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Cervical cancer (CC) is one of the three majors gynecological malignancies, which
seriously threatens women’s health and life. Radiotherapy (RT) is one of the most
common treatments for cervical cancer, which can reduce local recurrence and prolong
survival in patients with cervical cancer. However, the resistance of cancer cells to
Radiotherapy are the main cause of treatment failure in patients with cervical cancer.
Long non-coding RNAs (LncRNAs) are a group of non-protein-coding RNAs with a length
of more than 200 nucleotides, which play an important role in regulating the biological
behavior of cervical cancer. Recent studies have shown that LncRNAs play a key role in
regulating the sensitivity of radiotherapy for cervical cancer. In this review, we summarize
the structure and function of LncRNAs and the molecular mechanism of radiosensitivity in
cervical cancer, list the LncRNAs associated with radiosensitivity in cervical cancer,
analyze their potential mechanisms, and discuss the potential clinical application of
these LncRNAs in regulating radiosensitivity in cervical cancer.
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BACKGROUND

Cervical cancer is the most common malignant tumor in the female reproductive system, which
seriously threaten women’s health and life (1). The current treatment methods for cervical cancer
include surgery, radiotherapy, chemotherapy and immunotherapy (2). However, the 5-year survival
rate is still not satisfactory, as most patients with cervical cancer are usually diagnosed at an
advanced stage or have distant lymph node metastasis (3). As the main treatment for cervical
Abbreviations: CC, Cervical cancer; RT, Radiotherapy; LncRNA, Long non-coding RNA; ORF, open reading frame; HIF1-a,
Hypoxia-Inducible Factor 1-a; ATM, Ataxia telangiectasia mutation; HR, Homologous recombination; NHEJ,
nonhomologous end-joinin; GAS5, Growth Arrest Special 5; IER3, immediate early response 3; HOTAIR,HOX Transcript
Antisense Intergenic RNA; LINC00662, Long Intergenic Noncoding RNA00662; CDC25A, cell division cycle 25 A;
LINC00958, Long Intergenic Noncoding RNA00958; RRM2, ribonucleotide reductase subunit M2; LINP1, LncRNA in
non-homologous end joining (NHEJ) Pathway 1; EGFR, epidermal growth factor receptor; PARP, poly ADP-ribose
polymerase; MALAT1, Metastasis-associated lung adenocarcinoma transcript 1; NEAT1, Nuclear-enriched Transcript 1;
CCND1, cyclin D1; PCAT1, Prostate cancer- Associated Transcript 1; GOLM1, Golgi membrane protein 1; SNHG, Small
nucleolar RNA host gene; CDK1, cyclin-dependent kinase 1; UCA1, Urothelial cancer associated 1; HK2, hexokinase 2.
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cancer, radiotherapy is applied in all stages of cervical cancer.
However, 44% of patients still experience recurrence, and 35% of
recurrent tumors are local and regional (4). The failure of
radiotherapy is mainly attributed to radioresistance, which
exists in radioresistant cancer cell subgroups (5, 6).
Radioresistance is the main obstacle to the complete recovery
of cervical cancer patients after receiving a complete treatment
regimen (7). Therefore, reducing the radiotherapy resistance of
cervical cancer and improving the radiotherapy sensitivity of
cervical cancer are urgent problems to be solved by clinicians
and researchers.

Long non-coding RNAs (LncRNAs) are a group of
nonprotein-coding RNAs with a length of more than 200
nucleotides, which are abnormally expressed in many cancers.
LncRNAs play an important role in regulating multiple
biological processes such as proliferation, apoptosis, migration,
invasion, angiogenesis, abnormal metabolism and immune
escape (8–11). LncRNAs also directly regulate the transcription
and translation of target genes in various ways, or indirectly
regulate the genes upstream or downstream of their target genes
(12). In addition, lncRNAs are involved in a variety of cell life
activities, such as gene imprinting, gene recombination,
chromatin modification and cell cycle regulation (13–17). In
recent years, increasing evidence has shown that lncRNAs are
closely related to the radiosensitivity of malignant tumors (18,
19) and participate in the regulation of radiosensitivity in
esophageal cancer (20), nasopharyngeal cancer (21), colorectal
cancer (22), pancreatic cancer (23), gastric cancer (24), liver
cancer (25), lung cancer (26) and other tumors. Recently, a
certain number of lncRNAs have been shown to play an
important role in the regulation of radiotherapy sensitivity in
cervical cancer. However, there is no summary of lncRNAs
involved in the regulation of radiotherapy sensitivity in cervical
cancer. Here, we highlight the structure and function of lncRNAs
and the mechanism of radiotherapy resistance in tumor cells. In
addition, lncRNAs regulating the radiotherapy sensitivity of
cervical cancer are summarized and their mechanism of action
in cervical cancer is analysed, providing useful information for
the study of lncRNAs regulating the radiotherapy sensitivity of
cervical cancer.
STRUCTURE AND FUNCTION OF
LNCRNAS

In the human genome, more than 90% of the genome can be
transcribed (27), which leads to the formation of a complex
transcription network, which includes tens of thousands of
lncRNAs (28). LncRNAs are over 200 nucleotides in length,
polyadenylated, selectively spliced, low in abundance and have a
relatively low sequence conservation. LncRNAs mainly exist in
mammalian epigenetic systems (29, 30). LncRNAs are mainly
located in the nucleus or cytoplasm (31, 32). The secondary
structure of lncRNA is known through genome-wide studies,
which have revealed them to have a hierarchical structure
containing subdomains of modular RNA secondary motifs
Frontiers in Oncology | www.frontiersin.org 2
(33, 34). A triple helix is formed at the 3’ end to protect it
from RNase degradation (35). The lncRNA structure is more
complex than that of mRNA but simpler than that of rRNA (36,
37). Through the determination of the secondary structure of
lncRNAs, lncRNAs can be divided into the following groups: 1.
highly structured RNAs with subdomains and complex
structural motifs; 2. loose RNA with multiple stem rings, but
lacking a hierarchical domain and complex motifs; 3.
unstructured and disordered RNA, lacking secondary structure
(29). Currently, there are few studies on the tertiary structure of
lncRNA, and the specific structure is not very clear. Uroda et al.
used the chemical detection method to study lncRNAMEG3 and
found that its tertiary structure was consistent with the
secondary structure (38). Borodavka et al. found that the
tertiary structure of lncRNA HOTAIR was more compact than
mRNA transcripts but not as compact as ribosomes (39).

LncRNAs are more than 200 nucleotides in length, and their
nucleotide sequence structure is similar to that of mRNAs, but
lncRNAs lack a standard open reading frame (ORF), and thus
they do not encode functional proteins (40, 41). Although
lncRNAs do not encode proteins, they still have many
biological functions in human diseases. With further research,
the functions of lncRNAs in human diseases have been
preliminarily clarified. The main biological functions include
the following: (1) interfering with the transcription of target
genes into mRNA; (2) regulating chromatin remodelling and
histone modification; (3) interfering with the mRNA splicing
sequence; (4) formation of interfering RNA that binds to target
mRNA and leads to its degradation; (5) change protein structure
and function and regulating protein activity; (6) acting as
miRNA to regulate protein activity; (7) changing intracellular
protein localization; and (8) production of small RNA (42).
THE MECHANISM OF RADIORESISTANCE
IN MALIGNANT TUMORS

Cancer is a serious threat to human health (43), and radiotherapy
is one of the main treatment methods for cancer. Approximately
60% of cancer patients require radiotherapy (44), and
radiotherapy can be combined with surgery, chemotherapy and
immunotherapy to improve the surgical resection rate and cure
rate of cancer patients (45). Despite the improvement of
radiotherapy techniques and methods, tumor recurrence or
metastasis eventually results due to the inherent or acquired
radioresistance of cancer cells (46, 47). Radioresistance is a
complex biological process , and the mechanism of
radioresistance is not clear at present. The possible
mechanisms are described as follows (Figure 1): (1) Tumor
hypoxia: The significant increase in HIF1a activity in tumor
hypoxia induces radioresistance (48). In addition, the reduction
in free radical oxidative stress induced by radiotherapy under
hypoxic condition also leads to radioresistance (49). (2) Tumor
microenvironment: In addition to tumor cells, the tumor
microenvironment also includes the nontumor cell matrix,
blood vessels, peripheral cells, immune cells and tumor stem
May 2022 | Volume 12 | Article 896840
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cells. Radiotherapy can induce vascular injury and lead to tumor
hypoxia, which triggers an immune response by increasing the
production of cytokines/chemokines that induce the recruitment
of immune cells (50, 51). Local inhibitory immune cells (TAMs,
MDSCs and Tregs) increase after radiotherapy, resulting in
decreased radiosensitivity (52–54). (3) DNA damage repair:
After radiotherapy, DNA double-strand or single-strand breaks
can be caused, leading to chromosome aberration or cell death
(55). Ataxia telangiectasia mutation (ATM) dependent DNA
damage response (56), nonhomologous terminal junction (57),
single-strand broken repair (58) and homologous recombination
pathways synergistically promote the increased expression of
repair genes such as those of the DNA damage repair pathway in
tumors (59), which is one of the main causes of radioresistance.
(4) Tumor stem cells: Tumor stem cells have the ability to self-
renew, differentiate into other tumors and resist tumor
treatment, which is one of the main causes of tumor
recurrence and metastasis. The number of tumor stem cells
and the inherent radioresistance of tumor stem cells are related
to the resistance to radiotherapy (60). In addition, non-tumor
stem cells can be induced to develop into tumor stem cells after
Frontiers in Oncology | www.frontiersin.org 3
radiotherapy (61). (5) Metabolic changes: Cancer is closely
related to metabolic disorders (62), and metabolic
reprogramming is also considered as one of the markers of
cancer (63). In addition, metabolic changes are related to
radiotherapy resistance (64), glucose metabolism can affect
radiotherapy sensitivity (65), and regulating mitochondrial
function can induce a radiotherapy resistance response (66).
(6) Cell cycle, apoptosis and other signalling pathways: In the
study of double-strand break repair, HR (homologous
recombination) and NHEJ (nonhomologous end-joining) were
the two pathways first discovered, HR is triggered in the late S
and G2/M stages (67), and NHEJ is triggered in the G0/G1 and
G2/M phases (68), and these two pathways are closely related to
radiosensitivity (69). DNA is damaged after radiotherapy,
leading to apoptosis, and avoidance of apoptosis is one of the
main causes of radioresistance in tumor cells (70). In contrast, it
participates in the occurrence of radioresistance by regulating the
expression of apoptotic proteins (71). (7) Others: In addition to
the mechanism mentioned above, radioresistance of tumor cells
is also related to tumor heterogeneity (49), microRNAs (72) and
lncRNAs (73).
FIGURE 1 | Mechanisms of radiotherapy resistance of malignant tumor cells: (1) Tumor Hypoxia; (2) Tumor Microenvironment; (3) DNA damage repair; (4) Tumor
stem cell; (5) Tumor Metabolism; (6) Cell Apoptosis; (7) Cell Cycle; (8) Others: MicroRNA, LncRNAs, HR, NHEJ.
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MECHANISM OF RADIOTHERAPY FOR
CERVICAL CANCER

Cervical cancer is one of the main causes of death in females
worldwide (74), and radiotherapy is one of the main treatment
methods for cervical cancer which is not only applicable in the
early stages, but can also be used for advanced and metastatic
lesions (75). The standard radiotherapy regimen for cervical
cancer is external pelvic irradiation and brachytherapy (76). The
main mechanism by which radiotherapy kills tumor cells is the
induction of single - and double-stranded DNA breaks. One way
to kill tumor cells is by directly damaging their DNA with
radiation. The other way is that radiation causes water
decomposition and forms free radicals, leading to the indirect
death of tumor cells (77). In the treatment of cervical cancer,
approximately 80% of patients with cervical cancer require
radiotherapy (78). However, radioresistance may occur when
irradiated cancer cells adopt substitution mechanisms to
promote their survival, proliferation, invasion and escape from
cell death in external irradiation or brachytherapy (79). In
addition, due to local tumor hypoxia and the existence of
tumor stem cells (49, 60), cervical cancer cells can also be
resistant to radiotherapy. Therefore, radioresistance is still the
main cause of the decline in overall survival and disease-free
survival in cervical cancer (80), and is also the main cause of local
recurrence and metastasis (4).
Frontiers in Oncology | www.frontiersin.org 4
THE ROLE OF LNCRNAS IN
REGULATING RADIOSENSITIVITY OF
CERVICAL CANCER

With the development of scientific and technological means, an
increasing number of clinical workers and researchers are paying
attention to the correlation between lncRNAs and cervical cancer
radioresistance. The abnormal expression of some lncRNAs
regulating cervical cancer radioresistance has been studied, and
the relevant mechanism has been preliminarily clarified at the
molecular level. An increasing number of studies have reported
that some lncRNAs can enhance radioresistance, while some
lncRNAs can reduce radioresistance. This review systematically
summarised the lncRNAs involved in the regulation of
radioresistance in cervical cancer, reviews the recent studies on
the regulation of radioresistance to cervical cancer by lncRNAs,
and described their possible mechanisms (Figure 2 and Table 1).

Growth Arrest Special 5 (GAS5)
GAS5 is a tumor suppressor whose expression level increases
during growth stagnation (94). There are approximately 630
nucleotides in GAS5, consisting of 5’ -terminal oligopyrimidine
RNA composed of 12 nonconserved exons, located on
chromosome 1q25 (95, 96). Studies have shown that the
expression levels of GAS5 is positively correlated with the
apoptosis of cervical cancer cells and the sensitivity of
FIGURE 2 | The upregulation or downregulation of LncRNAs leads to radioresistance of cervical cancer through different pathways. LncRNA, Long non-coding
RNA; HIF1-a, Hypoxia-Inducible Factor 1-a; NHEJ, nonhomologous end-joinin; GAS5, Growth Arrest Special 5; IER3, immediate early response 3; HOTAIR, HOX
Transcript Antisense Intergenic RNA; LINC00662, Long Intergenic Noncoding RNA00662; CDC25A, cell division cycle 25 A; LINC00958, Long Intergenic Noncoding
RNA00958; RRM2, ribonucleotide reductase subunit M2; LINP1, LncRNA in non-homologous end joining (NHEJ) Pathway 1; MALAT1, Metastasis-associated lung
adenocarcinoma transcript 1; NEAT1, Nuclear-enriched Transcript 1; CCND1, cyclin D1; PCAT1, Prostate cancer- Associated Transcript 1; GOLM1, Golgi
membrane protein 1; SNHG, Small nucleolar RNA host gene; CDK1, cyclin-dependent kinase 1; UCA1, Urothelial cancer associated 1; HK2, hexokinase 2.
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chemotherapy drugs, and negatively correlated with the
proliferation and metastasis of cervical cancer cells (97, 98).
Recent studies have shown that GAS5 is positively correlated
with radiotherapy sensitivity in cervical cancer. Gao et al. (81)
used qRT-PCR to assess 11 radio-sensitive cervical cancer tissues
and 9 radio-resistant cervical cancer tissues, and the results
showed that GAS5 expression in the radioresistant tissues was
significantly reduced compared with radiosensitive tissues. In
HeLa cells, overexpression of GAS5 reduced the cell survival
score and promoted radiotherapy sensitivity, while in ME180
cells, GAS5 knockdown increased the cell survival score and led
to radiotherapy resistance. Animal experiments showed that
when mice were irradiated with 6 MV X-ray 16Gy/4F, the
tumor size of the GAS5-overexpressing group was significantly
reduced, while that of the GAS5 knockdown group was
significantly increased. Further mechanistic studies showed
that overexpression of GAS5 resulted in upregulation of
immediate early response 3(IER3) and downregulation of miR-
106b, thus increasing radiological sensitivity. However,
upregulation of miR-106b or downregulation of IER3 could
reverse this effect. The experimental results showed that GAS5
enhanced the sensitivity of cervical cancer cells to radiotherapy
by inhibiting miR-106b and upregulating IER3.

HOX Transcript Antisense Intergenic
RNA (HOTAIR)
HOTAIR is transcribed from the antisense strand of the HOXC
gene cluster with 2158 nucleotides and 6 exons located between
HoxC11 and HoxC12 on the chromosome 12Q13.13 (99).
Studies have fully proven that HOTAIR is highly expressed in
cervical cancer tissues and cells, and is related to tumor
proliferation and metastasis (82, 83). Moreover, HOTAIR can
modulate the radiotherapy sensitivity of cervical cancer. Li et al.
(100), when studying the radiotherapy sensitivity of HOTAIR to
cervical cancer, found that downregulated expression of
HOTAIR significantly increased the radiosensitivity of HeLa
cells and induced G1 phase arrest and apoptosis, but this effect
could be suppressed by downregulation of P21, and the
Frontiers in Oncology | www.frontiersin.org 5
upregulation of P21 made these cells regain their sensitivity to
radiation. Overexpression of HOTAIR increased the resistance of
C33A cells to radiation and promoted C33A cells to enter S
phase, but this effect could be reversed by overexpression of P21.
The results showed that HOTAIR regulates the sensitivity of
cervical cancer cells by acting on P21. Another study showed that
the expression of HOTAIR in HeLa and C33A cells was
significantly higher than that in normal cervical cells, but after
irradiation of HeLa and C33A cells, the expression of HOTAIR
was significantly decreased in a time-dependent manner, which
inhibited the viability of cervical cancer cells and promoted
apoptosis of cervical cancer cells. However, this effect could be
eliminated by the overexpression of HOTAIR. Further
mechanistic studies showed that HOTAIR regulates the
radiosensitivity of cervical cancer cells and is related to HIF-1a
expression. After irradiation, HeLa and C33A cells
overexpressing HOTAIR increased HIF-1a expression, leading
to radioresistance and promoting tumor growth, but this effect
could be neutralized by miR-217 mimics. Under hypoxic
condition, the inhibition of miR-217 expression by HOTAIR
could be upregulated. Thus, HIF-1a expression was promoted to
increase the radioresistance of cervical cancer cells. In contrast,
knockdown of HOTAIR increased the radiosensitivity of cervical
cancer cells by increasing the expression of miR-217 and
decreasing the expression of HIF-1a (101).

Long Intergenic Noncoding RNA00662
(LINC00662)
LINC00662 is located on chromosome 19q11 and is 2085 bp
long. LINC00662 is upregulated in a variety of malignant tumors,
and the upregulated expression of LINC00662 is also closely
related to the poor prognosis , radioresistance and
chemoresistance of cancer patients (102, 103). The expression
of LINC00662 was shown to be significantly upregulated in
cervical cancer tissues and cells, and the high expression of
LINC00662 resulted in reduced overall survival and relapse-free
survival, and was associated with FIGO stage and lymph node
metastasis. Overexpression of LINC00662 significantly increased
TABLE 1 | Functional characterization of LncRNAs in Cervical cancer.

LncRNAs Expression Function Mechanism Role Reference

GAS5 Downregulation Proliferation miR-106b/IER3 Anti-
oncogene

(81)

HOTAIR Upregulation Cell cycle, apoptosis, cell viability, migration,
invasion

P21/miR-217/HIF-1a Oncogene (82, 83)

LINC00662 Upregulation Proliferation, migration, invasioninvasion miR-497-5p/CDC25A Oncogene (84)
LINC00958 Upregulation Proliferation, apoptosis miR5059/RRM2 Oncogene (85)
LINP1 Upregulation Proliferation, DNA repair NHEJ Oncogene (86)
MALAT1 Upregulation Cell cycle, apoptosis miR-145 Oncogene (87)
NEAT1 Upregulation Proliferation, apoptosis,Cell cycle, colony miR-193b-3p/CCND1 Oncogene (88)
PCAT1 Upregulation Proliferation, migration, invasion miR-128/GOLM1 Oncogene (89)
SNHG6SNHG12UCA1 Upregulation

Upregulation
Upregulation

Proliferation, apoptosisCell cycle,
apoptosisProliferation

miR-485-3p/STYXmiR-148a/CDK1HK2/
Glycolytic

Oncogene
Oncogene
Oncogene

(90) (91) (92,
93)
May 2022
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the proliferation, migration and invasion of these cells, and
increased the radioresistance of C33A cells. LINC00662
inhibited the proliferation, migration and invasion of Caski
cells, and increased the radiosensitivity of Caski cells. In C33A
cells, overexpression of LINC00662 resulted in significant
downregulation of miR-497-5p, while the overexpression of
miR-497-5p partially reversed the promotion by overexpressed
LINC00662 of proliferation, metastasis and radioresistance of
C33A cells. In Caski cells the effect was reversed. Overexpression
of LINC00662 or miR-497-5p inhibition resulted in the
significantly increased cell division cycle 25 A(CDC25A)
expression, while knockdown of LINC00662 or overexpression
of miR-497-5p resulted in decreased CDC25A expression. The
results showed that LINC00662 promotes the proliferation,
migration, invasion and radioresistance of cervical cancer cells
through the LINC00662/miR-497-5p/CDC25A axis (84).

Long Intergenic Noncoding RNA00958
(LINC00958)
The expression of LINC00958 in cervical cancer tissue was
higher than that in normal tissue, and the high expression of
LINC00958 was negatively correlated with the overall survival of
cervical cancer. In addition, in HeLa cells with LINC00958
knockdown, sh-LINC00958 inhibited the proliferation of HeLa
cells, increased cell apoptosis after 6Gy X-ray irradiation, and
reduced tumor volume and tumor weight in mice. Moreover, sh-
LINC00958 can upregulate the expression of miR-5095 and
inhibit ribonucleotide reductase subunit M2 (RRM2). Studies
have shown that sh-LINC00958 can increase the radiosensitivity
of cervical cancer. Further bioinformatics analysis and dual
luciferase assays confirmed that LINC00958 can regulate miR-
5095, which can regulate RRM2 by binding to its 3’-UTR. In
HeLa cells transfected with sh-RRM2, after 6 Gy X-ray
irradiation, sh-RRM2 inhibited cell proliferation and clonal
formation, and increased cell apoptosis, while overexpressed
RRM2 had the opposite effect. Upregulation of miR-509 can
inhibit cell proliferation, induce apoptosis, and downregulate the
expression of RRM2. After treatment with miR-509 inhibitor,
this effect was reversed. Therefore, the above results suggest that
LINC00958 silencing promotes the sensitivity of cervical cancer
cells to radiotherapy by regulating the miR-5095/RRM2
axis (85).

LncRNA in Nonhomologous End Joining
(NHEJ) Pathway 1 (LINP1)
The LINP1 gene is located on chromosome 10:6737382-6739026
and is 917bp in length. It is an important component of the
NHEJ synaptic complex (104). LINP1 is highly expressed in most
malignant tumor tissues and cells, promotes tumor progression,
inhibits apoptosis, and promotes resistance to chemotherapy and
endocrine drugs (105–107). In addition, LINP1 can also promote
the repair of DNA double-strand damage to breast cancer cells
after radiotherapy, leading to radiotherapy resistance (104).
LINP1 was shown to be highly expressed in cervical cancer
tissues and HeLaS3 cells. The RNA- fluorescence in situ
hybridization technique showed that LINP1 was mainly
Frontiers in Oncology | www.frontiersin.org 6
distributed in the cytoplasm. After radiation treatment, LINP1
was translocated to the nucleus, and the expression of LINP1
increased 24 hours after radiation, but this effect could be
blocked by EGFR inhibitors. It is thought that the expression
of LINP1 may be regulated by the EGFR pathway in cervical
cancer cells. In addition, knockdown LINP1 can increase
radiosensitivity, mainly by promoting apoptosis by increasing
cleaved caspase3 and PARP expression levels; on the other hand,
DNA damage repair was inhibited by increasing g-H2AX
expression. These results suggest that LINP1 increases
radioresistance in cervical cancer cells by inhibiting apoptosis
and promoting DSB repair through the NHEJ pathway (86).
Therefore, LINP1 may serve as a prognostic marker and a
potential therapeutic target for cervical cancer treatment.

Metastasis-Associated Lung
Adenocarcinoma Transcript 1 (MALAT1)
MALAT1 is transcribed by RNA polymerase II. Its promoter has
an accessible open chromatin structure, and this gene is encoded
on the human chromosome 11q13 with a length of ~8.7 knt and
is highly evolutionarily conserved (31). MALAT1 was initially
found to be associated with lung cancer, but recently MALAT1
has been found to be abnormally expressed in most cancers,
working as a decoy for splicing factors leading to splicing
malfunctioning (108). In cervical cancer, Lu et al. performed
qRT-PCR assessment on 21 radio-sensitive HR-HPV + (high-
risk human papillomavirus+) and 29 radio-resistant cervical
cancer tissues, and the results showed that the expression of
MALAT1 in radiation-resistant cervical cancer tissues was
higher than that in radiation-sensitive cervical cancer tissues.
In addition, the expression of miR-145 was negatively correlated
with MALAT1 expression in cervical cancer tissues. In
MALAT1-knockout HR-HPV-16+ CaSki and HR-HPV-18+
HeLa cells, irradiation reduced the cell formation rate and the
proportion of G1 phase cells, but increased the proportion of G2/
M phase cells and apoptosis. In addition, the overexpression of
miR-145 significantly reduced the rate of CaSki and HeLa cell
clonal formation, while the overexpression effect of miR-145
combined with MALAT1 knockout was more significant than
that of miR-145 alone. The results showed that MALAT1
regulates the radiosensitivity of HR-HPV+ cervical cancer cells
by regulating miR-145 (87).

Nuclear-Enriched Transcript 1 (NEAT1)
NEAT1 is located on 11q13.1 in human chromosomes, and
consists of two subtypes, NEAT1-1 and NEAT1-2. These two
subtypes share a common promoter and initiation site. However,
the termination sites are different. In addition, between the two
subtypes, the 3’end of the NEAT1-1 transcript is typically
polyadenylated. However, the 3’ end of the NEAT1-2
transcript is not-polyadenylated (109). In recent years, the role
of NEAT1 in malignant tumors has been more reported. In
cervical cancer, NEAT1 is not only related to the growth,
metastasis and prognosis of cervical cancer, but also can
regulate sensitivity to chemotherapy drugs (110–112). To
understand whether NEAT1 regulates the radiosensitivity of
May 2022 | Volume 12 | Article 896840
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cervical cancer, Han et al. used qRT-PCR to detect the expression
of NEAT1 in cervical cancer tissues and radioresistant cervical
cancer cells (HeLa-R and SiHa-R). NEAT1 expression was
significantly increased in cervical cancer tissues and
radioresistant cervical cancer cells. In addition, high NEAT1
expression was associated with prognosis, lymph node
metastasis, tissue differentiation and TNM score in tumor
patients. To further confirm the correlation between NEAT1
and radiosensitivity of cervical cancer, they transfected HeLa
and SiHa cells to overexpress NEAT1. After the transfection of
HeLa-R and SiHa-R cells to knockdownNEAT1, the proliferation
in the overexpression group increased compared with that in the
negative control cells after different doses of irradiation.
Compared with the negative control group, the cell proliferation
of the knockdown group decreased. It was thought that NEAT1
expression increased radiation resistance, and that NEAT1
knockdown increased radiation sensitivity. To understand the
mechanism by which NEAT1 regulates the radiosensitivity of
cervical cancer, Han et al. demonstrated that NEAT1 was
correlated with miR-193b-3p through bioinformatics analysis,
and therefore they assessed overexpressed NEAT1 and knocked
down NEAT1 in cells. In NEAT1-overexpressing cells, the
expression of miR-193b-3p decreased. However, miR-193b-3p
expression was increased in knockdown NEAT1 cells. It is
considered that NEAT1 negatively regulates the expression of
miR-193b-3p to affect the radiosensitivity of cervical cancer.
Further studies showed that cyclin D1 (CCND1) is one of the
targets of miR-193b-3p. By upregulating miR-193b-3 expression
and downregulating CCND1 expression, NEAT1 silencing can
reduce the cell survival rate and clone formation, and increase G0/
G1 phase cell cycle arrest and apoptosis, thus improving the
radiosensitivity of cervical cancer cells. This may indicate that
NEAT1 knockdown regulates the radiosensitivity of cervical
cancer through the NEAT1/miR-193b-3p/CCND1 signalling
pathway (88).

Prostate Cancer-Associated
Transcript 1 (PCAT1)
PCAT1 is a polyadenylated lncRNA containing 1.9 kb and two
exons. Among Chr8q24 gene located approximately 725 kb
upstream of the MYC oncogene, PCAT1 was initially found in
prostate cancer and is involved in the occurrence and
development of prostate cancer (113). Subsequently, the
abnormal expression of PCAT1 was found to be related to the
occurrence and development of a variety of malignant tumors,
and can lead to chemotherapy resistance (114, 115). In addition,
PCAT1 can also regulate the radiosensitivity of malignant tumors
(116). The expression levels of PCAT1 were positively correlated
with FIGO stage, lymph node metastasis and the depth of cervical
tumor invasion. In vitro experiments showed that knocking down
PCAT1 could improve the radiosensitivity by inhibiting the
proliferation, migration and invasion of cervical cancer.
Similarly, in animal experiments, knocking down PCAT1
inhibited tumor growth, reduced tumor volume and weight, and
significantly enhanced the antitumor effect of radiation compared
with the NC group. Furthermechanistic studies showed thatmiR-
128 is a downstream target of PCAT1 and is negatively regulated
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by PCAT1. Knockdown of PCAT1 leads to upregulation of miR-
128, which enhances the radiosensitivity of cervical cancer cells to
proliferation, migration, and invasion. Golgi membrane protein 1
(GOLM1) is a downstream target of miR-128 and is negatively
regulated by miR-128. Both upregulation of GOLM1 and
downregulation of miR-128 can reverse the enhanced
radiosensitivity effect of PCAT1 gene knockout on cervical
cancer cells, thus promoting the proliferation, migration and
invasion of cervical cancer cells (89).

Small Nucleolar RNA Host Gene (SNHG)
Small nucleolar RNA host genes (SNHGs) are long non-coding
RNAs that have been reported to be expressed in a variety of
cancers. SNHG1, SNHG3, SNHG5, SNHG6, SNHG7, SNHG12,
SNHG15, SNHG16, and SNHG20 can induce proliferation, cell
cycle progression, invasion and metastasis of cancer cells,
possibly making SNHGs effective biomarker for cancer
progression and invasion (117). SNHG6 is highly expressed in
cervical cancer tissues and cell lines, especially in SiHa, HeLa and
CaSki cells. Knockdown of SNHG6 can inhibit tumor cell growth
and promote apoptosis, suggesting that SNHG6 plays a role in
cervical cancer by promoting tumor cell growth and enhancing
radiation resistance. Bioinformatics analysis and MS2-RIP
analysis were used to prove that SNHG6 was cross-linked with
miR-485-3p, and that STYX was the downstream target of miR-
485-3p. SNHG6 is negatively correlated with miR-485-3p.
Downregulation of SNHG6 or overexpression of miR-485-3p
can reduce the expression level of STYX, while knockdown of
miR-485-3p or overexpression of STYX can eliminate the effect
of SNHG6 silencing on the growth of cervical cancer cells.
Studies have shown that SNHG6/miR-485-3p/STYX axis
contributes to the growth and radiation resistance of cervical
cancer cells, thus promoting the progression of cervical cancer
(90). Similarly, SNHG12 was overexpressed in both cervical
cancer tissues and cells, and was positively correlated with
tumor size and TNM stage. Interestingly, however, the
expression of SNHG12 in tumor tissues and cells after
radiotherapy was significantly lower than that before
treatment, suggesting that SNHG12 may be related to the
radiotherapy sensitivity of cervical cancer. Cell and animal
experiments have shown that SNHG12 knockdown can inhibit
tumor growth by increasing apoptosis and cell cycle tissue, thus
improving radiosensitivity. Further mechanistic research,
through bioinformatics analysis, shown that SNHG12regulates
the expression of cyclin-dependent kinase 1(CDK1) through the
adsorption of miR-148a to increase the radiosensitivity of
cervical cancer. miR-148a is expressed at low levels in cervical
cancer tissues and cell lines, and the low expression of miR-148a
is positively correlated with the patient’s tumor size and TNM
stage, which indicates that SNHG12 is negatively correlated with
miR-148a a. Knockdown of SNHG12 plays a role in cervical
cancer by increasing the expression of miR-148a, which can be
reversed by miR-148a inhibitors. CDK1 is overexpressed in
cervical cancer cell lines. In addition, SNHG12 overexpression
can promote the expression of CDK1, but this effect can be
reversed by miR-148a overexpression. However, miR-148a
inhibitor and CDK1 overexpression can reverse the effects of
May 2022 | Volume 12 | Article 896840
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SNHG12 gene knockout on the radiosensitivity of cervical cancer
cells (91). These results indicate that the lncRNA SNHG12
regulates radiosensitivity of cervical cancer through the
SNHG12/miR-148a/CDK1 regulatory axis and provides a new
therapeutic target for the radiosensitivity of cervical cancer.

Urothelial Cancer Associated 1 (UCA1)
The UCA1 gene contains three exons and two introns and is
located on human chromosome 19p13 (118). It was first
discovered in studies of bladder cancer (119), has been
reported in a variety of malignancies and is involved in
radiotherapy resistance and chemotherapy resistance of
malignancies (120–122). The expression of UCA1 in cervical
cancer tissues is higher than that in normal tissues, and similarly,
UCA1 expression in cervical cancer cell lines (HeLa, SiHa, C33A,
and CaSKi) is also higher than that in normal cells (92). Fan et al.
(93) irradiated HeLa and SiHa cells with 76 Gy X ray to establish
HeLa and SiHa radiation resistant cells (HeLa-IRR and SIha-
IRR). In HeLa-IRR and SiHa-IRR cells, the expression of UCA1
was significantly higher than that in HeLa and SiHa cells.
Upregulation of UCA1 expression is considered to lead to
radioresistance. Furthermore, HeLa-IRR and SiHa-IRR cells
can increase glycolysis by increasing Hexokinase 2 (HK2),
PKM, HIF-1a and GLUT-1 expression levels, and increase
radiation resistance of cervical cancer cells. Inhibition of
glycolysis increased the radiosensitivity of HeLa-IRR and SiHa-
IRR cells. In addition, UCA1 gene knockout inhibited glucose
consumption and lactic acid production in SiHa IRR and HeLa
IRR cells, and decreased HK2 protein expression levels but did
not significantly affect the expression of HIF-1a, GLUT-1,
GLUT-4 or PKM. In contrast, overexpression of UCA1 in
SiHa and HeLa cells increased glucose uptake and lactate
production, as well as HK2 protein expression levels, and had
no significant effect on the expression of HIF-1a, GLUT-1,
GLUT-4 or PKM. These results suggest that UCA1 may play
an important role in regulating radiation resistance through
HK2/glycolysis pathway, providing a new potential target for
improving radiotherapy for cervical cancer.
CONCLUSION AND OUTLOOK

Cervical cancer is the fourth most common malignant tumor
leading to death in females. Radiotherapy is one of the main
treatment methods for cervical cancer, especially for intermediate
and advanced cervical cancer, but radiation resistance is the main
cause of local recurrence andmetastasis of cervical cancer. Although
researchers and clinicians have been studying the sensitivity of
cervical cancer for many years, the exact mechanism that regulates
the radiosensitivity of cervical cancer is still not clear. In this paper,
the role and mechanism of lncRNAs in radiotherapy of cervical
cancer were summarized and analysed. The structure and function
of lncRNAs, the molecular mechanism of radiotherapy resistance in
cervical cancer, and the relationship between lncRNAs and
radiotherapy resistance in cervical cancer were systematically
reviewed. Through analysis, we have learned that lncRNA mainly
Frontiers in Oncology | www.frontiersin.org 8
regulate the radiosensitivity of cervical cancer by mediating DNA
damage, regulating the cell cycle, apoptosis, and glycolysis, and
targeting miRNAs. Therefore, the regulation of radiation resistance
by lncRNAs in cervical cancer has become an important direction in
the study of radiation sensitivity in malignant tumors. However,
there are no clear guidelines based on lncRNA expression levels to
distinguish radiation-sensitive cervical cancer patients from
radiation-resistant cervical cancer patients during clinical
treatment implementation. However, we believe that with the
development of detection and analysis technology, we can predict
the treatment effect and prognosis of cancer patients by monitoring
related signalling pathways to carry out more effective and precise
treatment and individualized treatment, and improve the effect of
radiotherapy for cervical cancer.

At present, although several lncRNAs have been confirmed to
be related to the radiosensitivity of cervical cancer, there are still
many problems to be solved. First, tens of thousands of lncRNAs
have been confirmed to be related to human tumor, but only a few
lncRNAs are related to the radiosensitivity of cervical cancer.
Therefore, we need to discover new lncRNAs and clarify their
exact mechanism of action in cervical cancer to obtain more
candidate target genes for cervical cancer radiosensitivity. Second,
although LncRNAs have rapidly attracted great attention in
malignant tumor research in recent years, basic and clinical
research are still needed to verify the reliability of LncRNAs and
conduct in-depth studies on their molecular mechanisms for
clinical application, as there are no clear lncRNA-based
guidelines for clinical application to distinguish cervical cancer
patients who are sensitive and insensitive to radiotherapy. Finally,
we need to adopt advanced, stable and rapid detection technology
to conduct rapid and accurate detection of lncRNAs in clinical
practice to generate the test results required for clinical
examination and treatment, and facilitate clinical prediction of
treatment effect and evaluation of treatment prognosis.
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