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Abstract

Melanoma, a cancer that arises from melanocytes, is one of the most unresponsive 
cancers to known therapies and has a tendency to produce early metastases. Several 
studies showed encouraging results of the efficacy of photodynamic therapy (PDT) in 
melanoma, in different experimental settings in vitro and in vivo, as well as several 
clinical reports.

Aims. Our study focuses on testing the antimelanoma efficacy of several new, 
synthetic photosensitisers (PS), from two different chemical classes, respectively four 
porphyrins and six phthalocyanines. 

Methods. These PS were tested in terms of cell toxicity and phototoxicity against 
a radial growth phase melanoma cell line (WM35), in vitro. Cells were exposed to 
different concentrations of the PS for 24h, washed, then irradiatied with red light (630 
nm) 75 mJ/cm2 for the porphyrins and 1 J/cm2 for the phthalocyanines. Viability was 
measured using the MTS method.

Results. Two of the synthetic porphyrins, TTP and THNP, were active 
photosensitizers against WM35 melanoma in vitro. Phthalocyanines were effective in 
producing a dose dependent PDT-induced decrease in viability in a dose-dependent 
manner. The most efficient was Indium (III) Phthalocyanine chloride, a metal 
substituted phthalocyanine.

Conclusions. The most efficient photosensitizers for PDT in melanoma cells were 
the phthalocyanines in terms of tumor cell photokilling and decreased dark toxicity. 

Keywords: melanoma, photodyamic therapy, porphyrins, phthalocyanines, cell 
photokilling.
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the efficacy of photodynamic therapy (PDT) in melanoma, 
in different experimental settings in vitro and in vivo as well 
as several clinical reports. In vitro and in vivo, on human 
and mice melanoma cell lines, PDT induced significant cell 
death [4-11], tumor size decrease, delay of tumor growth 
and increase of life span [12-20]. Several clinical reports 
showed that PDT, using verteporfin, a porphynic PS, was 
well tolerated and effective on skin melanoma metastases 
[21] and induced complete remission [22,23] or were 
partially effective in choroidal melanoma [24,25]. 

PDT is a simple procedure that requires the 

Introduction
Melanoma, a cancer that arises from melanocytes, 

is one of the most unresponsive cancers to known therapies 
and has a tendency to produce early metastases [1,2]. Early 
detection, surgery, and adjuvant therapy enable improved 
outcomes; nonetheless, the prognosis of metastatic 
melanoma remains poor [3]. 

There are studies that show encouraging results of 
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administration of a PS, followed by irradiation. PS 
activation generates singlet oxygen (O2

-) and other reactive 
oxygen species (ROS) [26-28]. The antitumor effects result 
from direct tumor photodamage, destruction of tumor 
vasculature and activation of an immune response [11]. 

The ideal PS criteria are: chemical purity, preferential 
and fast tumor accumulation and rapid clearance, high light 
absorption coefficient, no dark toxicity, minimal or absent 
remaining skin photosensitivity [29]. There are several 
classes of PS: porphyrins, chlorines, phthalocyanines, 
texapyrins, porphycens, antracens, chlorophyll derivatives, 
purpurins, hypocrellins and hypericin. More than 30 
different PS are used in preclinical studies [29], but only 
ALA (5-aminolevulinic acid, Levulan) and its methyl ester 
(Metvix), m-THCP (meta-tetrahydroxyphenylchlorin, 
Foscan), porfimer sodium (Photofrin) have been approved 
for use in clinical oncology [11]. 

However, classical PDT has shown some limitations 
in clinical application [3]. The most important challenge is 
to find improved sensitizers, able to overcome melanoma 
resistance, due to melanosomal trapping, pigmentation, 
oxidative stress defense, immune evasion [25]. Our study 
focuses on testing the antimelanoma efficacy of several 
new, synthetic PS, from two different chemical classes, 
respectively porphyrins and phthalocyanines. These PS 
were tested in terms of cell toxicity and phototoxicity 
against a radial growth phase melanoma cell line (WM35), 
in vitro.

Materials and methods
1. Synthesis and characterization of the 

photosensitizers
The porphyrins 5,10,15,20-tetra-p-tolyl porphyrin 

(TTP), 5,10,15,20-tetra-p-naphthyl-porphyrin (THNP), 
5,10,15,20-tetra-p-phenyl orphyrin (TPP), 5,10,15,20-tetra-
p-methoxy-phenyl porphyrin (TMOPP) (Fig. 1) were 
obtained in the laboratory by using the Lindsey method 

[30]. Mass spectrum (FAB) Found (MW): TTP = 672, 
THNP=882, TPP=616, TMOPP=736 (Fig. 1).

The phthalocyanines (Pc) used were: 1: chloride 
indium (III) phthalocyanine [ClIn (III)Pc], 2: dihydroxide 
-silicon 2,3 naphtalocyanine - [(OH)2SiNc], 3: hydroxide 
methylsilicon (IV) phthalocyanine (OH)CH3Si(IV)Pc, 
4: dihydroxide silicon phthalocyanine [OH)SiPc], 5: 
dichloride silicon phthalocyanine [Cl2SiPc], 6: dichloride 
silicon 2,3-naphtalocyanine -[Cl2SiNc] (Fig. 2). All these 
compounds have been provided by Sigma Aldrich, and 
used without any purification. 

Mass spectrum (FAB) Found (MW): ClIn(III)Pc 
=662.79, (OH)2SiNc=774.86, (OH)CH3Si(IV)Pc =572.65, 
(OH)SiPc =574.63, Cl2SiPc =611.51, Cl2SiNc =811.86. 

The phthalocyanines are as follows: 1: chloride 
indium (III) phthalocyanine [ClIn (III)Pc], 2: dihydroxide 
-silicon 2,3 naphtalocyanine - [(OH)2SiNc], 3: hydroxide 
methylsilicon (IV) phthalocyanine [(OH)CH3Si(IV)Pc], 
4: dihydroxide silicon phthalocyanine [(OH)SiPc, 5: 
dichloride silicon phthalocyanine [Cl2SiPc], 6: dichloride 
silicon 2,3-naphtalocyanine -[Cl2SiNc], Pc1 contains a 
metal core, represented by Indium, while the others have 
silicon in the active center; they are either chlorinated (1, 
5, 6), or hydroxilated compounds (2, 3, 4) to allow better 
tissue penetration (a combination of hydro/lipophylic 
properties). 

2. Melanoma bioassays
2. 1. Cell culture: The assessment was performed 

on a human radial growth phase (RGP) melanoma cell line 
(WM35). Melanoma cells (Wistar Institute, Philadelphia, 
PA, USA) were maintained in RPMI medium supplemented 
with 5% fetal calf serum, 50 µg/ml gentamicyn and 5 ng/
ml amphotericin (Biochrom). Cultures were fed twice 
weekly and incubated in a humid atmosphere at 37°C and 
5% CO2. All experiments were conducted in subdued light, 
in triplicate. 

2.2. Light source: irradiation was done with red 
Figure 1. Chemical structures of the porphyrins tested as PS in 
PDT against melanoma.

Figure 2. Chemical structures of the six phthalocyanines tested as 
PS in PDT against melanoma. 
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light (wave length 630 nm, lamp power 2.5 mW/cm2) 
provided by a Philips LED red light system, with doses of 
4.5 J/cm2 for porphyrins and 6 J/cm2 for phthalocyanines 
respectively. 

2. 3. Photosensitiser exposure: Cells were exposed 
to PS for 24h prior to irradiation. Synthetic PS were 
solubilized in DMSO to obtain a stock solution of 10 mg/
ml. Dilutions of this solution in fresh medium were made 
immediately before use. The DMSO final concentration in 
the medium was <0.05%, not harmful to the cells [31].

2.4. Cytotoxicity assay 
The cells were seeded at a density of 104/well in 

ELISA 96 wells micro titration flat bottom plaques (TPP, 
Switzerland) and settled for 24h. Then the cells were 
exposed to each photosensitiser, prepared as described 
above, in concentrations ranging from: 1-2000 µg/
ml for porphyrins, 2.5-250 µg/ml for phthalocyanines 
respectively in medium for 24h. Cells were then 
washed, irradiated and further incubated for 24h with 
fresh medium. Viability was measured by colorimetric 
measurement of formazan, a coloured compound 
generated by mitochondrial reductase activity in viable 
cells using CellTiter 96® AQueous Non-Radioactive Cell 
Proliferation Assay (Promega, USA). Untreated cultures 
exposed to medium were used as controls. Briefly, WM35 
cultures were exposed to 3-(4,5-dimethylthiazol-2-yl)-5-
(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetra-
zolium, inner salt (MTS) /phenazine metosulphate (PMS) 
mixture for 2h, then the optical density values were tested 
at absorbance of 490 nm (as indicated by the producer) by 

an ELISA plate reader (Tecan, Switzerland). Cytotoxicity 
was evaluated as OD 490 and % of untreated controls [32]. 

2.5. Statistical method
The statistical significance of the difference between 

treated and control groups was evaluated by paired Student 
TTEST, results were considered significant for p≤0.05. 
Statistical package Prism version 4.00 for Windows, 
GraphPad Software, San Diego, California, USA, www.
graphpad.com was used for data analyses.

Results
The effectiveness of the porphyrins: TTP, THNP, 

TPP, TMOPP (Fig. 1) and the phthalocyanines (1-6): 
ClIn(III)Pc, (OH)2SiNc, (OH)CH3Si(IV)Pc, (OH)Si2,3Pc, 
Cl2Si2,3Pc, Cl2Si2,3Nc (Fig. 2) was tested against the 
radial growth phase human melanoma cell line WM35. 
Porphyrins, especially TTP exhibited a slight cytotoxicity at 
high doses. PDT induced different rates of viability decrease 
(Fig. 3). The order of efficacy was: TTP, THNP, TPP and 
TMOPP. TTP induced photokilling at concentrations as low 
as 0.1 μg/ml (p≤ 0.003, compared to irradiated controls) 
and was dose dependent, while the cytotoxic effect, also 
dose dependent, appeared at concentrations above 100 μg/
ml (p≤0.015, compared to controls). The same effect was 
seen in the case of THNP (p≤0.02, for concentrations above 
1μg/ml, compared to irradiated controls), with cytotoxicity 
at concentrations above 500 μg/ml (p≤0.011, compared 
to controls). Despite the lack of cytotoxicity, the other 
porphyrins showed decreased PDT efficacy. 

Phthalocyanines were effective in producing a dose 

Figure 3. Cell viability testing following PDT mediated by the four porphyrins. Viability data are presented as 
OD490, TTP and THNP (upper panels) proved to be good PS against WM 35 melanoma cells. 
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dependent PDT-induced loss of mitochondrial activity 
in a dose-dependent manner (Fig. 4). The cell viability 
decrease was significant for all concentrations (p≤ 0.001 
for Pc1, p≤0.006 for Pc2, p≤0.002 for Pc3, p≤0.014 for 
Pc4, p≤0.041 for Pc5, and p≤0.006 for Pc6, compared to 
irradiated controls). The order of efficacy was: Pc1, 3, 
2, 4, 6 and 5. Pc’s did not exhibit dark toxicity after 24h 
incubation in any of the cases case.

Discussion
This report has demonstrated that two of the synthetic 

porphyrins, TTP and THNP are active photosensitizers 
against WM35 melanoma in vitro. However, the safety 
profile of the compounds needs to be improved to meet the 
requirements [29], namely high phototoxicity with minimal 
citotoxicity. 

The other class of the compounds tested, the Pc, 
yielded more promising results, regarding the safety profile. 
However, the decrease in viability was not as high as 
expected. This may be due to a very low dose of irradiation, 
of only 6 J/cm2. Other reports on G361 human melanoma 
cells with a disulfonated chloroaluminum phthalocyanine 
(ClAlPcS2) showed PDT experiments using light doses of 
25 J/cm2 [33], others used PDT regimens with Pc’s and light 
doses of 10 mJ/cm2 or 20 mJ/cm2 [9,34]. Since our research 
is a preliminary comparative PDT viability study, we aimed 
to find the best suited PS against the WM35 melanoma cell 
line. PDT efficacy directly depends on the PS properties 
and the light dose [25]. The PDT irradiation doses were 

intentionally kept lower, in order to differentiate among the 
PS’s efficacies.  

Other studies also reported similar PDT results 
by using various Pc compounds as PS against different 
melanoma cell lines and in vivo melanoma models [33-38, 
41]. A comparative study with Photophrin, a porphyrinic 
PS and a newly synthesized tetrabenzamido-substituted 
Zn(II) phthalocyanine (ZnNcA) against B16 melanoma 
mouse model showed better results for ZnNcA [33].    

Porphyrins were the first substances used as PS. 
However, in melanoma, porphyrins like aminolevulinic 
acid, it’s methyl ester, Metvix, and Photofrin lacked 
the efficiency showed in non-melanoma skin cancers 
[5, 39,40]. This was probably due to the presence of the 
melanin pigment which acts as a defense mechanism. First, 
melanin is able to absorb the wavelengths of light necessary 
to activate the porphyrins and secondly, it can behave as an 
intracellular ROS scavenger, neutralizing the PDT induced 
ROS [25].   

Phthalocyanines are macrocyle compounds, similar 
to porphyrins. They are activated by the same wavelengths 
of light as porphyrins. There are two advantages of the 
Pc’s over porphyrins, as potential PDT agents: higher ROS 
generation and better spectroscopic properties [41]. These 
make them more suitable as anti melanoma agents since the 
ROS production is higher and can potentially overcome the 
melanin and other enzymatic antioxidant defenses of the 
melanoma cells. 

A major problem of the Pc’s is the lack of tumor 

Figure 4. Cell viability testing following PDT mediated by the six phthalocyanines. Viability data are presented as 
OD490, all Pc induced photokilling with no dark toxicity, Pc1 showed the best phototoxic efficacy against WM 35 
melanoma cells.
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specificity that porphyrins possess. Thus, multiple synthetic 
compounds were synthesized in order to find ways to 
improve the tumor penetration of the Pc’s [41]. 

Also, aggregation is a common problem of the 
macrocyclic complexes [41]. One way is to chemically 
substitute the active center of the molecule with silicon 
[34,36,37]. In our study, five of the six PC’s, respectively 
2-6 are this type of compounds. They shared a similar PS 
behavior with good efficacy and decreased dark toxicity. 
Another way to decrease Pc aggregation, while increasing 
lipophilicity, thus the tissue penetration, is to synthesize 
metal substituents coordinated to the silicon center [9], 
in our case Indium. As seen by the viability study, this 
compound showed greater photokilling properties with no 
toxic effects at therapeutic doses. 

Conclusion
The most efficient photosensitizers for PDT in 

melanoma cells were the phthalocyanines, especially 
the Indium (III) Phthalocyanine chloride. The viability 
decrease induced by the PDT was accompanied in this 
case by low dark toxicity. This makes it suitable for further 
testing in order to find the molecular mechanisms that led 
to tumor cell photokilling.  
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