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The emerging landscape of circular RNA in life processes
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ABSTRACT
Circular RNAs (circRNAs) are a novel class of non-coding RNA that assumes a covalently closed continuous
conformation. CircRNAs were previously thought to be the byproducts of splicing errors caused by low
abundance and the technological limitations. With the recent development of high-throughput
sequencing technology, numerous circRNAs have been discovered in many species. Recent studies have
revealed that circRNAs are stable and widely expressed, and often exhibit cell type-specific or tissue-
specific expression. Most circRNAs can be generated from exons, introns, or both. Remarkably, emerging
evidence indicates that some circRNAs can serve as microRNA (miRNA) sponges, regulate transcription or
splicing, and can interact with RNA binding proteins (RBPs). Moreover, circRNAs have been reported to
play essential roles in myriad life processes, such as aging, insulin secretion, tissue development,
atherosclerotic vascular disease risk, cardiac hypertrophy and cancer. Although circRNAs are ancient
molecules, they represent a newly appreciated form of noncoding RNA and as such have great potential
implications in clinical and research fields. Here, we review the current understanding of circRNA
classification, function and significance in physiological and pathological processes. We believe that future
research will increase our understanding of the regulation and function of these novel molecules.
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Introduction

Circular RNA (circRNA) is a novel type of noncoding RNA
(ncRNA). Unlike traditionally linear RNA molecules, circRNA
is a covalently closed circular molecule without 5’–3’ polarities
or a polyadenylated tail.1

CircRNAwas first identified in RNA viruses via electronmicro-
scope as early as the 1970s.2 Unfortunately, only a handful of such
circRNAs, including hepatitis delta virus (HDV), DCC transcript,
ETS-1, Sry and cytochrome P450 2C24 (CYPIIC24), have been spo-
radically reported over the past 30 y.3-9 Hence, circRNAs were typi-
cally considered as a byproduct of errant splicing ormRNAprocess
due to low transcript abundance.6 With the development of high-
throughput sequencing technology and bioinformatics, many
circRNAs have been discovered and identified,10-16 leading to a
resurgence of interest in these molecules. Recent studies have
revealed that circRNAs are stable, conserved and diverse, and often
exhibit tissue- or developmental stage-specific expression.10,11,17-23

To date, the known functions of circRNAs include roles as micro-
RNA (miRNA) sponges18,24-27 and splicing or transcriptional regu-
lators.19,28-30 In addition, circRNAs can interact with RNA binding
proteins (RBPs).28,31 Recent studies have implicated circRNAs in
the physiological process of aging,32,33 insulin secretion34 and tissue
development.35-37 Moreover, circRNAs also have been reported to
play crucial roles in the pathological process such as atherosclerotic
vascular disease risk,38 neurological disorders,1,39 cardiac

hypertrophy27 and cancer.25,26,40-44 Taken together, these finding
indicate that circRNAs might play important roles in fundamental
life processes and serve as novel clinical molecularmarkers, thereby
providing new insights into the treatment of diseases.

In this review, we briefly discuss the current understanding
of classification and function of circRNAs and highlight their
roles in physiology and pathology.

Categories of circRNAs

To provide greater insight into the function of circRNAs,
understanding their structure features is critical. Due to their
short history of study relative to mRNA, the classification of
the vast majority of circRNAs relies on empirical attributes that
are based on those of long noncoding RNAs (lncRNAs); this
classification system provides a convenient basis on which to
classify the former uncharacterized RNA species.

CircRNAs can be generated from any region of the genome,
and all result in a great diversity of lengths.17-20,30,35,45,46 The
majority of circRNAs are generated from coding exons: some
are derived from the 5’ or 3’ untranslated regions (5’UTRs or
3’UTRs), whereas others originate from ncRNAs.18,38 Some
circRNAs are derived from introns and are usually excised
from pre-mRNA; these species are termed circular intronic
RNAs (ciRNAs).18,19 Interestingly, ciRNAs formation depends
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on a key motif containing a 7-nt GU-rich element close to the
5splice site and an 11-nt C-rich element near the branch
point.19 Finally, circRNAs can be composed of an exon and
retained introns, a species termed an exon–intron circRNA, or
EIciRNA.30

As with lncRNAs,47,48 we attempt to classify circRNAs based
on their genomic proximity to a neighboring gene (Fig. 1). A
circRNA can usually be placed into one or more of 5 broad cat-
egories: (1) sense or exonic, when arising from one or more
exons of the linear transcript on the same strand; (2) intronic,
when it is derived wholly from an intron of the linear tran-
script; (3) antisense, when it overlaps one or more exons of the
linear transcript on the opposite strand; (4) bidirectional or
intragenic, when it is transcribed from same gene locus of the
linear transcript but in close genomic proximity and not classi-
fied as ‘sense’ and ‘intronic’; and (5) intergenic, when it is
located in the genomic interval between 2 genes.

Biological functions of circRNAs

Although the abundance of circRNAs is now recognized, the
potential function of these molecules remains the issue of
debate. Recent studies have revealed 3 possible biological

functions of circRNAs. Specifically, they can function as
miRNA sponges, regulate transcription or splicing, and interact
with RBPs (Fig. 2).1,49-52

Considering the stability of their circular structure and their
conserved sequences, circRNAs are ideal to act as miRNA
sponges or competitive endogenous RNAs (ceRNAs). Seven
circRNAs - ciRS-7/CDR1as (for circular RNA sponge for miR-
7 or CDR1 antisense),18,24 Sry circRNA (circ-Sry),24 circ-
ITCH,25,43 circ-Foxo3,26 circRNA HRCR,27 circHIPK353 and
hsa_circ_00156954 - have been verified to function as miRNA
sponges. The ciRS-7/CDR1as molecule contains more than 70
miR-7 binding sites and can adsorb miR-7 to reduce its miRNA
activity.24 circ-Sry is highly expressed in adult mouse testis;7 it
harbors 16 miR-138 binding sites and interacts with miR-
138.24 Although these 2 examples are striking, the 2 circRNAs
have a larger number of putative miRNA binding site. It is cur-
rently debated whether the function of circRNA as an miRNA
sponge is a general (but not exclusive) feature.49 Two studies
indicated that most circRNAs do not function as miRNA
sponges as a large majority of circRNAs does not possess more
miRNA binding sites than do co-linear mRNAs.20,29 However,
with the advance of circRNA research, increasing evidence
indicate that circRNA can act as miRNA sponge, which may
not depend on the numbers of miRNA binding site. For exam-
ple, circ-ITCH was also found to function as a sponge of miR-
7, miR-17 and miR-124 via luciferase reporter assays.25 Yang

Figure 1. Schematic presentation of circRNA classification. (A) Sense or exonic,
when overlapping one or more exons of the linear transcript on the same strand.
(B) Intronic, when arising from an intron of the linear transcript in either sense or
antisense orientation. (C) Antisense, when overlapping one or more exons of the
linear transcript, as they transcribe from the opposite strand. (D) Bidirectional or
intragenic, when transcribing from same gene locus of the linear transcript, but in
close genomic proximity within 1 kb and not classified into ‘sense’ and ‘intronic’.
(E) Intergenic, when it locates outside at least 1kb away from known gene locus.

Figure 2. Biological functions of circular RNAs. CircRNAs contain miRNA binding
sites to act as competitive endogenous RNA. CircRNAs sequester miRNAs from
binding mRNA targets. EIciRNAs can enhance gene transcription via interacting
with U1 snRNP and RNA Polymerase II in the promoter region of the host gene.
GU-rich sequences near the 5’ splice site (red box) and C-rich sequences near
branch point (purple box) are minimally sufficient for ciRNA formation. The stable
ciRNA binds to elongating RNA Pol II and promotes transcription. CircRNA biogene-
sis competes with linear splicing. Circularization and splicing compete against each
other to keep the transcripts dynamic balance. CircRNA formation act as ‘mRNA
trap’ to make linear transcripts untranslated by sequestering the translation start
site or break the integrity of mature linear RNA. CircRNAs can also function as RNA
binding protein (RBP) sponge to interact with RBPs, such as MBL, p21 and CDK2.
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and coworkers recently discovered that circ-Foxo3 could serve
as an effective miRNA sponge through its interaction with
miR-22, miR-136�, miR-138, miR-149�, miR-433, miR-762,
miR-3614–5p and miR-3622b–5p.26 Moreover, 3 recent studies
just found that circRNA HRCR,27 circHIPK353 and hsa_-
circ_00156954 could act as miRNA sponge, such as miR-223,
miR-124 and miR-145. These findings support the idea that
circRNA acting as miRNA sponges is a widespread phenome-
non in many eukaryotes.

Because of the correlation between circRNAs and their par-
ent gene, the formed are thought to positively regulate parent
gene expression in cis- or trans-acting manner. ciRNA was
found to localize to the nucleus and to interact with the Pol II
machinery to activate its parent gene transcription.19 Similarly,
EIciRNAs was shown to localize predominantly to the nucleus
and to interact with U1 snRNP and Pol II through complemen-
tary sequence pairing between EIciRNA and U1 snRNA
(snRNPs), thereby enhancing the transcription of its parental
gene.30 Later, circ-ITCH was reported to act as a sponge of
miR-7, miR-17 and miR-138 to increase the level of ITCH.25

Notably, The pocessing of circRNAs also affects splicing. There
is a negative correlation between circRNA formation and alter-
native splicing, potentially leading to altered gene expression.
circMbl formation competes with mbl pre-mRNA splicing.
circMbl and circMbl flanking introns harbor conserved MBL
protein binding sites that bind strongly to MBL. The alteration
of MBL level significantly affects circMbl formation, an effect
dependent on MBL binding sites.28 Moreover, backsplicing
may produce circRNA and a corresponding linear RNA.28 The
circRNA may contain a translation start site, leaving the corre-
sponding linear RNA untranslated.17,29,55 Alternatively,
circRNA formation may disrupt the integrity of mature linear
RNA, also leaving it untranslated.56 This phenomenon is
known as an mRNA trap.55

Like lncRNA, circRNAs can interact with RBPs or function
as RBP sponges.28,31,57 As described above, circMbl contains
conserved MBL protein binding sites. MBL can interact with
circMbl to balance the efficiency between circMbl and mbl
mRNA production.28 Moreover, Du and others found that circ-
Foxo3 could interact with both CDK2 and p21 forming a ter-
nary complex, blocking cell cycle progression,31 and that circ-
Foxo3 could promote cardiac senescence by modulating multi-
ple factors associated with stress and senescence responses,
such as ID-1, E2F1, FAK, and HIF1a.57

CircRNAs in the life processes

CircRNAs are stable, conserved noncoding RNAs with cell-, tis-
sue-, and developmental stage-specific patterns of expression.
Because circRNAs have the above functions, they are the sub-
ject of much recent attention. Recent studies have suggested
that circRNAs play important roles in biological processes and
have the potential to become clinical molecular biomarkers
(Table 1).

CircRNAs in the physiological processes

Recent studies have indicated that circRNAs may be involved
in essential physiological processes. For example, CDR1as

expression was up-regulated in islet cells by the PMA and long-
term forskolin stimulation but not high glucose levels. Strik-
ingly, CDR1as overexpression significantly promotes insulin
biosynthesis and secretion through the CDR1as/miR-7 path-
way, which provides a potential target for improving b cell
function in diabetic patients.34 Boeckel et al. found that circular
RNAs are expressed in endothelial cells and are regulated by
hypoxia. The circular RNA cZNF292 controls the proliferation
and angiogenic sprouting of endothelial cells. These findings
indicate that endothelial circRNAs are regulated by hypoxia
and have a biological function.58 Moreover, a large number of
circRNAs were shown to be dysregulated in the absence of
CD28 in CD8(C) T cells during aging using a circRNA micro-
array approach. The identification of a circRNA-miRNA-gene
network suggested that circRNA100783 might regulate phos-
phoprotein-related signal transduction in the context of CD28-
dependent CD8(C) T cell aging.33

Interestingly, circRNAs play crucial roles in physiological
processes in non-human mammals. CDR1as harbors 74 miR-7
seed matches that are often highly conserved. Moreover,
CDR1as is expressed at higher levels in nervous tissue.18,59 The
overexpression of CDR1as in zebrafish embryos substantially
reduces the size of the midbrain, phenocopying the morpholog-
ical defects in the midbrain the accompany miR-7 loss-of-func-
tion.18 Some studies have shown that circRNAs are highly
abundant in the mammalian brain35,37,60 and are especially

Table 1. circRNAs in the life processes.

Circular RNA Biological process References

CDR1as/ciRS-7 Regulate the development of midbrain
via acting as miR-7 sponge in
zebrafish embryos

18

Promote insulin biosynthesis and secretion
through CDR1as/miR-7 pathway in
islet cells

34

circRNA cZNF292 Control proliferation and angiogenic
sprouting of endothelial cells

58

hsa_circ_0023404/
circRNA-CER

Participate in the process of chondrocyte
extracellular matrix degradation

64

cANRIL Regulate INK4/ARF transcription and
atherosclerotic vascular disease risk

38

mm9-circ-012559/
circRNA HRCR

Protect the heart from pathological
hypertrophy and heart failure via
targeting miR-223 in mice

27

circ-ITCH Inhibit cell proliferation and tumor growth
via acting as a sponge of miR-7, miR-17
and miR-124 in esophageal squamous
cell carcinoma

25

Inhibit cell proliferation via interacting
with miR-7, miR-20a and miR-214 in
colorectal cancer

43

circ-Foxo3 Suppress tumor growth, cancer cell
proliferation and survival in breast
cancer (MDA-MB-231 cell)

26

Block cell cycle progression by forming a
ternary complex with CDK2 and p21

31

Promote cardiac senescence by
modulating ID-1, E2F1, FAK,
and HIF1a in mice

57

circHIPK3 Inhibit human cell growth by sponging
multiple miRNAs

53

hsa_circ_001569 Promote the proliferation and invasion
of colorectal cancer cells

54

F-circM9 Contribute to leukemia progression
and confer resistance to treatment
in leukemic cells

70
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enriched in synaptoneurosomes.36 Many circRNAs alter their
abundance during synaptogenesis and neuronal differentia-
tion.35,36 Moreover, Westholm et al. reported that circRNA lev-
els increased substantially in the central nervous system during
aging compared with the levels of the corresponding co-linear
isoforms and might serve as aging biomarkers in Drosophila.32

These data indicated that circRNAs could be involved in neuro-
nal differentiation or development and might act to regulate
synaptic function. Remarkably, Abdelmohsen and others have
identified circRNAs that are abundantly expressed in the skele-
tal muscle tissues of Rhesus monkey. Among these, they found
that subsets of circRNAs exhibited age-dependent expression
patterns.61 Taken together, these findings suggest roles for
circRNAs in the physiological processes.

CircRNAs in the pathological processes

A growing body of research has demonstrated that circRNAs
play crucial roles in the initiation and development of diseases
and might function as novel biomarkers for disease diagnosis
and therapy.

CircRNAs and neurological diseases

For example, Satoh et al. reported that the stable overexpres-
sion of prion protein (PrPC) in HEK293 cells induced the
expression of CDR1as but not CDR1.62 Hence, PrPC might be
involved in the regulation of CDR1as expression. It would be
worth elucidating the function of CDR1as in prion diseases.
Besides, Kuliw detected that the level of ciRS-7 is significantly
reduced in sporadic Alzheimer disease (AD) compared to its
expression in age-matched control hippocampal CA1.39

Intriguingly, previous studies found that miR-7 can act as a
direct regulator of ubiquitin protein ligase A (UBE2A), which
is essential for the clearance of amyloid peptides in AD,39 and
miR-7 can down-regulate a-synuclein expression, which is
implicated in Parkinson disease (PD).63 Considering ciRS-7
can function as miR-7 sponge, these findings suggests that
ciRS-7 may play a role in AD and PD.

CircRNAs and cardiovascular diseases

cANRIL (circular antisense non-coding RNA in the INK4 locus,
cANRIL) is an antisense transcript synthesized from the INK4/
ARF locus. Burd and others have found that cANRIL isoform
expression is associated with INK4/ARF transcription and ath-
erosclerotic vascular disease (ASVD) risk. Interestingly, 9p21
polymorphisms within the ASVD risk interval may regulate
ANRIL splicing and cANRIL production, as determined using
next-generation DNA sequencing and splice prediction algo-
rithms.38 It would be interesting to unveil the function of cAN-
RIL in ASVD.

Wang et al. found that circRNA HRCR inhibit the develop-
ment of cardiac hypertrophy and heart failure induced in the
mice by isoproterenol and transverse aortic construction via
miR-223.27 Moreover, ectopic expressed circ-Foxo3 could bind
to senescence-related proteins ID1 and E2F1, and stress related
proteins HIF1a and FAK in cytoplasm, promote cardiac

senescence.57 These results provide new insights for under-
standing the pathogenesis of heart diseases.

CircRNAs and degenerative diseases

Both circMbl and its flanking intron sequences can be bound
by MBL, and the modulation of MBL level strongly affects
circMbl formation. circRNA biogenesis competes with canoni-
cal mbl pre-mRNA splicing.28 MBL has been shown to regulate
the mbl pre-mRNA splicing efficiency of circMbl and mbl
mRNA. Moreover, circMbl can serve as a sponge for MBL,
thereby regulating the production of MBL protein. However,
MBL functional deficiency is known to be involved in a severe
degenerative disease called myotonic dystrophy.1 We therefore
speculate that circMbl could be associated with the initiation
and development of myotonic dystrophy. In addition, Liu and
others demonstrated that some circRNAs were differently
expressed in osteoarthritis, and that circRNA-CER could regu-
late MMP13 expression by competitively binding miR-136 in
human cartilage degradation. 64

CircRNAs are dysregulated in cancer

In cancer biology, it is very important to identify gene expres-
sion differences between tumor and normal samples, as knowl-
edge of circRNA expression signatures in tumor and normal
samples is necessary. Moreover, recent research has demon-
strated that circRNAs are globally down-regulated in colorectal
cancer (CRC) tissues compared to matched normal tissues and
are even more reduced in CRC cell lines. Interestingly, a nega-
tive correlation between global circular RNA abundance and
proliferation has been reported.41 In addition, recent studies
also found that circRNA expression patterns were dysregulated
in pancreatic cancer,40 basal cell carcinoma,65 cutaneous squa-
mous cell carcinoma,66 laryngeal squamous cell carcinoma,67

hepatocellular carcinoma68 and glioma69 via microarray or
sequencing technology. These findings indicate that dysregu-
lated circRNAs may be involved in the development of some
cancer. However, whether circRNAs are dysregulated in other
tumor remains to be clarified.

Remarkably, Guarnerio and others70 found a novel type of
circRNA derived from cancer-associated chromosomal translo-
cations: aberrant fusion-circRNAs (f-circRNA). F-circRNAs
are oncogenic and contribute to cellular transformation. Espe-
cially, F-circM9 contributes to leukemia progression and con-
fers resistance to treatment in leukemic cells.

CircRNA–miRNA axes are involved in cancers

CircRNAs, which have emerged as new transcriptome regulators,
constitute an exciting new field of biological inquiry. Recent studies
have demonstrated that circRNAs are associated with disease-
related miRNAs. It is clear that miRNAs are involved in nearly all
aspects of cellular functions and play important roles in disease ini-
tiation and progression.71,72 Because many circRNAs contain sev-
eral conserved binding sites for miRNAs,32,73 circRNAs could
interact with miRNAs to control their biological function. This
crosstalk between circRNAs andmiRNAs is the key to understand-
ing the role of circRNAs in carcinogenesis and other diseases.74,75
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For example, CDR1as has been confirmed to bind specifically to
miR-7 and to inhibit its biological function.24 Furthermore, miR-7
has been shown to play oncogenic or tumor-suppressive roles in
cancers.76-79 Hence, the CDR1as/miR-7 axis may perform an
essential regulatory role in cancer-associated pathways. In parallel,
circ-Sry controls the biological functions of miR-138 by binding to
its 16 binding sites.24 miR-138 has also been shown to play impor-
tant roles in cancer.80 It would therefore be interesting to explore
the functions of the circ-Sry/miR-138 axis in cancer.

Remarkably, Li et al. found that circ-ITCH expression is
commonly downregulated in esophageal squamous cell carci-
noma compared to paired adjacent tissues. circ-ITCH can
increase the level of ITCH by acting as a sponge for miR-7,
miR-17 and miR-124, which promote the ubiquitination and
degradation of phosphorylated Dvl2 to inhibit the expression
of the oncogene c-myc, thereby suppressing the canonical Wnt
signaling pathway.25 Subsequent parallel study has shown that
circ-ITCH expression is also usually down-regulated in CRC,
and that circ-ITCH can also increase the level of ITCH by
interacting with miR-7, miR-20a and miR-214, thereby sup-
pressing the Wnt/b-catenin pathway.43 Moreover, hsa_-
circ_001569 is upregulated in CRC, and promotes the
proliferation and invasion of CRC cells by regulating miR-145
and its targets.54 Specifically, 2 recent studies respectively have
demonstrated that the overexpression of circ-Foxo3 in MDA-
MB-231 cells suppresses tumor growth in vivo as well as cancer
cell proliferation and survival in vitro,26 and that silencing of
circHIPK3 RNA inhibits human Huh7, HCT-116 and HeLa
cell proliferation by sponging with miR-124.53

CircRNAs as a source of diagnostic markers

CircRNAs are more stable than linear RNAs due to their higher
nuclease stability and exhibit long half lives in cells.17,19,81 These
features are an enormous clinical advantage for use as diagnos-
tic and therapeutic biomarkers for cancers. For instance, hsa_-
circ_002059 was found to be commonly downregulated in
gastric cancer, which was associated with TNM stage and distal
metastasis. Hence, hsa_circ_002059 was regarded as a potential
novel biomarker for the diagnosis of gastric cancer.42 Similarly,
hsa_circ_0001649 expression was significantly down-regulated
in hepatocellular carcinoma (HCC), which was correlated with
tumor size and the occurrence of tumor embolus. Thus, hsa_-
circ_0001649 is a novel putative biomarker for HCC.44

Intriguingly, circular RNA has been shown to be enriched
and stable in exosomes (small membrane vesicles containing
endocytic origins secreted by cells). Moreover, the abundance
of tumor-derived exosomal circRNAs in the serum of xeno-
grafted mice was correlated with tumor mass, which may serve
as a promising biomarker for cancer detection.46 Remarkably,
Memczak and colleagues observed that circRNAs are reproduc-
ibly and easily detected in clinical standard blood samples.
Hundreds of circRNAs are expressed at much higher levels
than their corresponding linear mRNAs in human blood, sug-
gesting that they may represent a new class of biomarkers for
human disease.82 Likewise, Bahn and others predicted 422
putative circRNAs in human cell-free saliva using high-
throughput RNA sequencing. Some of these predicted circR-
NAs were validated by RT-PCR using divergent primers. All

PCR products were purified and subjected to Sanger sequenc-
ing.83 Considering the urgent clinical need for non-invasive
biomarker detection for many disease states, circRNA bio-
markers in human blood and saliva or other bodily fluids
appear very promising.

Conclusion and perspective

In the past, circRNAs were considered a byproduct of aberrant
splicing events or intermediates that had escaped from intron
lariat debranching.6,84,85 Thus, they were thought to be unlikely
to play crucial roles in biological processes. Nevertheless, with
advancements in high-throughput sequencing technologies and
bioinformatics, circRNAs were found to be broadly expressed
and to perform co- or post-transcriptional regulation in the
cells and tissues of various species. Moreover, multiple circular
RNAs have been identified from a single precursor RNA in a
phenomenon referred to as alternative circularization.21 These
findings greatly expanded our knowledge of the complexity of
gene regulation and have moved circRNA to the forefront of
biological research. Along with in-depth studies of circRNAs,
several circRNA databases have been constructed, such as circ-
Base (http://www.circbase.org/),86 circNet (http://circnet.mbc.
nctu.edu.tw/),87 Circ2Traits (http://gyanxet-b.com/circdb/)74

and CircInteractome (http://circinteractome.nia.nih.gov).88

These databases provided excellent platforms to facilitate fur-
ther functional research on circRNAs.

To date, studies have revealed that circRNAs are evolution-
arily conserved and are expressed in a cell-, tissue- and develop-
mental stage-specific manner. Although the functions of
circRNAs are largely unknown, accumulating evidence has
shown that circRNAs function in multiple biological processes,
such as miRNA binding, protein binding and regulation of
transcription or splicing.1,52 Remarkably, endogenous circR-
NAs have not been found to associate with ribosomes for trans-
lation, suggesting that they have a tendency to serve as a new
class of ncRNAs. Nevertheless, exogenous circRNAs engineered
to contain an internal ribosome entry site (IRES) or via a rolling
circle amplification mechanism can be translated in vivo or in
vitro,89,90 so we cannot exclude the possibility that some circR-
NAs are translatable. As studies of circRNAs increase in num-
ber, it is likely that additional functions will be revealed.

Strikingly, recent studies have also reported that circRNAs
play essential roles in the physiological processes of aging, insu-
lin secretion and tissue development. Moreover, circRNAs are
reported to be involved in the pathological processes, especially
cancer. Hence, these findings indicate that circRNAs might
play important roles in biological processes, serve as novel clin-
ical molecular biomarkers and provide insight into the treat-
ment of diseases. However, current studies of the relationship
between circRNAs and disease physiology and pathology are
limited. In the near future, if properly modified and delivered,
circRNAs have the potential roles to act as molecular tools or
therapies to regulate cellular homeostasis by interacting with
miRNAs and other RNAs or RBPs.

The study of circRNAs has gradually become one of the hot-
test topics in the field of genetics. However, the field of circular
RNA presents a wealth of unanswered questions. Currently,
several bioinformatic algorithms such as find-circ,18
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MapSplice,91 CIRCexplorer,21 circRNAfinder32 and CIRI92 are
available to predict circRNAs. However, the consistency of
these computational tools remains relatively low, and no sys-
tematic approach is available for identifying circRNAs in the
human transcriptome. There remains a need for a robust algo-
rithm to achieve more reliable predictions with a better balance
between precision and sensitivity.51,93 Given the huge number
of circRNAs and the empirical classification of circRNAs based
on lncRNA categories, it is important to develop a standard
nomenclature or a comprehensive classification system to
enable future circRNAs research. Moreover, current studies of
circRNAs have mainly focused on circRNA formation, whereas
little is known about the degradation of most circRNAs. A pos-
sible mechanism for circRNA clearance is to eliminate them via
releasing vesicles such as microvesicles and exosomes.94 The
expression profiles of circRNAs maybe depend on a balance
between biogenesis and degradation. Moreover, given that cel-
lular localization is often associated with physiological function
and mechanism, it is a topic worth exploring.

Taken together, although circRNAs are currently in the spot-
light, the field is still in its infancy. Further intensive studies are
needed to explore the molecular and biological functions of circR-
NAs. The world of the transcriptome may be more complicated
than previously thought. circRNA, as the new star of noncoding
RNA, would be widely involved in the regulation of physiological
and pathophysiological processes, serve as stable clinical bio-
markers of disease, and also provide new potential therapeutic
targets.
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