18].
In fact, AFE-based materials have been proposed to design memory devices [19,20]. In
recent years, both AFE-based and relaxor FE (RFE)-based capacitors [21–26] have been
widely investigated due to their reducible energy loss [22,27], improvable maximum
polarization (Pmax), breakdown electric field (EB) [28–30] and energy efficiency (η) [31,32].
Recently, a series of promising data have been reported [32–36]. Using a superparaelectric
design, Pan et al. achieved very high recoverable energy density (Jrec = 152 J/cm3) in BiFeO3-
BaTiO3-based RFE thin films [21,37,38]. By means of Sr doping, Acharya et al. reported
ultrahigh energy efficiency (η = 97%) in AFE Pb1-xSrxHfO3 thin films [39], where the Jrec
and EB were 77 J/cm3 and 5.12 MV/cm, respectively. More surprisingly, Hou et al. found
the highest energy density reported thus far (Jrec = 307 J/cm3) in SrTiO3/La1-xSrxMnO3
(STO/LSMO, x ≈ 1/3) thin films, which have values of Pmax ≈ 125 µC/cm2, efficiency
η ≈ 89% and EB ≈ 6.8 MV/cm [28]. For representative dielectric films and bulks, a
comparison of their energy storage performance is shown in Table 1.
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Figure 1. Log-scale Ragone plot showing a performance comparison between different energy
storage devices, including superconducting magnetic energy storage (SMES). Conceptually, the
energy density (Wh/kg, vertical axis) describes how much energy is available, while the power
density (W/kg, horizontal axis) shows how quickly the energy can be delivered. The sloping lines
indicate the required time to get the charge in or out of a device [40].
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Table 1. Comparison of energy storage performance between representative dielectric films and between representative
dielectric bulks.

Dielectric Films Jrec (J/cm3) η (%) Pmax (µC/cm2) EB (MV/cm) Ref.

SrTiO3
(1) 307 89 ~125 6.8 [28]

La-Ba-Zr-doped (Na0.5Bi0.5)TiO3
(1) 154 97 113.5 3.5 [37]

Sm-doped BiFeO3-BaTiO3
(2) 152 > 90 ~60 5.2 [38]

BaZr0.35Ti0.65O3 multilayer(2) 130 73.8 52 8.75 [41]

Mn-doped
Na0.5Bi0.5TiO3-BaTiO3-BiFeO3

(3)
102 60 124 2.86 [42]

La-doped Pb(Zr,Ti)O3
(4) 85 65 115 4.5 [43]

Pb0.5Sr0.5HfO3
(5) 77 97 ~53 5.12 [39]

Dielectric bulks Jrec (J/cm3) η (%) Pmax (µC/cm2) EB (MV/cm) Ref.

Na0.5Bi0.5TiO3-Sr0.7Bi0.2TiO3
(3) 21.5 ~80 67 103 [36]

0.90NaNbO3-0.10BiFeO3
(6) 18.5 78.7 64 ~1.0 [44]

La-doped Pb(Zr0.55Sn0.45)0.995O3
(7) 10.4 87 41.3 0.4 [32]

(Pb0.91Ba0.045La0.03)(Zr0.6Sn0.4)O3
(7) 8.16 92.1 40 0.34 [31]

BiFeO3-BaTiO3-NaNbO3
(6) 8.12 90 ~52 0.36 [45]

AgNbO3-AgTaO3
(6) 7.5 86 32 0.53 [46]

Note: The bottom electrode types are (1) La0.67Sr0.33MnO3, (2) Nb-SrTiO3, (3) Pt, (4) LaNiO3, (5) SrRuO3, (6) silver paste, (7) Au.

Given a “mismatched” structure–property relationship, one may naturally ask: how
does a nonpolar SrTiO3 deliver such a high Pmax value and energy storage density? Al-
though static structural and compositional characterizations are very helpful, in situ phase
transition and storage pathway studies are more promising in unveiling the hidden mys-
teries. Compared with macroscopic property investigation, in situ dynamic structure
study lags far behind in the field of dielectric capacitors. An important reason lies in the
fact that there exists a large mismatch between the structural response time for energy
storage [47] and the data collection time [48–50]. For the former, this is usually completed
at the millisecond scale or within an even shorter time. Meanwhile, for the latter, e.g., X-ray
diffraction (XRD) and selected area electron diffraction (SAED), they usually take several
seconds or even minutes in collecting a dataset. In comparison with RFEs [21,23,51], AFEs
are more widely investigated in structural phase transitions under in-situ conditions. The
reason resides in the fact that the AFE-to-FE transitions inherently couple with the energy
storage process [32,52–54].

Building on the established phase transition framework, this review seeks to broaden
the research scope from AFEs to nonpolar materials, which are simultaneously ferroe-
lastic or antiferroelastic, in the quest for promising energy storage materials. Under in
situ conditions, this entails the extension of well-known AFE-to-FE transition to broader
antiferrodistortive-to-ferrodistortive (AFD-to-FD) transition. By summarizing external
field-driven phase transitions, research progress regarding in situ and atomic-scale struc-
tural characterization, achieved by using direct light-element imaging, is highlighted to
understand the energy storage mechanism. Associated with ionic migration across the
dielectric/electrode interface, we further discuss the electric field-driven metal-to-insulator
(M-I) transition in electrodes and its potential impact on tuning the macroscopic energy
storage density of dielectric capacitors.
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2. Fundamentals of Capacitor Energy Storage

A dielectric capacitor is constructed in a parallel-plate form, i.e., a dielectric layer
sandwiched by two conductive electrodes. The physical quantity that manifests the energy
storage is capacitance (C), which can be described by the following equation:

C = ε0εr A/d (1)

where ε0 is the dielectric permittivity in vacuum (~8.85 × 10−12 F/m), εr (>> 1) is the
relative dielectric constant of the dielectric layer, A is the overlapping area of the electrodes,
and d is thickness of the dielectric layer. In principle, the capacitance only depends on
the geometry of the capacitor and permittivity of the dielectric layer. However, this is not
always the case, especially when electric field-driven electrochemical activities take place
near the dielectric/electrode interface, as discussed below.

When an external voltage is applied, charges with opposite signs and equal magnitude
accumulate at the electrodes. This is the so-called charging process. The charges form
an internal electric field, whose direction is opposite to that of the external electric field.
The charging process finishes when the internal electric field induced by the accumulated
charges (Q = CV) is equal to the external field (E = V/d), where V is the applied voltage.
During the charging process, the charges are moved by the external electric field, and
electrostatic energy is stored in the dielectric layer. The stored energy can be calculated
from the following expression:

W =
∫ Qmax

0
Vdq (2)

where Qmax is the maximum charge when the charging process finishes, and dq is an
increment of charge. One of the key figures of merit of the dielectric capacitor is its energy
density (J), which measures its “capability” for storage performance and can be written in
the following form:

J =
W
Ad

=
∫ Pmax

0
EdP (3)

The energy density can therefore easily be obtained by integrating the area between the
polarization and electric field axes in the P-E loop. Another key figure of merit for the
capacitor is energy efficiency (η). It is equals to the ratio between the recoverable energy
density (Jrec) and total energy density (Jtot), which can be expressed by

η = (Jrec/Jtot) × 100% (4)

where the Jtot is a sum of the P-E loop (Jloss) and its left-side area (Jrec) at E ≥ 0 in the P-E
relation chart (see Figure 2b). It appears that a linear dielectric, with Jrec ≈ 1

2 ε0εrE2 and
very small Jloss, may offer higher storage density. In practice, phase transition materials
offer much higher energy storage densities due to their much larger EB and maximum
polarization (Pmax), which can be one order of magnitude higher than that of linear di-
electrics [39,55]. As for more circuit-related details of energy storage measurement, this
has been discussed elsewhere [24,40].

From a microstructure point of view, complex structural changes take place during
the charging process. Inside the nonpolar dielectric layer, this involves inversion symmetry
breaking and the emergence of electric dipoles from the originally centrosymmetric lattices.
Irrelevant to either displacive or order–disorder phase transition [56,57], the electric dipoles
are defined by the separation of positive and negative charge centers within each unit cell.
At mesoscopic scale, this is affected by phase constitution, domain reorientation and growth,
defect type and density. Near the dielectric/electrode interface, polarization screening,
chemical diffusion, ionic migration and potential M–I transition significantly impact the
energy storage and release. Therefore, unveiling the dynamic structural responses under
in situ conditions may greatly deepen our mechanistic understanding, which is essential
for the development of new materials and devices.
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Figure 2. Dielectric constant (εr), P-E loop and structural phases of PbZrO3. (a,b) Temperature-dependent εr and hysteresis
loop of AFEs. The green and blue shaded areas in (b) denote recoverable (Jrec) and loss (Jloss) energy during the AFE-to-FE
transition. (c) Unit cell of the cubic PbZrO3 phase (space group Pm3m). (d–f) Antiparallel Pb displacements (Σ mode), polar
displacement (Γ mode) and oxygen octahedral rotations (R mode) in AFE PbZrO3 (space group Pbam), respectively. The
dotted lines show the cubic crystallographic axes in the ab plane [10].

3. Structural Features and Phase Transitions in Antiferroelectrics

FEs undergo a nonpolar-to-polar transition at TC and the breaking of spatial inversion
symmetry leads to the emergence of spontaneous polarization (PS) in the low-temperature
phase. Under the application of an electric field (E), the direction of polarization (P) in
domains can be reversed and its nonlinear response to E gives rise to a P-E hysteresis loop.
Depending on the category of the FEs, the hysteresis loop may vary between a square shape
(e.g., in BaTiO3) [58] and a slim shape (e.g., in relaxor Na0.5Bi0.5TiO3) [37]. Thus, the energy
consumption is usually larger for the former than the latter due to its larger Pr (a value at
E = 0) and loop areas. In contrast, AFEs undergo a phase transition between two nonpolar
phases at TC, around which an FE phase may transiently exist in a narrow temperature
window [59–61]; see Figure 2a. Despite zero spontaneous polarization at T < TC, a strong
E can drive an AFE-to-FE phase transition [52,62], which gives rise to a double hysteresis
loop; see Figure 2b. Due to the concave curvature of the P-E relationship, with a reflection
point at coercive field EA or EB, the AFEs usually possess intrinsically high energy storage
densities [63].

In a crystal structure, an important feature of AFE is that its unit cell volume is dou-
bled with respect to its paraelectric (PE) phase (Figure 2c). Benefiting from the antiparallel
arrangement of electric dipoles within sublattices, null polarization is obtained on the
unit cell scale. Typical AFE systems include PbZrO3, AgNbO3, NaNbO3, HfO2 [64–72]
and recently reported 2D van der Waals AFE β’-In2Se3 [73,74]. From the perspective of
lattice dynamics, the emergence of antiferroelectricity is a consequence of competing lattice
instabilities [10,11], which are manifested by delicate structural orders [66,75]. Taking
PbZrO3 as an example, its AFE phase is dominated by antiparallel Pb displacements
along the [100]O//[110]c direction (O: orthorhombic; c: pseudocubic) and antiferrodis-
tortive (AFD) oxygen octahedra (a-a-c0 in Glazer’s notation) [66]. The corresponding
Σ and R modes in the Brillouin zone (Figure 2d,f) are represented by wave vectors of
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kΣ = (2π/a)(1/4, 1/4, 0) (a is the cubic lattice constant) and kR = (2π/a)(1/2, 1/2, 1/2),
respectively [10,11].

A polar instability, i.e., the Γ mode, manifested by opposite shifts of Pb cations and
oxygen anions, is responsible for ferroelectricity (Figure 2e). In the ground state, the polar
instability is suppressed due to its higher energy level. Nevertheless, it has been shown
that the energy levels of different lattice instabilities can be subverted in the following
situations. (1) Application of large E can destabilize the Σ and R modes and drive an
AFE-to-FE transformation [76–78]. (2) Interruption of the cationic displacement order
and AFD order at translational boundaries allows the emergence of local ferroelectricity
with a bi-stable feature [79–81]. (3) An intrinsic surface effect may trigger an AFE-to-FE
transition as the sample thickness is below a critical thickness, ~6.5 nm for PbZrO3 [82,83].
(4) Chemical doping can also alter the cationic displacement order and AFD order, e.g.,
stochastic stacking of Pb-displacement-based stripes in La-doped PbZrO3. Due to the
uncompensated antiparallel arrangement of Pb cations, weak ferrielectricity emerges in
doped systems [84–86].

4. Antiferrodistortive and Ferrodistortive Phase Transitions

In fact, both FE-to-PE and AFE-to-PE transitions can be understood from the viewpoint
of ferroelastic phase transition, which is related to a change in lattice symmetry around
TC [87,88]. In many cases, ferroelasticity or antiferroelasticity is a secondary or improper
effect, since the driving force is related to cation or molecular ordering and the softening
of optical phonon branches [89,90]. Thus, a large proportion of ferroelastic transitions
depend on mode condensation at a position in the Brillouin zone. When modes condense
at zone boundaries, the transition is termed AFD [91]. For a perovskite, the AFD order is
manifested by in-phase and out-of-phase rotation of the oxygen octahedra [92,93]. Thus,
the AFEs constitute a subgroup of AFD transitions (Figure 3a,b). In contrast, when modes
condense at the zone center, the transition is termed FD. Correspondingly, the FEs constitute
a subgroup of FD transitions (Figure 3c,d). It should be noted that the AFD phases are
characterized by the rigid octahedral linking through out-of-phase tilting, in-phase tilting
or their combination. In FD phases, associated with symmetry lowering, polar octahedral
distortion can modify or destroy the rigid linking and response to the applied electric field
together with A-site cations. In addition, there are also antipolar (AP) and pyroelectric
(PyE) phases, which belong to the subgroups of AFD and FD transitions, respectively. In
contrast to AFE and FE phases, their dipoles cannot be reversed, even by a strong electric
field [91].

It should be noted that the zone-center mode condensation is not necessarily bound to
the zone-boundary condensation in proper FEs. This means that the polar order can either
be irrelevant to the AFD order (e.g., in BaTiO3 and PbTiO3) or couple cooperatively with the
AFD order (e.g., in BiFeO3, ZnSnO3 and ScFeO3) [94–96]. Besides the routine manifestations,
as a counterpart of AFD, the FD phase transition may place extra emphasis on a means of
inducing ferroelectricity through the long-range polar distortion of oxygen octahedra. This
broadens the perspectives of understanding the origins of ferroelectricity and implies that
more nonpolar dielectrics with typical AFD order [92,93] can be transformed to novel FD
phases under excitation of an external field [97]. Being compatible with chemical, defect
and strain engineering [30,98], therefore, the range of candidate energy storage systems
can be greatly expanded by the AFD-to-FD transition.
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With reference to the above classifications, the STO/LSMO system, with ultrahigh
energy density (307 J/cm3) at a thickness range of 410~710 nm for STO, provides a good
example to analyze the AFD-to-FD transition [28,99]. It has been widely accepted that
the cubic SrTiO3 (space group Pm3m) transforms to a tetragonal structure (I4/mcm) via
a second-order AFD phase transition at TC = 105 K. Below TC, the tetragonal phase is
characterized by the antiphase rotation of the octahedra along its c axis (a0a0c- in Glazer’s
notation) [100]. The temperature–strain phase diagram [101–104] shows that the FE phase
can be stabilized through strain engineering (Figure 4a). Nonetheless, the following results
indicate that the mechanism leading to polarity in SrTiO3 is not that simple. Compared with
strained SrTiO3, Jang et al. demonstrate that strain-free SrTiO3 is an RFE, with a tempera-
ture for the maximum εr at Tm ≈ 45 K [29]. The role of strain is to stabilize the long-range
correlation of preexisting nanopolar regions; see Figure 4b,c. Another argument points out
that the abnormal ferroelectricity at T < Tm arises from FE antiphase boundaries [105–107].
Similar to AFE PbZrO3, once the nonpolar lattice instabilities become destabilized, the
“hidden” polar lattice instability prevails and gives rise to the ferroelectricity.

Excited by either an optical pump or a THz electric field (with a threshold field am-
plitude of ~300 kV/cm), two research groups independently reported that metastable
ferroelectricity with TC ≈ 290 K can be achieved in SrTiO3 [102,108]. By introducing Ti/O-
deficient nanoregions [30], Li et al. showed that defect engineering can also drive the occur-
rence of AFD-to-FD transition. Using this strategy, they realized a very large lattice tetrag-
onality ratio (c/a = 1.038), strong room-temperature ferroelectricity (PS = 41.6 µC/cm2)
and very high TC (~1098 K) in SrTiO3 films; see Figure 4d. Using first-principles calcula-
tions, Klyukin and Alexandrov reported that antisite defects, either Ti on a Sr site (TiSr)
or vice versa (SrTi), can result in large electric polarization in SrTiO3 [109–111]. These out-
comes suggest that structural defects should play an important role in achieving ultrahigh
polarization in the STO/LSMO system (see inset of Figure 4d). More importantly, this
sets a precedent for retrofitting other nonpolar perovskites into energy storage media via
chemical and defect engineering, e.g., CaTiO3 and DyScO3 [55,98,112].
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transition and a further FE transition [102]. (b,c) Piezoresponse force microscopy (PFM) amplitude and phase images of
strain-free SrTiO3 films recorded at 50 K at biasing voltages of±10 V [29]. (d) Comparisons of Pr and maximum polarization
(Pmax) between Ti/O-deficient SrTiO3 (Pr = 6.6 µC/cm2, Pmax = 41.6 µC/cm2) and the literature cited therein [30]. The inset
shows the P-E loops measured from the Au/SrTiO3/LSMO (x ≈ 1/3) capacitors [28].

5. Anisotropic Energy Storage

The double P-E hysteresis loop shown in Figure 2b indicates that synergistically
changing the following parameters may optimize the energy storage performance: (1)
simultaneously increasing the critical electric fields EA and EB and minimizing the loop
area [31]; (2) increasing the Pmax [28] and minimizing the Pr [32]. In practice, due to the
dielectric anisotropy of the crystals [113], the energy storage density of identical materials
also exhibits a direction-dependent nature [71,97,114,115]. Taking PbZrO3 as an example,
multiscale first-principles computations show that as the E is applied along different
crystallographic directions, its phase transition pathways are distinct (Figure 5a). On this
basis, Lisenkov et al. found three high-strain polar phases: a monoclinic (Cc) phase, an
orthorhombic (Ima2) phase and a tetragonal (I4cm) phase [114].
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In experiments, the key electrical parameters relating to energy storage also show
strong crystal orientation dependence. AFE (200 nm) PbHfO3 films grown on (100)C-plane,
(110)C-plane and (111)C-plane terminated SrTiO3 substrates, which are buffered by SrRuO3
electrodes, are good examples that confirm this [71,72]. Together with large changes in
critical field and Pr, the Pmax takes values of 30.54, 38.91 and 32.64 µC/cm2 in the three
films, respectively (Figure 5b). Corresponding to a larger coercive field and Pmax, the (110)C
oriented film delivers higher energy storage density (Jrec = 21.4 J/cm3) than the other two
(Jrec ≈ 16 J/cm3) [71]. From a microstructural perspective, one may expect that the type
and density of structural defects [116–119] may influence the energy storage performance.
Through introducing local compressive pressure, Zhang et al. reported that enhanced
critical fields may increase the Jrec [53,67,120], e.g., from 9 to 16.2 J/cm3 in Li+-La3+ co-
doped PbZrO3 films. By constructing a ferrielectric (FiE) M2-M3 phase boundary, Luo
et al. achieved an energy density of 6.3 J/cm3 with η = 90% in (1-x)AgNbO3-xAgTaO3 solid
solution [46].

6. In Situ Structural Shase Sransition Sathway

In conjunction with macroscopic property measurement, in situ dynamic structural
studies can help to construct structure–property relationships directly. Under the applica-
tion of an electric field, answers to the following questions are expected to play critical roles
in further improving the energy storage performance. Q1) How does electrical polarization
emerge and evolve from a nonpolar lattice matrix? Q2) What are the key structural factors
that control and limit critical fields (EA and EB), Pmax and Pr? Although the phase transition
processes are complex, as reported in PbZrO3-based and NaNbO3-based systems [121–124],
manipulative free dimensions about spatial, temporal and electric field offer a plethora of
opportunities to unveil the unknowns. For example, in Pb(Zr0.57Sn0.43)O3-based ceramics,
Fan et al. observed local depolarization field-assisted AFE-to-FE transition during mono-
tonic E loading using in situ (scanning) transmission electron microscopy (S/TEM). In
addition to this, they also found suppression of FE domain mobility after 103-time bipolar
cycling, which indicates the electric fatigue of the FE phase [125].

By largely improving the temporal resolution under in situ biasing conditions, from
~30 s to 415 ms per data pattern, Zhang et al. investigated the dynamic structure evo-
lution of polycrystalline NaNbO3 using high-energy XRD (Figure 6a). Associated with
the disappearance and appearance of specific superlattice reflections, e.g., 1

2 (312)c reflec-
tion, they found that an AFE-to-FE transition took place around E = 8 kV/mm [126]. At
E > 12 kV/mm, abruptly enhanced polarization and longitudinal strain S33 indicated the
transformation of the nonpolar P phase (orthorhombic AFE, Pbcm) to the polar Q phase
(orthorhombic FE, P21ma) (Figure 6b–d). According to the mismatch of the P-phase fraction
with changes in lattice parameter, volume, polarization and S33, they proposed a decou-
pled polarization switching process in the range of 8 < E < 12 kV/mm. Given that the
P phase (a-a-b+/a-a-b-/a-a-b+) differs from the Q phase (a-a-b+) in octahedral tilting, the
field-dependent structural data cannot exclude another possibility, i.e., the existence of an
intermediate FiE phase. It adopts a Q-phase structural framework [98], but the oxygen
octahedra are in a transitional state. Observation of weak ferrielectricity in PbZrO3-based
ceramics supports this possible interpretation [85,86,127].

Compared with diffraction-based techniques, E-dependent structural transition, mea-
sured at atomic scale using S/TEM, provides more intuitive information about energy
storage. However, even using a state-of-the-art imaging detector such as the K3 camera,
which is capable of collecting 1500 data frames per second (0.67 ms per frame), the mis-
match in time remains due to the requirement of sufficient signal intensity and image
contrast for data analysis. Thus far, several advanced imaging techniques have been used
to image light elements, e.g., negative spherical aberration imaging (NCSI) [128–130],
annular bright field (ABF) imaging [131], integrated differential phase contrast (iDPC)
imaging [132,133] and electron ptychography [134]. Despite this, imaging light elements
such as oxygen under in situ biasing conditions remains a challenge due to their very low
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scattering power. As a compromise, slowing down the phase transition speed becomes a
good solution to unravel the evolution of characteristic structural orders as a function of
field strength and time [52].
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Recently, Wei et al. found that an illumination electron beam in a TEM can act as an
external electric field to trigger phase transitions in dielectric insulators. The principle
lies in the fact that the electrons captured by the insulating sample surface are “equiva-
lent” to the electrostatic charging effect [135,136]. By slowing down the phase transition
speed to the level of seconds, the investigation of atomic-scale structural changes be-
comes possible [127,137,138]. For a [001]O-oriented PbZrO3 lamella sample, time- and
atomic-resolution NCSI-TEM study [127] reveals that the AFE-to-FE transition involves
the splitting of pseudocubic ap and bp axes. As a function of irradiation time, the unit cell
volume undergoes a reduction-to-expansion transition as the AFE phase evolves into FE
monoclinic (FEM) and rhombohedral (FER) phases (Figure 7a–e). During the in situ energy
storage process, an intermediate transient FD phase was observed between the AFE and FE
phases. With the preservation of antiparallel Pb displacements, polar octahedral distortion
takes place and breaks the spatial inversion symmetry along the x direction. Associated
with the extraction of atomic positions through quantitative TEM study, the authors found
that the transient FD phase exhibits a cycloidal order of polarization, with PS ≈ 2.8 µC/cm2

(Figure 7c,f). The finding of this FiE phase suggests the origin of the linear polarization
response at E < EA(B) in the P-E loop of PbZrO3. Synchrotron X-ray and neutron diffraction
structural studies reported similar FiE behavior, characteristic of a wavy polarization order,
in ternary PbZrO3-PbSnO3-PbTiO3 solid solutions [85,86,139].

Regarding the phase transition pathway, we should note the possible difference
between calculated models and experimental observations (Figures 5 and 7). For the
latter, structural defects such as atomic vacancies and stoichiometry issues prevail in real
samples [140,141], and they may potentially influence the transition pathway. By using
time- and atomic-resolution NCSI-TEM, Wei et al. found that a defect core, induced by
oxygen and Pb vacancies [118], can act as a seed to trigger unit-cell-wise AFD-to-FD
transition in [001]O-oriented PbZrO3 (Figure 8a–e). This is in sharp contrast to the case
with the absence of such a defect core, where a relatively uniform AFD-to-FD transition
takes place in the region irradiated by the electron beam [127]. As a result of the seed effect,
charged FD domains with head-to-head and tail-to-tail configurations are observed during
the energy storage process.
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2bp × cp) plotted as a function of irradiation time, respectively.

(c–e) Atomic-resolution NCSI-TEM images of an AFD-FD phase boundary and associated structural phase transitions
recorded along [001]O direction, respectively. The oxygen displacements in (c) are indexed by (+, 0, –) symbols and colorful
solid lines. The yellow arrows denote antiparallel Pb displacements. The atom types are Pb—yellow, Zr—green, O—red
circles, respectively. (f) 2D cycloidal order of polarization for the transient FE-FD phase obtained using quantitative TEM
study [127].
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structure evolution as a function of electron-beam irradiation time (dose rate = 3.8 × 106 e/nm2·s). The cyan shadow
and thick yellow arrows denote the defect core and polarization, respectively. (f–j) Corresponding lattice strain exx

(horizontal [100]O direction) maps obtained using geometric phase analysis (GPA) [118].
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Compared with neutral domain walls, we know that the formation energy of charged
domain walls is much higher [117,142] and 2D electron gas may form at the walls to
compensate for bound charges and lower the electrostatic energy [113,143]. The anisotropic
structural transformation suggests that the defect cores probably lower the coercive field
(EB). With the preservation of antiparallel Pb displacements, this further proves that the
energy storage and transfer begin with distorting the oxygen octahedral network. Another
point worth noting is the evolution of the polar configuration inside the defect core. At the
initial AFE state, electric dipoles form a self-compensated vortex structure. Accompanied
by energy injection, the local polarity is stabilized until immersion in the FD states. Strain
analysis reveals that nanoscale local compressive strain leads to the seed effect of the defect
core (Figure 8f–j). This points out that the rational selection of the doping element and
concentration is crucial for optimizing the storage performance of dielectrics [144–146].

7. Ionic Migration across Dielectric/Metal Interfaces

In oxide-based dielectric capacitors, metallic (La1−xSrx)MnO3 [147], (La1−xSrx)CoO3 [148]
and SrRuO3 [149] are standard choices for bottom electrodes. Previous transport property
studies have reported that (La1−xSrx)MnO3 undergoes thickness-driven and electric-field-
driven M–I transition [137,150,151]. When such a transition occurs in dielectric capacitors,
“dead” layers appear at the dielectric/electrode interfaces and this may impact the energy
storage performance. Driven by the depolarization effect, the “dead” layers usually lead to
reduced capacitance near the interface [152–154]. The contrary phenomenon observed in
the STO/LSMO system (PS ≈ 125 µC/cm2) suggests that the interface should contribute
positively to the “defect-induced” ferroelectricity in SrTiO3 (Figure 4d). Hou et al. ascribe
the enhanced EB to the modulation of the local electric field and redistribution of oxygen
vacancies at the oxide interface [28]. However, the finite interface thickness (~5 nm), com-
pared to that of ~560 nm for SrTiO3, casts doubt on the role of the interfacial contribution
alone.

Rhombohedral LSMO (x ≈ 1/3, space group R3c) has a ferromagnetic metallic state
at room temperature. Below TC ≈ 367 K, its structure is characterized by AFD octahedral
rotations (a-a-a- in Glazer’s notation) [147,155]. By using in situ biasing STEM, Yao et al.
revealed an E-induced M–I transition by measuring the E-dependent resistivity change.
The insulating state was attributed to the formation of a brownmillerite (BM) phase (C2/c),
which has a bandgap of Eg ≈ 0.63 eV [151,156,157]. In Hf0.5Zr0.5O2 (HZO, 5 nm)/LSMO
films (Figure 9a), Nukala et al. directly observed oxygen vacancy-induced structural
transition in bottom LSMO by using in situ biasing iDPC STEM [158]. In addition to an
intermediate BM precursor phase, they found the intertwining of polarization switching
with the migration of oxygen vacancies (Figure 9b–d). Specifically, the role of the dielectric
oxide layer, either as a fast conduit or as a source/sink of oxygen migration depending on
the oxygen reactivity of the top electrode [158,159], highlights the necessity of considering
electrochemical activities for capacitors under working conditions. This may involve the
migration of atomic vacancies and cations through antisite defects, and electronic structure
changes in all atomic species. The ultrahigh energy density achieved in Na-based perovskite
oxides, e.g., ionic conductor (Na0.5Bi0.5)TiO3 [160], also suggests the important role of ionic
migration in enhancing the energy storage performance; see Table 1. In addition, possible
FE metal states [161–163] should be considered at the dielectric/metal interfaces. These
mechanisms may apply to the nonpolar Au/STO/LSMO and other systems [164,165].
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8. Summary and Outlook

By generalizing the AFE-to-FE transition to a broader AFD-to-FD transition, we sum-
marize in situ phase transition pathway studies in energy storage nonpolar materials.
Aiming at identifying the underlying mechanism and improving the energy storage per-
formance of dielectric capacitors, we highlight several key points below to inspire future
research.

(I) Besides mesoscale domain structure and phase boundary evolution, light element
sensitive imaging techniques should play a key role in unraveling the in situ dynamic
phase transition during energy storage. The reason lies in the fact that the delicate energy
transfer usually starts from light-element-based structural units, e.g., distortion of the
oxygen octahedra and migration of oxygen vacancies. Specifically, transient FE or FiE
phases may possibly emerge under non-equilibrium conditions. Apart from deepening
our understanding of the energy storage process, such studies promise to expand the
recognition scope of FE physics.

(II) Case studies of PbZrO3, SrTiO3 and (La1−xSrx)MnO3 highlight the significance
of carrying out defect and interface structure investigation during the energy storage
processes. This may include dopant-induced strain change, antisite mechanism and phase
boundary evolution under in situ biasing conditions. Establishing the direct microstructure–
property relationship may help to optimize the figures of merit of the P-E loops, e.g.,
increasing the Pmax and critical fields while reducing Pr and the loop area.

Finally, two recent works reported that mesoscale-domain engineering may greatly
improve the energy storage density, e.g., from 12.2 to 18.5 J/cm3 in NaNbO3-based re-
laxor AFE ceramics [44,166]. Pertinent to the beneficial hierarchical domain structures,
structure–property relationship study of FE Pb(Zr,Ti)O3 shows that this may arise from
phase transition frustration near a tricritical point [167]. Together with the use of advanced
computation and simulation methods, such as machine learning, we believe that carry-
ing out cross-scale microstructure study may boost the development of energy storage
materials and their device application.
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