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Introduction
Essential tremor (ET) is the most common movement dis-
order, affecting an estimated 7 million Americans [1]. ET 
patients suffer from disabling shaking of their hands and, 
less commonly, head, voice, tongue, leg, and trunk which 

negatively impacts their quality of life [2–4]. Pharmaco-
therapy is the mainstay for treatment of ET. However, the 
first-line agents are ineffective in 30–70% patients due to 
lack of response, adverse effects, and development of drug 
tolerance [5–8]. These patients are candidates for invasive 
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neurosurgical interventions, including deep brain stimu-
lation (DBS) and high intensity focused ultrasound (HIFU) 
thalamotomy. While effective [9–14], these interventions 
are associated with the general risks of surgery, as well as 
stimulation-induced adverse effects (e.g., paresthesia, dysto-
nia, dysarthria, gait disturbances) [14–16]. They are also 
expensive and not widely available.

More recently, non-invasive electrical stimulation of peri-
pheral nerves at the wrist has been shown to reduce hand 
tremor in ET subjects [17, 18]. These transcutaneous elec-
trical pulses are programmed to alternate between radial and 
median nerves in a pattern resembling tremor frequency, 
earning it the name transcutaneous afferent patterned stim-
ulation (TAPS). Improvement in tremor and quality of life 
has been demonstrated with both acute, as well as, repeated 
use of TAPS [17–19]. The recently published PROSPECT trial 
has shown the efficacy of longitudinal TAPS therapy, as 
well as a reduction in baseline pre-TAPS tremor scores over 
three months of home use [19]. However, the mechanism 
of action of TAPS and whether its long-term use modulates 
brain plasticity remains unknown. Therefore, in this study 
we sought to determine whether and in what ways daily 
TAPS therapy over a three month period may affect brain 
metabolism. We also examined changes in tremor power, 
frequency, and clinical tremor severity over this period. The 
preliminary results of our study are presented.

Methods 
Standard Protocol Approval, Registration, and Patient 
Consent
This study was registered with ClinicalTrials.gov (NCT037​
78060). The clinical protocol and informed consent form 
were approved by the Mayo Clinic Institutional Review Board 
(IRB 18-006984). Written informed consent was obtained 
from all participants prior to enrollment in the study.

Subjects
This was a pilot study with 5 subjects. Subjects were screened 
for study eligibility through face-to-face interviews. Sub-
jects were eligible for this study if they were ≥21 years and 
approved for DBS surgery by the Mayo Clinic Deep Brain 
Stimulation Committee for treatment of ET. Subjects were 
excluded if they had moderate to severe ethanol depend-
ence or had an implanted pacemaker, defibrillator, or deep 
brain stimulator. A detailed description of the inclusion 
and exclusion criteria is provided in the supplementary 
information.

Study Protocol
After a minimum 4 hour overnight fast, on day 1 of the 
study, the subjects were given an 8 mCi 18F-fluorodeoxy-
glucose (FDG) intravenous injection. After 30 minutes 
of FDG uptake, a 1 min Computed Tomography (CT) scan 
of the head was acquired for attenuation correction and 
anatomical co-registration and thereafter a 15 min FDG 
acquisition Positron Emission Tomography (PET) scan of the 
subject’s brain was obtained on a GE DMI PET/CT scanner 

(GE Healthcare, Waukesha, WI). Immediately following the 
PET/CT session, The Essential Tremor Rating Assessment 
Scale (TETRAS), a subscale version that included upper 
limb tremor assessment and the Archimedes spiral drawing 
task was conducted (details in tremor severity assessment 
section) [17, 20–23].

The subjects were then fitted with a wrist-worn TAPS 
device (Cala Health Inc., Burlingame, CA). The hand with 
more severe tremor (or the dominant hand if both hands 
had equal tremor severity), as determined by the TETRAS 
and Archimedes spiral task, was chosen for stimulation. An 
accelerometer on-board the device measured the subject’s 
tremor frequency and power while the subject performed 
a forward postural arm hold task. This frequency was then 
incorporated into the therapeutic stimulation waveform. 
The device had two working stimulation electrodes posi-
tioned over the median and radial nerves on the anterior sur-
face of the wrist, and a single counter-electrode positioned 
on the posterior surface of the wrist. Stimulation consisted 
of a series of charge balanced biphasic pulses delivered at a 
frequency of 150 Hz, 300 µs pulse width, and 50 µs inter-
pulse period [17]. The stimulation was alternated between 
the median and radial nerve at a frequency equal to tremor 
frequency (i.e., for a measured 5 Hz tremor frequency, stimu-
lation was applied over the median nerve for 100 msec, then 
alternated to be applied over the radial nerve for 100 msec). 
Stimulation amplitude was determined by increasing the 
stimulation level by 0.25 mA steps until the subject reported 
a sensation of the stimulus in the hand. Final stimulation 
amplitude was chosen to be the highest level of stimulation 
that the subject found comfortable. Subjects received stim-
ulation at that level during a 40-min stimulation session and 
for every session thereafter. Immediately following the ini-
tial 40-minute session, TETRAS and Archimedes spiral draw-
ing tasks were repeated.

Subjects then received device training and instructions by 
on-site study personnel for conducting daily home stimu-
lation sessions, and were instructed to perform the home 
stimulation sessions twice daily for three months. Adverse 
events were monitored and reported to the Mayo Clinic IRB 
committee. At the end of the three-month study period, the 
subjects returned to the office. Their medication and vitals 
were reviewed. The subjects then underwent a FDG PET/CT 
session identical to that conducted on day 1 of the study. 
Thereafter, TETRAS and Archimedes spiral drawing tasks 
were conducted before and after 40 minutes of stimulation 
with the device.

Tremor Severity Assessment
Tremor severity in the upper limbs was assessed using 
tremor power analysis, TETRAS subscores and Archimedes 
spiral drawing tasks. The kinematic data was obtained using 
a three-axis accelerometer on board the device when the 
subjects performed a forward postural hold task before 
and after TAPS. The sum of power spectral density (PSD) of 
tremor frequency band was computed from the accelero-
meter data before and after each TAPS session to compute 

https://ClinicalTrials.gov
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tremor power. See supplementary information for details of 
how PSD was calculated and filtered. 

TETRAS ratings were assessed independently by two 
observers on a scale of 0–4 for each task [23]. The ratings 
for the forward horizontal reach posture and lateral “wing 
beating” posture (each held for 20 sec), and finger-nose-
finger testing (executed three times) was summed to obtain 
the final scores. Tremor severity was also assessed using the 
Archimedes spirals drawing task. For this, subjects drew an 
Archimedes spiral that approximately filled ¼ of an unlined 
page of standard (letter) paper (approximate size 10 × 10 cm) 
after demonstration by the examiner. See supplementary 
information (Tables S1 and S2) for details of TETRAS and 
Archimedes spiral score assignment.

Data and Statistical Analysis
To identify changes in patterns of metabolism between 
baseline, and subsequent scans we utilized Statistical Para-
metric Mapping-12 (SPM12) running on MATLAB R2016b 
(Mathworks, Natick, MA) and AFNI software package 
(https://afni.nimh.nih.gov/afni). All the FDG images were 
co-registered to a population-optimized FDG PET templates 
from the Mayo Clinic Adult Lifespan Template (MCALT) [24] 
using series of affine and nonlinear registration steps. The 
images were normalized to the pons, followed by spatial 
smoothing with isotropic kernel (full width at half max-
imum = 6mm). Group statistical comparisons of day 90 scan 
was compared to the day 1 scan using a paired t-test in a 
voxel-by-voxel manner [25]. The age and gender was used as 
a covariate. Voxels with a p value < 0.05 (uncorrected) and 
cluster size > 40 voxels were used to determine significant 
differences. For the interpretation of cerebellar metabolism 
change, a cerebellar parcellation map was adopted.(26) To 
apply this atlas to our data, the atlas was projected onto the 
MCALT space.

Clinical efficacy was measured as the change in the 
tremor power (summed PSD), TETRAS, and Archimedes 
spiral drawing scores following TAPS compared with pre-
TAPS. The Wilcoxon matched pair rank sum test was used 

to compare the following parameters for individual sub-
jects: (1) summed PSD before and after TAPS over the 90 
days of use, (2) tremor frequency before and after TAPS for 
the first 14 sessions, and (3) the pre-TAPS tremor frequency 
for the first and last 14 sessions. A paired t-test was used 
to investigate the following differences in TETRAS and 
Archimedes spiral ratings for all 5 subjects: (1) pre- and 
post-TAPS on day 1 and 90, to assess acute therapeutic  
effects and (2)  pre-TAPS on day 1 compared to pre- and 
post-TAPS on day 90, to assess cumulative therapeutic 
effects with long-term use.

We also evaluated the PET-clinical tremor relationship 
by looking at Pearson correlation coefficient for clinical 
tremor reduction (Δ pre-TAPS TETRAS) and change of FDG 
standardized uptake value ratio (Δ SUVR) for the cerebellar 
sites. Study compliance for individual subjects was determ-
ined based on device data indicating completed sessions 
throughout the three month at-home period. Compliance 
was calculated based on twice a day usage during enroll-
ment period (i.e., percent compliance = 100 * (number of 
total completed sessions/(2 * number of enrollment days)).

Results 
Five subjects (3 males, 2 females) with medically intractable 
ET, approved to undergo DBS surgery by the Mayo Clinic 
DBS Committee, participated in the study. The mean age of 
the study participants was 70.2 ± 5.2 years (mean ± 1 SD). 
The duration of their disease ranged from 10 to 57 years 
(mean 32 ± 16.8 years). The participants were enrolled for 
89.2 ± 4.8 days and completed 136.2 ± 41.3 TAPS sessions. 
Their compliance was found to be 77.3 ± 25.6 % (Table 1).

PET imaging revealed two clusters of increased glucose 
metabolism in the ipsilateral cerebellar hemisphere and 
one cluster of reduced glucose metabolism in the contralat-
eral cerebellar hemisphere (p < 0.05, uncorrected) at day 
90 compared to day 1 (Figure 1A, C and E, Table 2). Other 
ipsilateral regions, including pre- and post-central regions 
and middle occipital lobe and contralateral regions, includ-
ing insula, cuneus, anterior cingulate, and inferior parietal 

Table 1: Subject demographics and compliance summary. Abbreviations: Avg, average; SD, standard deviation; BL, 
bilateral; L, left; R, right.

Age 
(yrs)

Disease 
duration 

(yrs)

Tremor 
frequency 

(Hz)

Medications Stimulated 
hand

Enrollment 
days

Completed 
TAPS 

sessions

Compliance# 

(%)

1 75 25 BL: 5.3–5.4 Propranolol and primidone Right 86 156 90.70

2 62 30–40 BL: 4.5–5.0 Propranolol Right 88 131 74.43

3 74 57 L: 3.8–4.2
R: 4.0

Propranolol, primidone, 
gabapentin, and acetazolamide

Left 97 67 34.54

4 71 30–35 BL: 5.2–5.8 Primidone and gabapentin Right 85 171 100.00

5 69 10–12 BL: 4.9–5.3 None Right 90 156 86.67

Avg 70.2 89.2 136.2 77.3

SD 5.2 4.8 41.3 25.6

# % Compliance is based on twice a day use during enrollment days = (100 * No. of completed TAPS sessions)/(2 * No. of enrollment days).

https://afni.nimh.nih.gov/afni
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Figure 1: PET results and PET-tremor correlation: (A–G) PET imaging of TAPS-induced brain regional activity at day 90, 
compared to day 1, averaged across 5 subjects with essential tremor (p<0.05, uncorrected), showing (A, C) hypermeta-
bolic clusters in ipsilateral cerebellar hemisphere and (E) a hypometabolic cluster in contralateral cerebellar hemisphere. 
(B, D, F, G) Cerebellar connectivity atlas showing cerebral-cortical connections for different cerebellar regions- the red 
color for example shows connection to frontal pole and medial frontal cortex and the orange color shows connection 
to frontal and parietal cortex, including premotor region. (H) Pre-TAPS clinical tremor scores (TETRAS) on day 1 and 
day 90 for all 5 ET patients. (I) Absolute change of SUVR for the three cerebellar clusters shown in (A),(C) and (E) at day 
90 compared to day 1. (J) Correlation between change of tremor scores and SUVR for the cerebellar clusters from day 
1 to 90. Abbreviations: CL, contralateral; ET, essential tremor; IL, ipsilateral; PET, positron emission tomography; TAPS, 
transcutaneous afferent patterned stimulation; TETRAS, Tremor Research Group Essential Tremor Rating Assessment 
Scale; SUVR, standardized uptake value ratio. p-values: * <0.05, ** <0.01, *** <0.0005.
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cortex, exhibited clusters of decreased glucose metabolism 
(p < 0.05, uncorrected, Table 2). The changes in SUVR for 
both ipsilateral hypermetabolic clusters (p = 0.0002 and 
0.0209, respectively) and the contralateral hypometabolic 
cluster (p = 0.0072) were statistically significant (Figure 1I). 
The functional cerebellar atlas showed connectivity of ipsi-
lateral hypermetabolic cerebellar clusters to contralateral 
prefrontal and parietal regions, including the premotor 
area. The contralateral hypometabolic cerebellar cluster also 
showed connectivity with the frontal pole, medial frontal 
cortex, and parts of the medial parietal cortex. (Figure 1B, 
D, F and G).

On day 1 (first visit), the mean TETRAS scores for the 
stimulated hand, before and after TAPS, were found to be 
6.5 ± 2.5 and 4.1 ± 1.8, respectively (mean ± SD; p = 0.005, 
Figure 2A). The Archimedes spiral scores pre- and post-TAPS 
were 2.6 ± 0.5 and 2.0 ± 0.0, respectively (p = 0.07). Similarly, 
on day 90 (final visit), the mean TETRAS scores for the stimu-
lated hand were found to be 4.9 ± 1.5 and 4.1 ± 1.0 (p = 0.12) 
before and after TAPS (Figure 2A). The Archimedes spiral 
scores changed from 2.8 ± 0.4 to 2.0 ± 1.0 (p = 0.09). The 
TETRAS scores for the non-stimulated hand are summarized 
in Figure 2B.

The paired pre-post tremor power analysis for individual 
subjects showed a consistent decrease (p < 0.0001) follow-
ing TAPS use across the entire duration of use (Figure 2C 
and D). An overall median tremor power reduction of 72.6 
± 14.5% was noted (supplementary table S5). Figure 2C 
shows the tremor power recordings for a representative 
subject (subject 2) over the 3 month treatment period (see 
supplementary information Figure S1 for tremor power 
recordings of other subjects). No statistically significant 
changes were observed in tremor frequency with acute or 
long-term TAPS use (p =1.00 and 0.52, respectively; see sup-
plementary information Table S3). 

The Pearson correlation coefficient ‘r’ for ΔSUVR (day 
1–day 90 for cerebellar clusters) and Δ pre-TAPS TETRAS 
scores (day 1–day 90) was found to be –0.70 and –0.56 
for the hypermetabolic clusters in the ipsilateral cerebellar 
hemisphere and 0.32 for the hypometabolic cluster in the 
contralateral cerebellar hemisphere (Figure 1J).

Discussion
Longitudinal TAPS therapy modulates cerebellar 
metabolism
Our preliminary results demonstrate clusters of increased 
metabolism in the cerebellar hemisphere ipsilateral to the 
side of stimulation and a hypometabolic region in the con-
tralateral cerebellar hemisphere following 90 days of TAPS 
therapy (p < 0.05, uncorrected, Figure 1A, C and E). During 
this period we also observed a median tremor power reduc-
tion of 72.6 ± 14.5% (n = 5) across subjects. The metabolic 
changes observed in the cerebellum could be due to the dir-
ect effect of TAPS leading to tremor reduction, a consequence 
of tremor reduction, or an effect of TAPS unrelated to tremor 
or noise. The third possibility is least likely as- 1) cerebellum 
is a well-established and important node in the tremor cir-
cuitry [27–31], 2) we observed the cerebellar changes most 
consistently in our data set regardless of the reference brain 
region or method chosen for PET analysis (further discussed 
below), and 3) a moderate to strong correlation was found 
between Δ pre-TAPS TETRAS scores and ΔSUVR for the two 
hypermetabolic clusters in ipsilateral cerebellar hemisphere 
(Figure 1J). However, with our current study design it is 
not possible to tease out whether the tremor reduction is 
a cause or a consequence of cerebellar metabolic change. 

In either case, our findings are in line with cerebellar activ-
ation observed ipsilateral to the side of tremor control with 
ventral intermediate (ViM) nucleus DBS for ET [32]. This 
cerebellar activation was also shown to have the strongest 

Table 2: PET results: Regions showing statistically significant changes in 18F-fluorodeoxyglucose (FDG) uptake at day 
90 compared to day 1 following longitudinal TAPS therapy (p<0.05, uncorrected). Abbreviations: CL, contralateral; IL, 
ipsilateral.

Region Maximum 
T-score

Cluster 
size

Talairach coordinates

x y z

IL Cerebellum crus II cluster 1 3.45 145 34.5 –70.5 –39

IL Cerebellum crus II cluster 2 3.29 61 39 –54 –45

IL Precentral area –2.65 40 15 –21 52.5

IL Postcentral area –3.05 85 60 –13.5 10.5

IL Middle occipital –3.29 54 24 –81 1.5

CL Cerebellum Lobule IX –2.73 40 –13.5 –42 –33

CL Insula –2.77 98 –34.5 –12 10.5

CL Cuneus –3.1 47 –7.5 –79.5 10.5

CL Anterior cingulate –3.26 171 –1.5 45 0

CL Inferior parietal –3.77 40 –43.5 –46.5 43.5
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Figure 2: Tremor assessment: Clinician-rated change in TETRAS scores for both (A) stimulated and (B) non-stimulated 
hand at day 1 and day 90 (n = 5). (C) Tremor power before (black dot) and after (blue dot) each stimulation session (con-
nected with a line) followed over a 90 days period for one of our representative subjects showing a decrease in tremor 
power after most stimulation sessions. Other subjects’ data is provided in the supplementary information (Figure S1). 
(D) Change in pre- and post-TAPS tremor power (pair-wise comparison) for individual subjects over the 90 days of use. 
The difference in Y-scales indicates inter-subject variability in tremor severity. Abbreviation: TAPS, transcutaneous afferent 
patterned stimulation; TETRAS, Tremor Research Group Essential Tremor Rating Assessment Scale. p-values: * <0.05, ** 
<0.01, **** <0.0001.
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association with long-term therapeutic effects of VIM DBS 
[32]. Similarly in our data set, we observed a moderate to 
strong correlation (Pearson’s r –0.7 and –0.56) between 
change of SUVR in cerebellar hypermetabolic clusters 
and change in clinical tremor scores recorded just before 
PET (pre-TAPS TETRAS) on the respective days (Figure 1J). 
However, our observations are different from the bilat-
eral cerebellar inactivation (reduction in regional cereb-
ral blood flow, rCBF) noted with ethanol intake in alcohol 
responsive ET patients [33]. Ethanol likely acts by enhancing 
inhibitory GABAergic (gamma-aminobutyric acid) transmis-
sion [34] in brains of ET patients who are known to have 
reduced GABA receptor concentrations in their cerebellar 
dentate nuclei [35]. It is possible that increased glucose 
utilization in ipsilateral cerebellar cortex with TAPS ther-
apy could indicate increased Purkinje cell activity. Purkinje 
cells send GABAergic efferents to dentate nuclei and their 
loss has been observed in ET patients [36]. Further studies 
showing direct activation of Purkinje cells and/or increase 
GABA release with TAPS therapy are required to confirm this 
hypothesis. 

We also observed decreased metabolism in other brain 
regions, including ipsilateral pre- and post-central areas, 
middle occipital lobe, and contralateral regions, including 
insula, cuneus, anterior cingulate, and inferior parietal cor-
tex (p < 0.05, uncorrected). The functional significance of 
these observations with respect to tremor is unclear. We 
continue our investigations in a larger cohort of patients. 

Cerebellar-premotor region connectivity may play a 
role in mechanism of TAPS
The cerebellar connectivity atlas [26] revealed connections 
of ipsilaterally activated cerebellar regions with contralateral 
prefrontal and parietal regions, including the premotor area 
(Figure 1B, D, F and G). Magnetoencephalography studies 
have revealed that ET patients exhibit contralateral premo-
tor activity that correlates with tremor frequency [37]. Simil-
arly, involvement of the contralateral primary motor cortex, 
thalamus, brainstem, and ipsilateral cerebellum has also 
been observed [27, 37, 38]. Current theory suggests the pres-
ence of multiple tremor pattern generators throughout the 
aforementioned structures which entrain with one another 
to produce the symptoms of tremor [39, 40]. Therefore, 
potential Purkinje cell activation in the cerebellar cortex by 
TAPS could reduce this entrainment by increasing inhibitory 
GABAergic drive. However, we did not observe a statistically 
significant signal in contralateral premotor or motor cor-
tices and the other nodes of the tremor network. This could 
be due to low sensitivity resulting from the small sample 
size and preliminary nature of our work. The cortical and 
cerebellar activating effects seen with VIM DBS are possibly 
related to orthodromic and antidromic activation, respect-
ively, of thalamo-cortical and cerebello-thalamic projections 
[41, 42]. Whether the mechanism of TAPS also involves activ-
ation of cerebello-thalamo-cortical pathways remains to be 
determined. 

TAPS consistently reduced tremor
In addition to findings from PET, we found a consistent 
and statistically significant (p < 0.0001) reduction in paired 
pre-post-tremor power for all subjects across the 90 days of 
TAPS use regardless of their compliance and initial tremor 
scores (Figure 2C and D, supplementary figure S1). The 
median tremor power reduction was found to be 72.6%. 
This is in line with the findings from a large multi-center 
trial (PROSPECT) of TAPS therapy [43]. We also noted an 
acute, statistically significant decrease in TETRAS scores 
on day 1, but not on day 90, following a 40 min TAPS ses-
sion (Figure 2A). A trend was noted for decreased pre-TAPS 
tremor score at day 90 compared to day 1. However, unlike 
the PROSPECT study [43] it did not reach statistical signi-
ficance. These results must be seen in the light of consid-
erable day to day variability seen in tremor as evident from 
the literature [44] and from our own longitudinal tremor 
power recordings (Figure 2C, supplementary figure S1). 
Also, this study was not powered to detect differences in 
clinical tremor outcomes (TETRAS scores) which has already 
been demonstrated by others using variants of this device 
in both sham-control and longitudinal home use settings 
[17, 18, 43].

Limitations
This study had a number of limitations. First, this was an 
open-label study with a relatively small sample size and 
without a sham control. To assess the extent to which 
placebo effects may contribute to the outcomes, a sham 
control would be preferable. However, successfully facilitat-
ing a comparable blind mimicking the device’s therapeutic 
sensation with at-home long-term use is challenging. Small 
sample size does not allow the results to survive multiple 
correction or region of interest (ROI) analysis. Second, 
both the PET/CT and the clinical tremor ratings reflect 
a snapshot of time in the disease process. Fluctuations 
in ET severity on a day to day basis are well known and 
may be a potential source of bias in our results [44]. Third, 
we choose the pons as reference as it was expected to be 
less affected by TAPS compared to cerebellum. However, 
the pons is also within the cortical-thalamic-cerebellum 
tremor circuit, therefore future work is needed to define a 
better reference region. As such, we continue to evaluate 
the mechanism of TAPS in a larger cohort to confirm our 
preliminary findings.

Conclusion
TAPS of radial and median nerves may improve tremor via 
modulation of neuronal/glia activity in the cerebellum and 
other brain regions associated with the tremor circuit in 
subjects with ET. This preliminary study identifies several 
anatomical areas within the brain which may be related to 
the therapeutic effect of this therapy or could be chance 
associations. Continuation of this study and future invasive 
studies in patients and animal models of ET would shed fur-
ther light on the mechanism of TAPS. 
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The additional file for this article can be found as follows:

•	 Supplementary Information. Detailed inclusion/
exclusion criterion and tremor data. DOI: https://doi.
org/10.5334/tohm.565.s1
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