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Abstract: Detection of unreacted monomers from pre-heated resin-based dental composites (RBC) is
not a well-investigated topic so far. The objectives were to determine the temperature changes during
the application and polymerization, the degree of conversion (DC) and unreacted monomer elution
of room temperature (RT), and pre-heated thermoviscous [VisCalor Bulk(VCB)] and high-viscosity
full-body contemporary [Filtek One Bulk(FOB)] bulk-fill RBCs. The RBCs’ temperatures during the
sample preparation were recorded with a K-type thermocouple. The DC at the top and bottom was
measured with micro-Raman spectroscopy and the amounts of eluted BisGMA, UDMA, DDMA,
and TEGDMA were assessed with High-Performance Liquid Chromatography. The temperatures
of the pre-heated RBCs decreased rapidly during the manipulation phase. The temperature rise
during photopolymerization reflects the bottom DCs. The differences in DC% between the top and
the bottom were significant. RT VCB had a lower DC% compared to FOB. Pre-heating did not
influence the DC, except on the bottom surface of FOB where a significant decrease was measured.
Pre-heating significantly decreased the elution of BisGMA, UDMA, DDMA in the case of FOB,
meanwhile, it had no effect on monomer release from VCB, except TEGDMA, which elution was
decreased. In comparison, RBC composition had a stronger influence on DC and monomer elution,
than pre-cure temperature.

Keywords: bulk-fill; pre-heating; degree of conversion; monomer elution

1. Introduction

During the restorative procedure, it is favorable to use an easy-to-handle, non-
technique sensitive, durable and esthetic restorative material with quick and efficient
polymerization. In the case of resin-based composite (RBC) restorations, expediting poly-
merization, increasing of maximum layer thickness, and the degree of monomer conversion
can be considered as the main objectives [1]. To achieve a durable, successful composite
restoration, the most important factors, among others, are mechanical properties, handling
characteristics, polymerization stress, marginal adaptation, and degree of polymerization [2].

According to the literature data, there is a clear correlation between the degree of
conversion (DC) and the physicochemical characteristics of RBCs [3,4]. Meanwhile, DC
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is influenced by several factors, such as light exposure conditions, composition, shade,
opacity, and thickness of the RBC, pre-cure temperature also plays an important role in
the polymerization process [5,6]. As the success of RBC restorations depends on their
polymerization and DC, the influence of temperature has become one of the central issues
of several studies [7,8].

The polymerization of RBCs is an exothermic reaction and the released heat is mainly
produced in the propagation phase [9]. The process of monomer conversion and the
properties of the set polymer are influenced by the polymerization temperature [10]. An
elevation in temperature promotes molecular mobility and increases the collision frequency
of reactive radicals, resulting in higher conversion and delayed auto deceleration [6,9].
Not only the exothermic reaction but also the light energy absorbed contributes to the
system temperature during the polymerization of light-cured RBCs [11]. While some
authors attribute a greater significance to the heat emitted by the light-curing unit in the
temperature rise, others regard the heat generated in the exothermic reaction as more
important [12,13].

As reported by several investigations, pre-heating may have a beneficial impact
on marginal adaptation, gap formation, and microleakage by reducing the viscosity of
RBCs [7,14,15]. Improved handling properties, such as flowability can facilitate the appli-
cation of the filling material, consequently making the procedure less time-consuming.
Reduced viscosity also improves marginal seal thereby contributing further to the overall
clinical success [16,17]. There may be a lack of efficiency associated with the use of conven-
tional heating devices as some authors have shown a rapid decrease in RBC temperature
after removal of the device, as well as during dispensing and handling [2,18]. Moreover,
during the cooling phase, the system bears a loss of energy, so vitrification takes place
earlier and causes decreased DC [19].

Several types of RBC dental materials have been developed over the years, including
bulk-fill RBCs, which can be placed in larger increments to reduce operating time and
technique sensitivity [20]. The primary advantage of bulk-fill RBCs over conventional
ones is the increased depth of cure [21,22]. According to a literature review by Van Ende
et al., the maximum layer thickness which still ensures adequate material characteristics as
recommended by the manufacturers, is 4 mm or in some cases even 5 mm. Although most
studies have confirmed the improved depth of cure for bulk-fill RBCs, some controversial
data can still be found [23,24]. Besides the DC, polymerization shrinkage stress is another
important issue addressing the clinical failures. Ausiello et al. demonstrated, that bulk-
filling, especially in deep cavities induces higher shrinkage stress along the cavity walls
compared to a multilayer technique (i.e., no shrinking glass-ionomer basing and shrinking
bulk-fill RBC cover) [25].

Recently, a thermoviscous bulk-fill RBC (VisCalor Bulk) and a new heating device
(VisCalor Dispenser) were introduced to combine the advantages of bulk-fills and pre-
heating. This delivery system can warm up the filling material in seconds using near-
infrared technology and allows immediate application without removal of the capsule from
the heating device thereby maintaining its increased temperature [26]. Although VisCalor
Bulk is a relatively new RBC, it has already been the subject of several investigations [27–31].
Yang et al. examined the effects of temperature on stickiness and packability, and the effect
of pre-heating time on pre-cure properties. The study found pre-heating to lead to a
reduced extrusion force and increased flowability without premature polymerization,
while stickiness and packability remained within a clinically acceptable range [27].

The effect of pre-heating and exposure duration on other properties of VisCalor Bulk
has been investigated in another study undertaken by Yang et al. This article reported a
longer exposure duration not to have an effect on the degree of conversion, maximum rate
of polymerization and polymerization shrinkage, however, it did lead to an increase top
surface microhardness. The application of 3 min pre-heating and 20 s irradiation provided
adequate hardness without unfavorable changes in polymerization shrinkage strain and
polymerization kinetics [28]. The study of Marcondes et al. examined viscosity and thermal
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kinetics of pre-heated RBCs including VisCalor Bulk as well as the effect of ultrasound
energy on film thickness. VisCalor Bulk showed the greatest extent of viscosity reduction
at 69 ◦C, while film thickness could not be reduced below 50 µm without the use of
ultrasound. This study also claimed that to take full advantage of the pre-heated RBCs, the
ideal working time is merely 10–15 s [29]. Demirel et al. investigated the effect of different
insertion techniques on the internal void formation and found VisCalor Bulk to show the
lowest void percentage with the utilization of the pre-heating technique [30]. Colombo
et al. evaluated microhardness and depth of cure of four bulk-fill RBCs. According to
the measured ratio of top to bottom hardness, all tested materials—including VisCalor
Bulk—showed an adequate degree of polymerization. In addition, in the case of VisCalor
Bulk, acid storage led to one of the highest mean percentage losses in micro-hardness of
the external side [31].

Besides the physicomechanical properties, the chemical characteristics are also im-
portant determinants of the clinical performance and biocompatibility of an RBC [32].
Although there is a strong inverse correlation between DC and monomer elution, the num-
ber of released monomers may be influenced further by other factors such as the quality
of the monomer system, filler type, content, porosity as well as employed solvent [24,33].
Elution from bulk-fill RBCs was found to be comparable to that of conventional materi-
als despite their increased increment thickness as monomer release is more dependent
on the hydrophobicity of the base monomers and the final network characteristics of
the resin-matrix [34]. Detection of unreacted monomers from pre-heated RBCs is not a
well-investigated topic so far. To the best of our knowledge, the current literature has no
information regarding the amount of eluted monomers from thermoviscous VisCalor Bulk.

Therefore, the purpose of the present study was to investigate the temperature changes
during the application and polymerization of a new thermoviscous (VisCalor Bulk) and a
high-viscosity full-body bulk-fill RBC (Filtek One Bulk-fill) in relation to different pre-cure
temperatures. Further aims were to evaluate the effect of pre-heating on the degree of
conversion (DC) and the number of released monomers using micro-Raman spectroscopy
and Reversed-phase High-Performance Liquid Chromatography (RP-HPLC). The Null
Hypotheses were: (1) Pre-heating had no effect on RBCs’ post-cure DC%, and (2) pre-cure
temperature did not affect the amount of released unreacted monomers.

2. Materials and Methods
2.1. The Bulk-Fill Resin-Based Composites and Sample Preparation

During this in vitro study two brands of high-viscosity bulk-fill RBCs (Viscalor Bulk
and Filtek One Bulk-fill)—A2 shade for both—were investigated in 4 mm layer thickness.
The specifications of the materials and their acronym codes are presented in Table 1.

Table 1. Materials, manufactures, composition, and investigated pre-cure temperature of bulk-fill resin-based composites.

Material Manufacturer Pre-Cure
Temperature Code Resin System Filler Filler

Loading

VisCalor
Bulk

Voco,
Cuxhaven,
Germany

Room
temperature VCB_RT Bis-GMA,

aliphatic
dimethacry-

lates

Inorganic
nanohybrid filler (not

defined by the
manufacturer)

83 wt%
Pre-heated to

65 ◦C VCB_65

Filtek One
Bulk-fill

Restorative

3M ESPE,
St. Paul, MN,

USA

Room
temperature FOB_RT AFM, UDMA,

AUDMA,
DDMA

20 nm silica, 4–11 nm
zirconia, cluster
Zr-silica, 0.1 µm

ytterbium-trifluoride

58.5 vol%
76.5 wt%Pre-heated to

55 ◦C FOB_55

Abbreviations: BisGMA: bisphenol-A diglycidil ether dimethacrylate; AFM: addition-fragmentation monomer; UDMA: urethane
dimethacrylate; AUDMA: aromatic urethane dimethacrylate; DDMA: 1,12-dodecane dimethacrylate; vol%: volume%; wt%: weight%.

According to the method of sample preparation, there were two experimental groups
for each of the two investigated materials. The pre-cure temperature of the RBC samples in
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the first group was 25 ◦C (room temperature—RT) (FOB_RT and VCB_RT), while RBCs
in the second group were preheated before the sample preparation. In the case of VCB,
pre-heating was performed by VisCalor Dispenser (VOCO, Cuxhaven, Germany) using
T1 setting (VCB_65) (30 s pre-which warmed the device and RBC together to 65 ◦C). Pre-
warming of FOB was undertaken by Ena Heat Composite Heating Conditioner (Micerium,
Avegno, Italy) using T2 setting (FOB_55) (55 min pre-warming of the device to 55 ◦C and
15 min pre-warming of the RBC). Five specimens were prepared in each group, from each
material for both the micro-Raman spectroscopy measurements as well as for the monomer
elution measurements (Scheme 1).
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Scheme 1. Flowchart of the sample preparation.

The samples were prepared in a cylindrical polytetrafluoroethylene (PTFE) mold
with an internal diameter of 5 mm and a height of 4 mm, placed on a thermostatically
controlled (30 ± 1 ◦C) glass slide to represent the isolated tooth. A polyester Mylar strip
was positioned between the mold and the glass slide. A capsule dispenser gun was used
to apply VCB_RT, FOB_RT, and FOB_55 materials into the mold. In the case of VCB_65,
a VisCalor dispenser was used for both warming and application. The condensation of
the RBCs was performed with a room temperature hand instrument. Before irradiation,
the RBC sample was covered with a transparent polyester strip (Mylar, Dentamerica Inc.,
San Jose Ave, CA, USA) to avoid contact with oxygen. All specimens were irradiated with
a Light Emitting Diode (LED) curing unit (LED.D, Woodpecker, Guilin, China; average
light output given by the manufacturer 850–1000 mW/cm2; L = 420–480 nm; 8 mm exit
diameter fiberglass light guide) in standard mode for 20 s, powered by a line cord at room
temperature of 25 ◦C ± 1 ◦C, controlled by an air conditioner. The irradiance of the LED
unit was monitored before and after polymerization with a radiometer (CheckMARC,
Bluelight Analytics, Halifax, NS, Canada). The tip of the fiberglass light guide was in direct
contact, centrally positioned, and parallel to the mold. All the samples were prepared by
one operator.

2.2. Temperature Measurement

Temperature measurements during the application and the polymerization of RBCs’
were recorded with a registration device (El-EnviroPad-TC, Lascar Electronics Ltd.,
Salisbury, UK) attached to 0.5 mm diameter Cu/CuNi thermocouple probes (K-type, TC
Direct, Budapest, Hungary)—positioned at the bottom of the temperature regulated mold—
with a frequency of one measurement per second and resolution of 0.1 ◦C (Figure 1.
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schematic component). The quantity of heat emitted by the LED curing unit was also
determined through the 4 mm empty mold.
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Figure 1. Temperature change of resin-based composite during the sample preparation.

2.3. Micro-Raman Spectroscopy Measurement

RBC samples made to estimate the temperature change of the composite during
sample preparation were then used to measure the DC. Confocal Raman spectrometer
(Labram HR 800, HORIBA Jobin Yvon S.A.S., Longjumeau Cedex, France) was used to
evaluate the 24 h post-cure DC values of the polymerized RBC samples. Setting parameters
for the measurements were the following: 20 mW He-Ne laser with 632.817 nm wavelength,
magnification × 100 (Olympus UK Ltd., London, UK), spatial resolution ~15 µm. The
spectral resolution of ~2.5 cm−1 provided satisfactory results since the two peaks analyzed
were ~30 cm−1 apart. Spectra were taken at three locations of the RBC samples (center,
periphery, and between these two regions) both from the bottom and top surfaces with
an integration time of 10 s. Ten acquisitions were averaged for each geometrical point.
Spectra of uncured RBCs were taken as reference. Post-processing and analysis of spectra
were performed using the dedicated software LabSpec 5.0 (HORIBA Jobin Yvon S.A.S.,
Longjumeau Cedex, France) [13]. The ratio of double-bond content of monomer to polymer
in the RBC was calculated according to the following equation:

DC% = (1 − (Rcured/Runcured))× 100

where R is the ratio of peak intensities at 1639 cm−1 and 1609 cm−1 associated with the
aliphatic and aromatic (unconjugated and conjugated) C=C bonds in cured and uncured
RBCs, respectively.
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2.4. Reversed-Phase High-Performance Liquid Chromatography Measurement

Immediately after the irradiation, five samples of each material were immersed into
1.0 mL of the 75% ethanol/water storage medium in separate glass vials and stored in a
37 ◦C incubator. As recommended by the ISO 10993-13 description, the ratio between the
sample and the storage solution volume was greater than 1:10, thus the specimens were
fully immersed in the medium. The storage solutions were collected for analysis after 72 h.
The RP-HPLC system (Dionex Ultimate 3000, Thermo Fisher Scientific Inc., Sunnyvale, CA,
USA) consists of a Dionex LPG 3400 SD gradient pump, Rheodyne injector (Rheodyne,
CA, USA), and a Dionex DAD 3000 RS UV–VIS detector (Dionex GmbH, Germering,
Germany). Data acquisition was completed using Chromeleon software (version: 7.2.10).
The separations were performed on a LiChrospher® 100 RP-18e (particle size: 5 µm, pore
size: 100 Å) (Merck KGaA, Darmstadt, Germany) column (250 mm × 4.00 mm) with
gradient elution. The composition of Eluent “A” was 100% bidistilled water, whereas
Mobile Phase “B” was 100% v/v acetonitrile (ACN) (VWR International, Radnor, PA,
USA). During the 30-min chromatographic separation, the “B” eluent content increased
from 30–95%. The flow rate was 1.2 mL × min−1. For the regeneration of the stationary
phase, the content of Mobile Phase B was decreased from 95% to 30% in 1 min, and
after 31–46 min, the system was washed with 30% “A”. The detection of the eluted
monomers was carried out at the following wavelengths: 205, 215, 227, and 254 nm.
205 nm were found to be optimal; therefore, the evaluation relied on the data collected
at this wavelength [24]. The separations were undertaken at room temperature. The
amounts of the eluted monomers (Bisphenol A-glycidyl methacrylate, BisGMA; Trietylene-
glycol-dimethacrylate, TEGDMA; urethane-dimethacrylate, UDMA; 1,12-dodecanediol-
dimethacrylate, DDMA) were calculated using the calibration curve with the areas under
the curve of peaks produced by the monomers, respectively. The monomer release was
counted to 1 mg RBC. The TEGDMA, UDMA, BisGMA, and DDMA standard solutions
had retention times of 12.2, 17.2, 19.1, and 27.2 min, respectively, whereas the peaks were
well separated from each other.

2.5. Statistical Analysis

Pilot study results and sample size formula were used to estimate sample size.

Sample size formula: n =

(
z1− α

2
+z1−β

)2
(s1+s2)

2

(M1+M2)
2 = 3.

(z = standard score; α = probability of Type I error = 0.05; z1−α/2 = 1.96; β = probability
of Type II error = 0.20; 1 − β = the power of the test = 0.80; z1−β = 1.28, M1 = 52, s1 = 1.4,
M2 = 52, s2 = 1.4). By adopting an alpha (α) level of 0.05 and a beta (β) level of 0.20
(power = 80%), the predicted sample size (n) was found to be a total of 3 samples per group.
Instead of the calculated 3 samples, n = 5 per group sample size was selected.

The statistical analyses were performed with SPSS v. 26.0 (SPSS, Chicago, IL, USA).
Levene’s test was employed to test the equality of variance. This was followed by Paired
Samples Test to analyze the differences in mean DC% between top and bottom surfaces and
Two-tailed Independent Samples T-test to analyze the differences in mean DC% between
the investigated materials polymerized at room temperature and with the application
of pre-heating. The differences in monomer elution from the RBCs at the investigated
temperatures were also compared with the Two-tailed Independent T-test.

Multivariate analysis (General Linear Model) and Partial Eta-Squared statistics were
used to test the influence and describe the relative effect size for Material and Temperature
as independent factors. p values below 0.05 were considered statistically significant.

3. Results

The measured maximum radiant exitance of the LED LCU was 1250 ± 15 mW/cm2.
The delivered radiant exposure was 25 J/cm2. The LCU increased the temperature by an
average of 7 ◦C when the thermocouple was irradiated through the empty 4 mm deep
mold for 20 s.
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Meanwhile, the Ena Heat Composite Heating Conditioner T2 setting stated preset
temperature is 55 ◦C in 55 s, the real temperature of the FOB was 46 ◦C in the capsule
after the recommended pre-warming period. The VisCalor Dispenser T1 setting provides
65 ◦C pre-warming in 30 s, however, the actual temperature of VCB was 60 ◦C after
the recommended duration of pre-heating. Figure 1 shows the temperature change of
RBC during the sample preparation from the material application into the mold until
the end of the polymerization. The temperature of the 46 ◦C pre-heated FOB decreased
to 33.4 ◦C as it was removed from the warming device and started to be applied into
the mold and showed further temperature drop of −1 ◦C during the condensation. The
total temperature decrease from the pre-heating until the start of polymerization was
13.6 ◦C in approximately 20 s. In the second phase, during polymerization, the exothermic
reaction and the heat released from the curing unit elevated the RBC’s temperature by
4 ◦C. Regarding the thermoviscous VCB, its pre-heated temperature (60 ◦C) decreased
to 36.6 ◦C during the initial phase of the application and continued to show a further
drop of (−2.6 ◦C) during the condensation phase The total drop of temperature for the
pre-heated VisCalor Bulk from the pre-heating until the start of polymerization was 26 ◦C
in approximately 20 s. The temperature rise caused by the light-curing and the exothermic
reaction was 4.4 ◦C. The consistency of the room temperature materials was highly viscous,
especially of Viscalor making it difficult to squeeze out of the capsule. Compressing both
room temperature RBCs was easy without sticking to the instruments. The pre-heating
decreased the viscosity to a flowable consistency which allowed both materials to spread
evenly throughout the template.

Considering the DC at the top and bottom surfaces in samples applied in 4 mm
thickness, the mean percentages ranged between 54.2–64% and 45.0–51.8%, respectively
(Table 2).

Table 2. Differences in mean DC% (S.D.) between the top and bottom surfaces of the investigated
materials polymerized at room temperature and pre-heated condition.

Room Temperature Pre-Heated

To
p

B
ot

to
m

t-
V

al
ue

*

p-
V

al
ue

* 95%
CI

To
p

B
ot

to
m

t-
V

al
ue

*

p-
V

al
ue

* 95%
CI

Lower
Upper

Lower
Upper

FO
B 63.0

(2.0)
51.8
(1.4)

31.7
(4) <0.005 26.3

31.3
64.0
(1.4)

45.0
(1.9)

−17.2
(4) <0.005 15.1

20.8

V
C

B 54.2
(2.9)

46.2
(1.4) 4.6 (4) 0.01 1.2 5.1 55.0

(1.3)
45.2
(4.1)

−25.1
(4) <0.005 33.6

41.9

Abbreviations: DC, degree of conversion; FOB, Filtek One Bulk; VCB, Viscalor Bulk; CI, Confidence Interval.
* Paired Samples Test.

The DC values at the bottom of the specimens showed a statistically significant
decrease for both materials at both temperatures in relation to the DC values measured at
the top of the samples. When room temperature specimens were applied, the DC values
were very similar to that of preheated samples, except on the bottom surface of FOB which
was significantly lower when applied after pre-heating. In a comparison of the two bulk-fill
RBCs, VCB showed a statistically significantly lower DC (~10% less) both on the top and
bottom when applied at room temperature. Samples applied following pre-heating showed
a significantly lower DC% only on the top (Figure 2). The lowest DC values were measured
on the bottom surfaces of both investigated RBCs when they were applied with pre-heating.
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Table 3 presents the relative effect size of factor Material, Temperature, and their
interactions on the degree of conversion of the top and bottom surfaces of the investigated
resin-based composites.

Table 3. The relative effect size of factors Material, Temperature, and their interactions on the degree
of conversion of the top and bottom surfaces of the investigated resin-based composites analyzed by
General Linear Model and Partial Eta-Squared (η2) statistics.

Factor

Degree of Conversion (DC)

Top Surface Bottom Surface

p Value Partial η2 p Value Partial η2

Material <0.001 0.86 0.028 0.27

Temperature 0.23 0.09 0.004 0.42

Material × Temperature 0.81 0.004 0.022 0.29

A 2 (Material) × 2 (Temperature) mixed-model ANOVA revealed that the main effect
for Material on DC values measured on top surfaces was significant and the Partial Eta-
squared was considered to be large, meanwhile not significant effect for Temperature was
obtained with medium effect size. The interaction (Material × Temperature) had no effect
on the monomer conversion at the top.

Regarding the DC values at the bottom surfaces, the results showed a significant effect
for both the Material and Temperature factor. The interaction between the two variables
(Material × Temperature) also significantly affected the monomer conversion at the bottom
surfaces. The main effect for Material was significant at room temperature, meanwhile, the
Temperature factor affected significantly only the FOB RBC.
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In addition to the monomers specified by the manufacturers, other methacrylates were
also detected from both FOB (BisGMA) and VCB (TEGDMA, DDMA) RBCs.

The differences in the monomer elutions were also significant between FOB and VCB
both when applied at room temperature and with pre-heating in the case of all the evaluated
monomers, except for DDMA which was released in similar (statistically insignificant)
amounts from the pre-heated RBCs (Table 4 and Figure 3).

Table 4. Differences in monomer elution from Filtek Bulk One and Viscalor Bulk analyzed by
Independent Samples T-test.

Monomer Resin Composite Mean
(S.D.)

t-Value
(df) p-Value 95% CI

Lower Upper

Room tem-
perature

TEGDMA Filtek One Bulk 0
Viscalor Bulk 0.1 (0.01)

UDMA Filtek One Bulk 0.33 (0.34) 20.57 (8) <0.001 0.29 0.36Viscalor Bulk 0.01 (0.01)

BisGMA Filtek One Bulk 0.22 (0.01) −19.43 (8) <0.001 −2.33 −1.84Viscalor Bulk 2.3 (0.24)

DDMA Filtek One Bulk 0.26 (0.02) 13.08 (8) <0.001 0.13 0.18Viscalor Bulk 0.1 (0.02)

Pre-
heated

TEGDMA Filtek One Bulk 0
Viscalor Bulk 0.08 (0.01)

UDMA Filtek One Bulk 0.17 (0.11) 2.92 (8) 0.02 0.03 0.27Viscalor Bulk 0.02 (0.03)

BisGMA Filtek One Bulk 0.08 (0.08) −10.9 (8) <0.001 −2.29 −1.49Viscalor Bulk 1.98 (0.38)

DDMA Filtek One Bulk 0.15 (0.09) 1.19 (8) 0.27 −0.05 0.16Viscalor Bulk 0.09 (0.04)
Abbreviations: S.D., standard deviation; df, degree of freedom; CI, Confidence Interval; TEGDMA, triethylene
glycol dimethacrylate; UDMA, urethane dimethacrylate; BisGMA, Bisphenol A diglycidil ether dimethacrylate;
DDMA, dodecyl methacrylate.
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Figure 3. Monomer elution from Filtek One Bulk and Viscalor Bulk.

At room temperature, 30 and 2.5 times as much UDMA and DDMA were released,
respectively from FOB, while 10.5 times more BisGMA was eluted from VCB. The latter was
the monomer released in the largest amount. With the utilization of pre-heating, 7.5 times
as much UDMA was found to elute from FOB, while 25 times more BisGMA was released
from VCB. For FOB, preheating significantly reduced the amount of eluted monomers,
while for VCB, the temperature did not affect the dissolution (Table 5).
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Table 5. Differences in monomer elution at room temperature and pre-heated conditions were
analyzed by Independent Samples T-test.

Monomer Temperature Mean
(S.D.)

t-Value
(df) p-Value 95% CI

Lower Upper

Filtek One
Bulk

TEGDMA Room temperature 0
Pre-heated 0

UDMA Room temperature 0.33 (0.34) 3.04 (8) 0.016 0.04 0.28Pre-heated 0.17 (0.11)

BisGMA Room temperature 0.22 (0.01) 3.73 (8) 0.006 0.05 0.22Pre-heated 0.08 (0.08)

DDMA Room temperature 0.26 (0.02) 2.6 (8) 0.03 0.01 0.21Pre-heated 0.15 (0.09)

Viscalor
Bulk

TEGDMA Room temperature 0.1 (0.01) 3.12 (8) 0.014 0.01 0.04Pre-heated 0.08 (0.01)

UDMA Room temperature 0.01 (0.01) −0.87 (8) 0.41 −0.05 0.02Pre-heated 0.02 (0.03)

BisGMA Room temperature 2.3 (0.24) 1.64 (8) 0.14 −0.13 0.79Pre-heated 1.98 (0.38)

DDMA Room temperature 0.1 (0.02) 0.36 (8) 0.73 −0.04 0.05Pre-heated 0.09 (0.04)
Abbreviations: S.D., standard deviation; df, degree of freedom; CI, Confidence Interval; TEGDMA, triethylene
glycol dimethacrylate; UDMA, urethane dimethacrylate; BisGMA, Bisphenol A diglycidil ether dimethacrylate;
DDMA, dodecyl methacrylate.

The following order of mean monomer elution was detected from FOB for both
room temperature and pre-heated samples from highest to lowest: UDMA < DDMA <
BisGMA, meanwhile the amount of leached monomers was roughly half (UDMA, DDMA)
or one-third (BisGMA) for pre-heated specimens.

Regarding VCB, both the order, as well as the amount of the released monomers were
the same in the case of both the room temperature and the pre-heated samples (BisGMA <
TEGDMA < DDMA < UDMA), except for TEGDMA, which showed a significantly lower
elution from the pre-heated samples.

Table 6 presents the relative effect size of factor Material, Temperature, and their
interactions on the monomer elution from the investigated resin-based composites.

Table 6. The relative effect size of the factors Material, Temperature, and their interactions on the monomer elution from the
investigated resin-based composites analyzed by General Linear Model and Partial Eta-Squared (η2) statistics.

Factor

Monomer Elution

BisGMA UDMA TEGDMA DDMA

p Value Partial η2 p Value Partial η2 p Value Partial η2 p Value Partial η2

Material <0.001 0.96 <0.001 0.75 <0.001 0.49

Temperature 0.036 0.23 0.046 0.21 0.014 0.55 0.036 0.23

Material × Temperature 0.35 0.054 0.006 0.38 0.04 0.24

Abbreviations: BisGMA: bisphenol-A diglycidil ether dimethacrylate; UDMA: urethane dimethacrylate; TEGDMA: trietylene glycol
dimethacrylate; DDMA: 1,12-dodecane dimethacrylate.

A 2 (Material) × 2 (Temperature) mixed-model ANOVA showed that the main effect
for Material was significant on UDMA, BisGMA, DDMA release with a Partial Eta-squared
value which was considered to be large. The Temperature factor also influenced signif-
icantly the monomer elution, however, its effect was slightly weaker compared to the
Material’s effect. TEGDMA was released only from VCB. The effect of the Temperature
factor was calculated to be significant on the elution of this monomer. The interaction
between the two factors (Material × Temperature) had a significant effect on UDMA
and DDMA elution, while the elution of BisGMA was independent of the Material ×
Temperature interaction.
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4. Discussion

In this in vitro study, the DC and the elution of unreacted monomers of a thermovis-
cous and high-viscosity bulk-fill dental resin composites were assessed using micro-Raman
spectroscopy and High-Performance Liquid Chromatography measurements. Additionally,
the thermal change of the RBCs was also registered during the sample preparation with
a K-type thermocouple to assess the temperature change of the room temperature and
pre-heated RBCs during the manipulation and polymerization phases.

The setting reaction of RBCs has a major influence on their mechanical and biological
properties [35]. RBC polymerization depends mainly on the chemical structure of the
monomers, filler characteristics, the photoinitiator type, and concentration, and the poly-
merization conditions [36]. The latter includes, among others, the volume and the layer
thickness of the applied RBC, spectral characteristics of the curing unit, exposure time, and
the pre-cure temperature of the material [4,14,37]. Since these were standardized in this
study, except for pre-cure temperature, differences in the DC value and monomer elution
of the bulk-fill RBCs can be attributed to the different compositions and temperatures of
the materials before polymerization. Thus, the effect size of the material factor and pre-cure
temperature factor became assessable on the degree of conversion and monomer elution
from the investigated bulk-fill RBCs.

According to our results, the first null hypothesis, which stated that the pre-heating
had no effect on post-cure DC% of VisCalor Bulk and Filtek One Bulk, was partially rejected,
since pre-warming of RBCs neither increased nor decreased the DC on the top of both
materials and the bottom of VCB_65, however, the bottom DC was significantly decreased
in the case of FOB_65. The second null hypothesis was also partially rejected, because the
external heating of the investigated RBCs decreased the monomer elution in the case of
FOB regarding all the investigated monomers and TEGDMA elution VCB, however, had
no influence on the BisGMA, UDMA, and DDMA release from VCB.

It has been reported that increased pre-cure temperature of RBC may result in a greater
extent of monomer to polymer conversion [6,38]. However, investigations, that have shown
improvement in the degree of polymerization upon pre-warming generally maintained
the RBC temperature constant during the experimentation [6,10]. On the other hand, there
are also results that found increases in DC at non-isothermal conditions to be material
composition-dependent [19,39].

Regarding the real-life clinical scenario, the RBC’s temperature drops rapidly to the
physiological level upon removal from the pre-heating device [2,29]. In contrast to the
studies that have demonstrated optimized monomer conversion in the case of pre-heated
RBCs under isothermal conditions, Yang et al. and Tauböck et al. reported that the pre-
heated RBC’s temperature dropped to ~35–36 ◦C during the handling phase before light-
cure [27,39]. Additionally, the pre-warmed RBC can reach a lower internal temperature
than the maximum stated preset temperature of the heating device [27,40].

To overcome this problem, a new warming device was developed, namely, VisCalor
Dispenser. The capsule dispenser itself can provide homogeneous warming of the highly
filled RBCs to 68 ◦C (only for VOCO products) with near-infrared technology. Thus, the
RBC does not need to be removed from the heating device for dispensing into the prepared
cavity. During application it is flowable and when it comes in contact with the tooth
VCB reaches body temperature within a short time and thus returns to the high-viscosity,
sculptable state.

In the present study, during the specimen preparation, the glass slab, holding the
PTFE mold, was pre-set to a temperature of 30 ± 1 ◦C, representing a rubber dam isolated
tooth [41]. In the case of both investigated materials, the temperature decreased during the
extrusion from the capsule, irrespectively to the type of the heating device, and a further
drop of temperature was observed during the condensation into the mold (Phase I on
Figure 1). The measured temperatures for FOB_55 and VCB_65 were on average 32.5 ◦C and
34 ◦C, respectively, at the start of polymerization. The direct contact to the 30 ◦C molds and
glass slab and also to the room temperature condensing instrument accelerated the cooling
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of the RBCs. The equilibration of the ambient and the pre-heated RBC’s temperature
resulted in faster cooling of the warmer RBC. During the photopolymerization (Phase
II on Figure 1.), both exothermic reaction and the released heat from the curing device
increased the RBCs’ temperature. The extent of temperature increase, however, seems to be
influenced by the speed of the temperature drop in Phase I. Accelerated drop may hinder
the exothermic temperature increase.

Adequate monomer to polymer conversion is crucial to the material’s long-term clini-
cal success [42]. While DC is the key parameter determining the effectiveness of monomer
conversion, unfortunately, it cannot describe the microstructure of the resulted heterogenic
polymer network, which has a major effect on the physical and chemical properties of
the RBC [43]. To determine the DC, micro-Raman spectroscopy was used in our study.
It offers the possibility of quantitative characterization of the polymerization extent in
dimethacrylate-based RBCs [44]. Raman-spectra were taken after 24 h, since a significant
increase in DC takes place during the 24 h post-irradiation [28]. Although the minimum
DC% for clinically acceptable restoration has not yet been precisely defined [45,46], DC
values below 55% may be inadequate for occlusal restorative layers [47,48]. Musanje and
Darvell recommended that the depth of cure should be defined as the depth at which
maximum conversion occurs for a given irradiance and exposure time [49]. The radiant
exposure was defined at 16–24 J/cm2 to reach an adequate polymerization degree for a
2 mm thick RBC layer [50,51], meanwhile, the minimum radiant exposure required to be
delivered to different bulk-fill RBCs moves on a wider scale (14–23–47 J/cm2) [52,53]. In
our study, the valid, portable radiometer measured a higher value of radiant exitance than
the average light output given by the manufacturer. It was demonstrated that most of the
LCUs—especially low-budget LCUs, like our LED.D—could have different light output
characteristics [54]. Providing by the curing unit, the delivered radiant exposure was
25 J/cm2, and the DC% on the top of FOB_RT and FOB_55 were 63% and 64%, respectively,
which is a characteristic value for a well polymerized RBC [49]. In comparison to the FOB
values, the DC% on the top of the VCB_RT and VCB_65 samples were significantly lower,
54% and 55%, respectively. The lower DC values are presumably due to the material compo-
sition. The monomer system has a major effect on the DC, which increases in the following
order: BisGMA < BisEMA < UDMA < TEGDMA [55]. BisGMA is considered to be the most
viscous monomer due to the strong intramolecular hydrogen bonding, resulting in limited
rotational freedom, thus the reactivity and mobility of the monomer may decrease during
the polymerization process [56]. This might be one of the explanations for the significantly
lower DC of the VCB, which is a BisGMA-based RBC. FOB is an UDMA-based bulk-fill
RBC, containing both aliphatic and aromatic UDMA. Sideridou et al. found that UDMA,
combining relatively high molecular weight with a high concentration of double bonds and
low viscosity, was shown to reach higher final DC% values than BisGMA [55]. Although
the viscosity of UDMA is much lower than that of BisGMA, when it is mixed with the
high molecular weight BisGMA or BisEMA, it can significantly restrict the mobility of
UDMA monomers and decrease their reactivity and conversion value [57,58]. In addition
to the monomer system, the filler-matrix ratio is also decisive. VCB filler loading is higher
(83 wt%) compared to the filler content of FOB (76.5 wt%), which may restrict the light
penetration and the mobility of monomers and radicals. The DC of VCB was investigated
by Yang et al., and their results showed similar values (~58 DC%) in a 2 mm thick sample,
exposed either with 20 s (24 J/cm2) or 40 s (48 J/cm2) [28]. Similar to the above study,
pre-heating did not influence the DC% values of our investigated materials at the top
of the samples, assuming that the RBCs on the top reached their maximum conversion
degree already at room temperature. Although Daronch et al. found that the increased
pre-cure temperature significantly improved the DC compared to the room temperature,
they also concluded, that at longer exposure (20 s, 40 s) top-surface composite conversion
was equivalent and similar throughout the tested temperature range (22–60 ◦C) [10].

Contrary to the values measured at the top of the room temperature samples the
DC% at the bottom of the 4 mm thick bulk-fill materials were lower by ~10% (FOB_RT,
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51.8%; VCB_RT, 46.2%). While the depth of cure is improved in bulk-fills due to increased
translucency, modified matrix composition, photoinitiator kinetics, and filler characteristics,
not all of the commercial bulk-fill RBC are able to sustain a homogeneous conversion at a
depth of 4 mm [24,59–61]. The present research examined two, so-called full-body bulk-fill
RBCs that are often referred to as paste-like bulk-fills. These materials generally have a
higher filler load which makes them highly viscous and therefore sculptable. The higher
filler content renders the surface more wear-resistant without requiring any coverage.
Decreased DOC from the surface to the bottom may be a result of the increased filler ratio
which may hinder light penetration due to the nano-sized particles despite the increase in
translucency. On the other hand, high molecular weight monomers, such as BisGMA (in
VCB) and aromatic UDMA (in FOB), also help to increase the viscosity, however, decreasing
the reactive groups in the resin may negatively influence the DC [56,62].

Pre-heating makes highly filled, sculptable RBCs more flowable, adaptable, and easier
to manipulate, without compromising the superior mechanical properties. Decreased
viscosity has been shown to enhance marginal adaptation and reduce microleakage due to
improved wetting of cavity walls [14,15]. Although, the increased pre-cure temperature
has benefits through decreased system viscosity, enhanced radical mobility, and collision
frequency of unreacted active groups resulting in additional polymerization and higher
conversion [63], the diversity of study outcomes may result from different RBC composition
and experimental set-ups. Isothermal conditions mostly favor the positive effect of pre-
heating on monomer conversion resulting in more highly cross-linked polymer networking
and improved mechanical and physical properties [10]. However, improved monomer to
polymer conversion has a strong relation to polymerization shrinkage which may increase
the shrinkage stress of the bonded restoration [47,63,64]. Despite the higher shrinkage
which might be present, it may not be clinically significant, as it can be offset by the
improved marginal adaptation [63].

Clinically relevant, non-isothermal circumstances enhance the strong effect of RBC
composition on the results. Several studies found the effect of pre-heating to vary on
DC (decrease, no change, increase) depending on the composition of the investigated
RBC [14,19,39].

Confirming the above findings, our results also showed a dissimilar effect of pre-
heating on the monomer conversion of the investigated RBCs. An increase in pre-cure
temperature did not influence significantly the DC on the top surfaces neither for FOB_55
nor for VCB_65 and even did not affect the bottom DC of VCB_65 compared to the room
temperature RBCs. The bottom DC values showed a significant decrease however in
the case of FOB_55. The rapid temperature drop of pre-heated RBC during handling
results in excess heat loss which may deprive energy of the system and might prevent a
sufficient increase in polymerization reactivity and consequent enhancement in monomer
conversion [19]. Considering the findings of the temperature measurements, it is visible,
that the temperature increase during polymerization shows a direct correlation with the
measured DC values. During polymerization (Phase II. on Figure 1), the temperature
of both VCB_RT and VCB_65 increased by 4.4 ◦C and showed similar DC values at the
top (54.2 ◦C and 55 ◦C, respectively) and as well on the bottom surfaces (46.2 ◦C and
45.2 ◦C, respectively). The mean differences between top and bottom DCs were around
10%. Meanwhile, the temperature within FOB_RT during polymerization rose by 5.8 ◦C and
showed a significantly higher DC both on the top (63 ◦C) and bottom (51.8 ◦C), compared
to VCB_RT. The mean difference on top vs. bottom DC was found to be 10% also. In
contrast, pre-heating of FOB had a negative effect both on the exothermic reaction and
on the kinetics of monomer conversion. During light-curing, the temperature rise within
FOB_55 was 1.8 ◦C lower (4 ◦C) than in the case of FOB_RT, and the bottom DC was 20%
less (45%) compared to the top DC value, which kept its higher level (64 ◦C). Although the
drop of temperature during the dispensing and condensation phase (Phase I. on Figure 1)
of VCB_65 was rapid, its temperature at the initiation of light-curing was higher, compared
to the FOB_55. It may have provided enough energy to the polymerizing system, assuming
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that even higher exothermic temperature rise and higher DC would have been achieved
if the system temperature dropped slower. In contrast, the temperature of FOB_55 at the
beginning of light-curing was lower, and the additional drop during the cooling phase may
have deprived energy from the system, resulting in a weaker exothermic reaction and lower
monomer conversion. Since the reaction behavior of multifunctional monomer systems
is very complex and highly dependent on the reaction conditions and composition, other
possible explanations for DC decrease may arise. The increased pre-cure temperature may
induce thermal polymerization before irradiation. On one hand, thermal polymerization
leads to the consumption of functional groups, and on the other hand, pre-polymerization
of few monomers results in shrinkage, which decreases the system’s initial free volume and
restricts the diffusion of monomers during the progression of the photopolymerization [65].
This phenomenon in VisCalor Bulk was investigated by Yang et al. who concluded, that
pre-heating did not cause adverse effects through premature polymerization [28]. Other
factors which may have been responsible for the observed temperature behavior of the
FOB_55 could be further thermal side effects including evaporation of the reactants and
thermal degradation of the photoinitiator [66]. In the case of VCB_65, 30 s pre-heating
time was enough in the special dispenser, however, for FOB_55 pre-warming took more
time in the EnaHeat Composite Heating Conditioner (15 min), which may influence the
chemical condition of the components. Among the above-mentioned thermal side effects, a
higher significance should be attributed to oxygen inhibition in the case of elevated RBC
temperatures. As the temperature increases, the decrease in viscosity promotes oxygen
penetration into the RBC. Oxygen reduces the extent of polymerization by scavenging on
free radicals resulting in less reactive peroxy radicals and/or quenching of the excited triplet
state of the initiator [43]. It is reasonable to assume a role also for a further FOB constituent,
the so-called AFM, an addition-fragmentation chain transfer dimethacrylate monomer,
which participates readily in network formation by copolymerizing with multifunctional
methacrylates [67]. An AFM is a heteroatom (N or S or O) containing monomer with various
vinyl activating groups which have been employed as chain transfer agents to reduce
shrinkage stress [65,68]. However, chain-transfer reactions may also exert a retarding effect
on the polymerization by increasing termination, especially at higher temperatures [65].

Although pre-heating did not increase monomer conversion in many cases, sev-
eral studies have shown that the mechanical properties and marginal integrity of RBCs
(including FOB and VCB as well) are satisfactory or better than those applied at room tem-
perature [2,14,69,70]. In contrast, however, there are experiments concluding higher linear
shrinkage of pre-heated RBCs and deterioration in marginal integrity [63,71], although,
results of the available investigations show that the pre-heating has no significant impact
on bond strength of RBC to dentin [72,73].

As our results confirmed, RBCs do not have a complete monomer to polymer conver-
sion because of the condition-dependent kinetics of gelation, vitrification, immobilization,
and steric isolation [74]. Incomplete conversion may result in the presence of unreacted
monomer content within the polymer network which is partially or completely released
short- or long-term [34,43]. Released monomers may depress the biocompatibility of the
RBC by stimulating bacterial growth around the restoration leading to secondary caries de-
velopment and may promote allergic reactions. Additionally, cytotoxic effects of monomers
have been demonstrated [32]. Solubility and water sorption can accelerate the degradation
and do harm to the mechanical/physical properties such as tensile-, flexural strength
and wear [33]. To determine the quality and quantity of the residual monomers eluted
from the investigated polymerized materials HPLC, as a generally applied investigative
method, was used in our study [24,75,76]. Unreacted monomers can reduce the mechanical
properties of the RBCs and their detection represents an important step for evaluating RBC
biocompatibility [77].

During our experiment, aromatic (BisGMA) and aliphatic (TEGDMA, UDMA, and
DDMA) dimethacrylate standard monomers were used to identify eluted monomers from
the investigated RBCs.
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In the present study, 75% ethanol/water solvent was used to extract most of the
examined unreacted monomers from the polymerized RBC specimens to identify monomer
quantity. Besides the type of the solvent, the chemical nature of the matrix monomers and
their combination, the degree of conversion, and the final network characteristics also play
important roles in the quantity and quality of monomer elution from a certain RBC [24,34].

According to the manufacturer’s description, VCB is a BisGMA/aliphatic dimethacry-
late based RBC but does not define in detail the aliphatic dimethacrylates. However,
following HPLC measurements, TEGDMA, DDMA, and UDMA were detected as eluted
aliphatic monomers from VCB. FOB is mainly an UDMA-based material, composed of both
aliphatic and—as a BisGMA substitute—aromatic UDMA. However, released BisGMA was
also detected during the HPLC measurements. Copolymers consisting of BisGMA and/or
UDMA are crosslinked both chemically (C-C covalent bond) and physically (i.e., hydrogen
bond). The latter determines the matrix viscosity, since the more numerous and stronger
the hydrogen bonds are, the higher the viscosity of the system [56]. To create a sculptable
RBC, the usage of these monomers is advantageous.

Regarding the monomer release, our results showed elution to be strongly dependent
on the material.

In this study, significantly (two-fold) more UDMA and DDMA were released from
the room temperature FOB_RT, meanwhile, VCB_RT samples leached almost three-fold
more BisGMA. Pre-heating significantly decreased the monomer elution from FOB_55.
There was no difference however in monomer elution between VCB_RT and VCB_65. The
measured unreacted monomer release is in line with our results regarding the degree of
monomer conversion in VCB_RT and VCB_65 since pre-heating did not change the DC on
the top or bottom of VCB. On the other hand, the observed relationship between DC and
monomer elution from FOB is contradictory. While the DC of the bottom surface decreased
after pre-heating, the detected elution of unreacted monomers from FOB_55 samples was
also lower. Although several studies have shown that the extent of leached unreacted
monomer is correlated to the DC [4,78,79], the conversion degree does not necessarily
correlate with the amount of free residual monomer, since the detected double bonds may
remain as pendant groups bonded to the polymer structure and are not free to be released,
however, may reduce the clinical success of the RBCs [56,80]. Probably, the above issue is
the explanation for the lack of the expected relationship between the DC and monomer
elution in the case of the pre-heated FOB_55.

While the number of monomer elution studies from bulk-fill RBCs is extensive, data
regarding the effect of pre-heating on monomer release both from conventional and bulk-
fill RBCs is limited in the literature, hence, the discussion of this issue and comparison
to other results are also restricted. Elution from bulk-fills was found to be comparable
to that of conventional RBCs despite their increased increment thickness [34,81]. The
quality and quantity of released resins are strongly material dependent and the amount of
most of the eluted monomers is increased with time [24,82]. The monomer detected to be
eluted in the highest amount was BisGMA from both VCB_RT and VCB_65, with the latter
showing a significantly lower quantity. As it was previously mentioned, the extremely
high viscosity of BisGMA limits the DC, leaving behind more unreacted monomers, which
may release into the oral cavity. Admixing low molecular weight monomers, such as
TEGDMA and DDMA, to BisGMA, can lower its viscosity, and via their synergistic effect
can increase the rate of polymerization [83]. The released quantity of the latter two was
very small both from VCB_RT and VCB_65. FOB, on the other hand, is a UDMA-based
RBC. At present, UDMA is the only commercial alternative to the bisphenol A-based dental
methacrylates [56]. Although, UDMA viscosity is lower than BisGMA, still high enough to
require the addition of a reactive diluent, such as DDMA. Due to UDMA’s lower molecular
weight in comparison to BisGMA, it is expected to show higher DC and lower unreacted
monomer elution [84]. However, aside from aliphatic UDMA, FOB contains aromatic
UDMA as well. Aromatic moiety and substitution symmetry play an important role in
the steric hindrance, methacrylate group separation, limited conformational freedom, and
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increase of molecular stiffness. However, closer proximity of reactive groups facilitates the
reaction-diffusion, which may lead to moderate DC and the planar geometry of benzene
rings allows for building tighter structures [56]. Based on our results, the aliphatic UDMA
release was moderate from FOB_RT and significantly lower from FOB_55, as a result of
pre-heating.

However, in our study, neither eluted AUDMA nor AFM was detected in the absence
of the standards, as their exact chemical structure is a trade secret.

To the best of our knowledge, only one published article deals with the monomer
elution from three pre-heated RBCs and found no effect of pre-cure temperature (68 ◦C)
on the amount of leached UDMA, TEGDMA, and BisGMA [85]. Few available pieces of
research reported that pre-heating of both conventional and bulk-fill RBCs did not influence
cell viability, however, polymerized samples were used to examine the cytotoxicity without
determination of the eluted monomers [63,83,86]. de Castro et al. investigated the sorption
and solubility of RBC at higher pre-cure temperatures (60 ◦C) and concluded that longer
curing times and higher temperatures led to lower values of sorption and solubility, but
these differences were only significant for specific combinations of temperatures and curing
times. [87].

The main limitation of this study may be the in vitro nature of the investigation.
Although during sample preparation a conscious effort was made to simulate an isolated
tooth by adjusting the PTFE mold temperature, the thermal conductivity of a natural tooth,
its position in the oral cavity, the cavity configuration, thus the contact surfaces with the
RBC are just a few mentioned factors, which may influence the results in vivo. Furthermore,
the analysis of the elution of selected unreacted monomers (BisGMA, UDMA, TEGDMA,
DDMA) will not provide an absolute measure of the quality of released components, since,
among others, various monomers, like AUDMA, AFM, degraded compounds, initiator
molecules, and fillers may also leach and compromise the RBC biocompatibility. A further
limitation may be the limited number of the investigated high-viscosity bulk-fill RBCs,
especially considering the strongly material-dependent results. The results cannot be
extrapolated to other room temperature and pre-heated RBCs, since the composition has a
strong influence on both DC and monomer elution and can vary from RBC to RBC.

5. Conclusions

Within the limitations of this in vitro study, the following conclusions can be stated:

(1) Significantly higher DC values were achieved on the top of the room temperature and
pre-heated investigated bulk-fill RBCs than on the bottom.

(2) Room temperature VisCalor Bulk has lower DC% values both on the top and bottom
compared to Filtek One Bulk.

(3) Pre-heating did not influence the DC of VisCalor Bulk, however, significantly de-
creased the DC at the bottom of Filtek One Bulk.

(4) Pre-heating had no effect on the monomer elution from VisCalor Bulk, but significantly
decreased the monomer release from Filtek One Bulk.

(5) Material factor had a significant effect on each investigated variable, while Temperature
factor and its interaction with Material is surface- (top vs. bottom) and monomer-
dependent.

Based on the results, the following clinical significance can be deduced: While pre-
heating had no beneficial effect on the degree of conversion neither of the thermoviscous
VisCalor Bulk nor the contemporary bulk-fill RBC (Filtek One Bulk) the increased pre-cure
temperature may decrease the elution of unreacted monomers from the RBCs.
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