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Candida is an important opportunistic fungal pathogen, especially in biofilm associated

infections. The formation of a Candida biofilm can decrease Candida sensitivity to

antifungal drugs and cause drug resistance. Although many effective antifungal drugs

are available, their applications are limited due to their high toxicity and cost. Seeking

new antifungal agents that are effective against biofilm-associated infection is an urgent

need. Many research efforts are underway, and some progress has been made in

this field. It has been shown that the arachidonic acid cascade plays an important

role in fungal morphogenesis and pathogenicity. Notably, prostaglandin E2 (PGE2) can

promote the formation of a Candida biofilm. Recently, the inhibition of PGE2 has received

much attention. Studies have shown that cyclooxygenase (COX) inhibitors, such as

aspirin, ibuprofen, and indomethacin, combined with fluconazole can significantly reduce

Candida adhesion and biofilm development and increase fluconazole susceptibility; the

MIC of fluconazole can be decrease from 64 to 2 µg/ml when used in combination

with ibuprofen. In addition, in vivo studies have also confirmed the antifungal activities

of these inhibitors. In this article, we mainly review the relationship between PGE2
and Candida biofilm, summarize the antifungal activities of COX inhibitors and analyze

the possible antifungal activity of microsomal prostaglandin E synthase-1 (MPGES-1)

inhibitors; additionally, other factors that influence PGE2 production are also discussed.

Hopefully this review can disclose potential antifungal targets based on the arachidonic

acid cascade and provide a prevailing strategy to alleviate Candida albicans biofilm

formation.
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INTRODUCTION

Candida albicans, as a commensal microorganism of the human microbiome and a type of
major fungal pathogen, is capable of causing disseminated or chronic infections. These infections
often come with high mortality and morbidity in critically ill patients and immunocompromised
individuals, such as AIDS patients, patients undergoing anticancer therapies, and so on (Carrillo-
Muñoz et al., 2006). The National Healthcare Safety Network (NHSN) at the Centers of Diseases
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Control and Prevention (CDC) has reported that Candida
spp. ranked fifth among hospital-acquired pathogens (Sievert
et al., 2013). Fluconazole is one of the most commonly used
antifungal drugs for human candidiasis; however, its extensive
use has increased Candida resistance and led to refractory fungal
infection (Silva et al., 2012). In addition, C. albicans can easily
form a biofilm on the surface of catheters and other medical
devices, which is themain cause of biomaterial-related infections.
The National Institutes of Health reported that biofilms are
responsible for over 80% of all microbial infections in the
United States (Fox and Nobile, 2012). Therefore, identifying
efficacious drugs that inhibit biofilm formation is critical to
overcome the resistance ofC. albicans. The arachidonic acid (AA)
cascade is essential for mediating human biological activity and
plays an important role in fungal morphogenesis and growth.
Almost every key enzyme of the AA cascade has been the
subject of pharmaceutical research (Meirer et al., 2014). AA
is the main precursor of eicosanoids, and AA can be released
from membrane phospholipids after catalysis by phospholipases
(Dennis et al., 2011) and can be metabolized into many types
of biologically active eicosanoids via the action of three separate
groups of enzymes: cyclooxygenases, lipoxygenases (LOX), and
cytochrome P450 (CYP). Lipoxygenase and cytochrome P450
catalyzes leukotrienes (LT; Peters-Golden and Henderson, 2007)
and epoxyeicosatrienoic acids (EET; Spector, 2009), respectively.
As the most popular enzyme, COX catalyzes the formation
of thromboxane (TX), and prostaglandins (PG; Clària, 2003).
PGE2, the most abundant PG, has been previously reported
to mediate several biological phenomena, such as homeostasis
(Sugimoto et al., 2000), inflammation, pain (Davies et al., 1984),
and tumorigenesis (Wang and Dubois, 2010). Recent research
has revealed that PGE2 is produced by human eukaryotic cells
as well as by pathogenic fungi (Noverr et al., 2001, 2002). AA
in combination with antifungal agents can affect PGE2 levels in
several Candida species (Mishra et al., 2014). Some studies have
suggested that fungal prostaglandin can act as a regulator for
biofilm development in C. albicans and that it is also a significant
virulence factor in biofilm-associated infections of C. albicans
(Alem and Douglas, 2005). In this review, we mainly discussed
the role of PGE2 in mediating C. albicans biofilm formation and
the antifungal activity of the COX inhibitor of the arachidonic
acid cascade, as well as other impact factors that influence the
formation of PGE2.

PGE2 AND CANDIDA BIOFILM

The pathogenicity of C. albicans includes several virulence
factors, such as adhesion, biofilm formation, and phenotypic
switching (Calderone and Fonzi, 2001). The proclivity of C.
albicans to form biofilms has caused a range of superficial
mucosal infections and severe disseminated candidiasis (Fox
and Nobile, 2012). A variety of urinary and central venous
catheters are susceptible to C. albicans biofilm formation, and
almost 50% of these catheters develop a biofilm infection
(Nobile and Johnson, 2015). The treatment of catheter-related
infections in the clinical setting is a challenge because C.

albicans biofilm is intrinsically resistant to the host immune
system and conventional antifungal drugs (Blankenship and
Mitchell, 2006; Nobile and Johnson, 2015). The resistance of
C. albicans biofilm cells to antifungal drugs is higher than
that of planktonic cells, and the corresponding MICs were 30–
2000 times higher (Douglas, 2003). Therefore, inhibiting biofilm
formation is important for fungal resistance reversing. Recent
researches show that PGE2 is able to regulate a diversity of host
immune responses. It can inhibit Th1-type and promote Th2-
type immune responses, which are responsible for regulating
diverse homeostatic and inflammatory processes (Shibata et al.,
2005). And imbalance of the Th response will cause chronic or
disseminating fungal infections (Romani and Kaufmann, 1998).
C. albicans has been reported to produce PGE2 in HeLa cells
(Deva et al., 2001). Previous study certified that in mammalian
cells, fungal PGE2 is able to down-modulate the production
of chemokine and TNF-α, it exhibits the similar activities as
mammalian PGE2, and that both are able to enhance fungal
cell adhesion, biofilm development, and germ tube formation
in C. albicans (Noverr et al., 2001). PGE2, as the regulator of
the dimorphic structure of C. albicans, shows ability to increase
intracellular cyclic AMP (cAMP) levels and stimulatesC. albicans
germ tube formation (Kalo-Klein and Witkin, 1990; Douglas,
2003). So enhancing PGE2 level during fungal infections can
aggravate fungal colonization in biofilm formation and trigger
chronic infection (Noverr et al., 2001). Evidence reveals that
candidiasis is associated with high levels of PGE2 (Noverr et al.,
2003), and decreased prostaglandin production during C. albican
infections is an important factor in relieving chronic infections
(Mishra et al., 2014). In addition, research suggests that PGE2
is produced in both C. albicans planktonic and biofilm cells
(Ells et al., 2011), while biofilm cells secreted significantly more
PGE2than the planktonic cells when determined according to
cell dry weight. This may be one of the mechanisms that
explain the high resistance of biofilm cells (Alem and Douglas,
2005). Further study showed that several genes play a role
in regulating prostaglandin production in C. albicans. Levitin’s
work suggests that PGE2 can activate the signal transduction
pathway of C. albicans by changing its transcriptional profile
under yeast growth conditions, it indirectly down-regulate the
expression of C. albicans homolog of Ctr1 by activating Tup1p
repressor and possibly other transcription factors (Levitin and
Whiteway, 2007). According to Erb-Downward’s research, fatty
acid desaturase homolog (Ole2p) and multicopper oxidase
homolog (Fet3p) are necessary enzymes that participate in PGE2
biosynthesis in C. albicans (Erb-Downward and Noverr, 2007),
while the role of OLE2 in C. parapsilosis is relatively weaker, it
is able to decrease C. parapsilosis virulence, but is dispensable
for PGE2 synthesis (Grozer et al., 2015). Furthermore, PGE2
production is a significant virulence factor in biofilm-associated
infections of C. albicans and non-albicans species (Mishra
et al., 2014), the relative lower virulence of C. dubliniensis
compared to C. albicans may be contributed to its lower PGE2
level (Ells et al., 2011). The role of PGE2 in polymicrobial
infection has also been studied. In mixed infections containing
Candida and bacterial species, such as dual S. aureus/C. albicans
polymicrobial biofilms and C. albicans in mixed infections with
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Pseudomonas aeruginosa, both of the pathogens have a tendency
to produce PGE2 (Krause et al., 2015; Fourie et al., 2016) and
cause nosocomial infections. PGE2, as the key molecule, could
stimulate dual biofilm formation, and affect the dynamics of
co-infection.

Above all, although there are multiple speculations of the
role of PGE2 in C. albicans biofilm development and fungal
pathogenesis, however, evidence shows that PGE2 has significant
effects on fungal morphogenesis and biofilm development, It
is indeed, in response to C. albicans infections, both host
and fungal cells are sources of prostaglandins production
and the host-derived arachidonic acid may be taken up by
fungi for prostaglandin synthesis. On the other hand, the
detail mechanism of PGE2 regulating biofilm formation and
pathogenicity of fungi is not completely clear. So far, some
research has shown that several transcriptional regulators control
biofilm development in C. albicans. Among these regulators, the
CPH1 and EFG1 genes are required for numerous processes, such
as morphogenesis and virulence (García-Sánchez et al., 2004);
BCR1 is a downstream gene of the hyphal regulatory network
that regulates biofilm formation, and HWP1 is used for biofilm
adherence in C. albicans (Li et al., 2015; Nobile and Johnson,
2015). However, whether PGE2 modulates biofilm formation of
C. albicans by regulating the expression of these genes is still
awaiting support from further experiments.

CYCLOOXYGENASE

The biosynthesis of PG is catalyzed by several enzymes. First,
AA is mediated by COX-1 or COX-2 to form prostaglandin
G2 (PGG2), and then, the same enzyme catalyzes the formation
of prostaglandin H2 (PGH2). Finally, PGE2 is enzymatically
produced as an end product of the reaction of PGE2 synthase
(PGES; Park et al., 2006; Iyer et al., 2009). COX inhibitors
include non-steroidal anti-Inflammatory drugs (NSAIDs), such
as aspirin, indomethacin, ibuprofen, sodium salicylate, and
diclofenac sodium, and these are the most widely used drugs
in anti-inflammatory therapy. They are used to treat pain and
inflammation in a variety of acute and chronic conditions by
inhibiting both COX-1 and/or COX-2. PGE2 is a virulence factor
in promoting fungal colonization and chronic infection, using
pharmacologic agents which can reduce PGE2 production are
therapeutic options for Candida related infection (Nash et al.,
2016). It has been reported that in human urothelium, C. albicans
can induce COX-2/PGE2 gene expression through EGFR-
ERK/p38-RSK-CREB-1 pathway (Wang et al., 2016). Notably,
recent studies have suggested that COX inhibitors had strong
antifungal activity against C. albicans by a PGE2-dependent
mechanism. It can inhibit fungal prostaglandin synthesis and
therefore reduce biofilm development in C. albicans (Alem and
Douglas, 2004, 2005; Ghalehnoo et al., 2010; Bink et al., 2012;
Rusu et al., 2014). They inhibit the growth of C. albicans in
a dose-dependent manner (de Quadros et al., 2011). Among
them, indomethacin, a potent COX inhibitor, is most effective
against C. albicans (MFC 0.11 mmol/L), followed by aspirin
(MFC 0.22 mmol/L) and ibuprofen (MFC 0.44 mmol/L), while

sodium salicylate isconsiderably less potent (MFC 22 mmol/L)
than the other tested NSAIDs.

Research has shown that aspirin, one of the oldest and most
widely used COX inhibitors, exerts desirable inhibitory effects on
growing and mature biofilms (48 h) of C. albicans by inhibiting
PGE2 synthesis (Alem and Douglas, 2004). It can significantly
reduce biofilm synthesis in fluconazole resistant C. albicans
clinical isolates at a concentration of 1 mg/ml and eliminate
biofilm formation at a concentration of 5 mg/ml (Abdelmegeed
and Shaaban, 2013). Aspirin also has significant effects on the
viability of C. albicans biofilm cells. Aspirin-treated cells are
incapable of cell division, but still retain some level of metabolic
activity (Alem and Douglas, 2004). Currently, combination
therapy has become a potential alternative treatment for invasive
fungal infections, as it can exhibit improved efficacy, a broader
spectrum of activity and fewer side effects (Shrestha et al., 2015).
In other experiments, the antifungal ability of amphotericin
B combined with aspirin against planktonic cells and biofilm
cells of C. albicans has been evaluated. The antifungal activity
of aspirin is weak in both planktonic and biofilm cells, but
when aspirin is combined with amphotericin B, it enhances the
antifungal activity of amphotericin B, especially on the biofilm
cells. The MIC50 values of amphotericin B and aspirin are,
respectively, decreased by up to 32- and 16-fold, based on FIC
indices (Zhou et al., 2012). Aspirin alone or in combination
with conventional antifungal drugs is also beneficial for the
treatment of vulvovaginal candidiasis (Deva et al., 2001). In
Ghalehnoo’s study, diclofenac sodium was shown to have a
strong inhibitory effect on filamentation in C. albicans. To
clarify the ability of diclofenac sodium to reduce germ tubes
and hyphal formation, a RT-qPCR experiment was used to
observe the interference of gene expressions in C. albicans. The
results show that the expression of CYR1, EFG1, and RAS1
in the CAMP-EFG1 pathway were repressed by the presence
of diclofenac sodium, while CST20 and CPH1 in the MAPK
pathway were not, suggesting that diclofenac sodium may be
involved in the yeast-hypha transition inC. albicans by disrupting
the cAMP-EFG1 pathway (Ghalehnoo et al., 2010). Another
study found that combining diclofenac with caspofungin led to
a successful reduction of biofilm cells in vitro and in vivo and
that the presence of diclofenac enhanced the susceptibility to
caspofungin. In a catheter-associated biofilm model in rats, the
combination of diclofenac with caspofungin treatment resulted
in a > 15-fold significant reduction in biofilm cells compared to
the control treatment, which showed a > 5-fold reduction (Bink
et al., 2012). Yucesoy’s experiment suggested that a combination
of diclofenac sodium with fluconazole in vitro had a synergistic
activity against fluconazole-resistant C. albicans strains (Yucesoy
et al., 2000; Rainsford, 2007) and the MIC of fluconazole was
decreased four-fold when combined with diclofenac sodium.
These results are parallel with experiments on clinical isolates
of C. albicans from AIDS patients (Scott et al., 1995). Non-
steroidal anti-inflammatory drug flufenamic acid (FFA) alone
or in combination with amphotericin B, caspofungin and
fluconazole might be effective for the prevention of C. albicans
biofilms (Chavez-Dozal et al., 2014). Ibuprofen, a NSAID, is
crucial for the reversion of azole resistance in C. albicans.
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In a murine model of systemic infection, the combination of
ibuprofen, and fluconazole can potentiate the antifungal activity
of fluconazole by decreasing the MIC of fluconazole from 64
to 2 µg/ml and reduce the fungal burden and morbidity in
fluconazole resistant strains (Pina-Vaz et al., 2000; Arai et al.,
2005; Costa-de-Oliveira et al., 2015). As a potential Cdrp blocker,
ibuprofen can directly damage C. albicans cell membranes, but
the molecular mechanisms of ibuprofen against C. albicans are
still being uncovered (Ricardo et al., 2009; de Quadros et al.,
2011). Anidulafungin (ANF) is an antifungal drug that can inhibit
the formation of both planktonic and biofilms cells in C. albicans.
In vitro, when aspirin, ibuprofen, and diclofenac are combined
with ANF, they show different sensitivity regarding decreasing
biofilm formation in several Candida spp. The combination of
ANF with NSAIDs has a strong effect on both C. albicans and
C. glabrata biofilm production, while the synergistic effect of
the combination is weak against C. Guilliermondi (Rosato et al.,
2016). The in vitro interactions between aspirin, ibuprofen, and
diclofenac sodiumwith commonly used azoles also have potential
effects against planktonic and biofilm cells ofT. asahii (Yang et al.,
2016).

MICROSOMAL PROSTAGLANDIN E
SYNTHASE-1(MPGES-1)

PGES enzymes, which lie downstream of COXs, have been
formed into several isoforms. Current evidence suggests that
cytosolic PGES (cPGES) and microsomal prostaglandin E
synthase-2 (mPGES-2) are constitutively expressed in cells and
are coupled with COX-1 and COX-1/-2, respectively (Murakami
et al., 2003). Microsomal PGES-1 (MPGES-1) is stimulus
inducible and specifically couples with COX-2; it is the terminal
enzyme in the biosynthesis of PGE2 and, ideally, does not
affect the formation of other housekeeping PGs (Koeberle
et al., 2010; Chandrasekhar et al., 2016). In Chandrasekhar’s
research, mPGES-1 exhibits selective inhibition of PGE2 in
human epithelial cells, carcinoma cells (A549) and human whole
blood treated with lip polysaccharides (LPS; Chandrasekhar et al.,
2016). An mPGES-1 knock-out experiment shows that mPGES-
1 deficient mice cannot induce the expression of mPGES-1 in
response to LPS (Uematsu et al., 2002; Trebino et al., 2003). In
various mice and rat inflammation models, mPGES-1 plays a
pathogenic role in tumorigenesis (Fahmi, 2004), inflammation
(Trebino et al., 2003; Iyer et al., 2009), and bone metabolism
(Saha et al., 2005). An mPGES-1 inhibitor was found to be
efficacious for arthralgia (Chandrasekhar et al., 2016) and is
regarded as a promising influenza therapeutic target because of
its ability to suppress the induction of pro-inflammatory genes
(Park et al., 2016). In addition, mPGES-1 participated in various
pathophysiological states in which both COX-1 and COX-2 are
involved, implying that the role of the mPGES-1 enzyme is
partially similar to that of COX (Murakami et al., 2002, 2003;
Tanioka et al., 2003).

Non-selective COX inhibitors can result in many adverse
effects, such as gastrointestinal complications and renal
toxicity, mainly because COX inhibitors disturb the balance
of anti-thrombotic prostacyclins (PGI2) and pro-thrombotic

thromboxane A2 (TXA2) production (Bresalier et al., 2005).
Though selective COX-2 inhibitors (coxibs) have an improved
gastrointestinal tolerance, clinical studies have shown that
COX-2 inhibitors lead to a small but significant increase in
cardiovascular risk, which caused rofecoxib and valdecoxib to
be withdrawn from the market (Buttgereit et al., 2001; Sun et al.,
2007). MPGES-1, the terminal enzyme, is functionally linked
to both COX-1 and COX-2 and can produce PGE2 with fewer
side effects, and it can also maintain the TXA2 and PGI2 balance
(Vidal et al., 2007) without influencing the 12-LOX and 15-LOX
pathways (Martel-Pelletier et al., 2003). Currently, mPGES-1
inhibitors are emerging as the foremost agents in the treatment of
inflammatory related diseases, but their antifungal activity is still
not clear. Therefore, shifting focus to the use of more selective
mPGES-1 inhibitors on the anti-fungal front as an alternative
pharmacological approach may be a wise treatment strategy
(Rådmark and Samuelsson, 2010). Several compounds, including
MF-63, Triclosan and many natural products, are considered to
be mPGES-1 inhibitors, such as Myrtucommulone from myrtle
(Koeberle et al., 2009a), Arzanol from Helichrysum (Bauer
et al., 2011), and Curcumin, which have anti-inflammatory
and anti-carcinogenic properties (Koeberle et al., 2009b). These
natural compounds can efficiently suppress mPGES-1 activity
(IC50 = 0.3–10 µM) and reduce PGE2 levels (Korotkova
and Jakobsson, 2014). In addition, licofelone as an mPGES-1
inhibitor has succeeded in reaching the required criteria in
phase III clinical trials for treating osteoarthritis (Payandemehr
et al., 2015). Pharmacodynamic studies in various animal models
have confirmed the effectiveness of licofelone in many types
of diseases, such as anti-asthmatic and anticonvulsant effects
(Rotondo et al., 2002; Kulkarni and Singh, 2007; Payandemehr
et al., 2015). Furthermore, licofelone was also identified as a class
of dual mPGES-1/LOX inhibitors, and its ability to block both
the mPGES-1 and 5-LOX pathways is considered superior to
single interference.

5-LIPOXYGENASE

The lipoxygenase pathway in human beings mainly consists
of three enzymes, 5-, 12-, and 15-lipoxygenase (LOX). 5-
LOX as a crucial enzyme in the arachidonic acid cascade can
mediate 5-OH-eicosatetraenoic acid (5-HETE) and leucotrienes
production with the assistance of 5-LO activating protein
(FLAP). The human 5-LOX pathway is important for allergic
diseases and inflammatory disorders (Murakami et al., 2002;
Werz and Steinhilber, 2006). In the research of Mariana Morato-
Marques, LTs and the 5-LO signaling pathway were shown to
promote NADPH oxidase activation and ROI generation as
well as enhance alveolar macrophage anti-fungal activity against
C. albicans. The 5-LO-derived leukotrienes (LTs) secreted by
alveolar macrophages (AMs) can eliminate C. albicans from
the lungs (Morato-Marques et al., 2011). The general LOX
inhibitor nordihydroguaiaretic acid (NDGA) does not inhibit
PG production in mammalian systems; however, in Candida,
NDGA demonstrated effective activity toward inhibition of PGE2
production in whole cells in a dose-dependent manner (Erb-
Downward and Noverr, 2007). On the other hand, LOX inhibitor
shows ability to block the production of PG by inhibiting PLA2
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translocation to cellular membranes, and therefore interfering
the level of AA release (Rossi et al., 2010; He et al., 2012). These
evidences demonstrated that 5-LO can serve as a regulator of
Candida infection, but the certain way of 5-lipoxygenase regulate
Candida is not sure.

GROUP IVA CYTOSOLIC PHOSPHOLIPASE
A2 (CPLA2α)

Cytosolic phospholipase A2α (cPLA2α) enzymes from
membrane glycerophospholipids play a central role in regulating
arachidonic acid release and PGs synthesis. The activity of
CPLA2α is regulated by intracellular calcium mobilization and
phosphorylation by mitogen-activated protein kinases (MAPKs).
CPLA2α triggers PGE2 biosynthesis through COX-1 and can
induce expression of Il10, Ptgs2, and Nr4a2, while suppressing
Tnfα expression in MAPK by increasing cAMP (Yun et al.,

2016). Other results suggest that in the Golgi apparatus, cPLA2,
COX-2 and mPGES-1 can provide a beneficial system for PGE2
formation (Evans and Leslie, 2004; Yuan and Smith, 2015). In
a cPLA2α knockout mouse experiment, the cPLA2α-deficient
mice appeared to be severely arthritic, implying that cPLA2α is
a key player in the pathogenesis of collagen (Hegen et al., 2003).
The CPLA2α inhibitor arachidonyl trifluoromethyl ketone
(ATK) plays an important role in ameliorating tissue injury
and pain (Khan et al., 2015). The host cPLA2α can enhance
P. aeruginosa-induced mouse mortality by mediating the 15-
LOX and COX-2 signaling pathways (Guillemot et al., 2014).
In short-term infection of C. albicans, macrophages activate
cPLA2α to preferentially initiate arachidonic acid release for
eicosanoid production, and cPLAα is mediated by the b-Glucan
Receptor Dectin-1, which can promote C. albicans to stimulate
cPLAα release of AA and contribute to generating the signals to
activate cPLA2α (Suram et al., 2006; Parti et al., 2010). In brief,
C. albicans engage with multiple receptors on macrophages to

FIGURE 1 | An overview of potential antifungal targets against a Candida biofilm based on an enzyme in the arachidonic acid cascade. Gene (green);

enzyme (pink); metabolites (blue); inhibitors (yellow); Question mark: PG E2 can regulate biofilm morphogenesis, biofilm formation and biofilm adherence, whether

PGE2 modulates biofilm formation of C. albicans by regulating these genes is uncertain; cPLA2a, cytosolic PLA2a; CYP, cytochrome P450; LOX, lipoxygenase; COX,

cyclooxygenase; mPGES, microsomal; prostaglandin E2 synthase; NSAIDS, Non-Steroidal Antiinflammatory Drugs; PGG2, prostaglandin G2; PGH2, prostaglandin

H2; PGE2, prostaglandin E2; NO, nitric oxide.
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provide signals to activate cPLA2α and produce eicosanoids,
which are keys for modulating inflammation and fungal-related
disease (Suram et al., 2010). Therefore, inhibiting cPLA2α may
be a solution to treat C. albicans infection by reducing PGE2
production.

OTHERS

Except for the enzymes discussed above, there are many other
factors that regulate enzyme activity and PGE2 biosynthesis.
Under hypoxia, intricate temperature-CO2 modulation is able
to reduce hyphal formation of C. albicans and influence fungal
virulence (Lu et al., 2013; Desai et al., 2015). This may be
because PGE2 production was decreased while prostacyclin
and thromboxane production were increased in hypoxia
(Blumenstein et al., 2001). When ROS or ROS-generating
xenobiotics are present at low levels, they can activate the
prostanoid synthesis pathway and simultaneously activate
cPLA2, COX2, and mPGES-1 (Korbecki et al., 2013). Marnett
showed that in a model of NOS deficient mice, PGE2 production
in macrophages was significantly reduced and that in urine, the
level of PGE2 in the NOS deficient groups was decreased by
78% compared to the control groups (Marnett et al., 2000). In
Devaux’s study, the results suggest that NOS2-derived NO can
activate the mPGES-1 pathway when COX-2 protein expression
is absent and that inhibiting the activity of NOS2 decreases the
concentrations of PGE2 induced by LPS (Devaux et al., 2001).
Hence, NOS2 inhibitors are useful to inhibit the production
of PGE2 via COX-2-independent mechanisms. Hemeoxygenases
(HOs) have been shown to regulate the levels of eicosanoids
derived in the cyclooxygenase, lipoxygenase, and cytochrome
P450monooxygenase (CYP) pathways. Up regulation of HO-1 or
increasedHO activity can suppress PGE2, inducing production of
15-hydroxyeicosatetraenoic acid (HETE), lipoxins, and resolvins
(Abraham and Kappas, 2008; Fox et al., 2013). In mammalian
cells, sciadonic acid cannot be directly metabolized to PGE2, but
it can compete with AA for incorporation into phospholipids and
lead to a reduction in PGE2 production (Ells et al., 2012). Several
factors influencing PGE2 production were summarized and
evidence showed that they also impact the growth of Candida.

CONCLUSION

The arachidonic acid cascade plays a central role in fungal
morphogenesis, yeast-hypha conversion, and biofilm formation.

In C. albicans cells, PGE2 as a virulence factor can regulate
fungal growth, colonize, and survive during infection (Noverr
and Huffnagle, 2004). PGE2 also plays an important role in
promoting the formation of Candida biofilms. Some studies
have shown that the less PGE2 production might contribute
to the lower level of fungal virulence (Ells et al., 2011).
Therefore, an approach to overcome the virulence of PGE2 is
sorely needed. A series of enzymes that are involved in the
synthesis of PGE2 described above have been studied widely.
During in vitro and in vivo studies, COX inhibitors, such
as indomethacin, ibuprofen and aspirin, have been confirmed
to have antifungal ability by suppressing C. albicans PGE2
production and biofilm formation (Liu et al., 2014). The
antifungal activity of COX inhibitors is weak in both planktonic
and biofilm cells, but in a combined therapy, aspirin can increase
fluconazole susceptibly to C. albicans. In addition, the possible
antifungal activity of mPGES-1 inhibitors against C. albicans
was also discussed. As the terminal enzyme downstream of
COX-2, mPGES-1 can catalyze the biosynthesis of PGE2 with
fewer side effects and, ideally, cannot affect the formation of
other housekeeping PGs. Licofelone, as an mPGES-1 inhibitor,
has succeeded in reaching the required criteria in phase III
clinical trials for treating osteoarthritis. Furthermore, discovery
of the possible antifungal ability of mPGES-1 is exceedingly
promising. Other factors that influence PGE2 production,
such as ROS, NOS, and HOs, are also mentioned in this
review.

Hence, further academic research is needed to provide new
insights that are able to further our understanding of the
importance and role of PGE2 in C. albicans and the mechanism
of the potential antifungal agents related to the arachidonic acid
cascade, as well as to developing an approach to discover new
antifungal drugs for resistant C. albicans.
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