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Abstract  

Background. Inter-individual variability in neurobiological and clinical characteristics in 

mental illness is often overlooked by classical group-mean case-control studies. Studies 

using normative modelling to infer person-specific deviations of grey matter volume have 

indicated that group means are not representative of most individuals. The extent to 

which this variability is present in white matter morphometry, which is integral to brain 

function, remains unclear.  

Methods. We applied Warped Bayesian Linear Regression normative models to T1-

weighted magnetic resonance imaging data and mapped inter-individual variability in 

person-specific white matter volume deviations in 1,294 cases (58% male) diagnosed 

with one of six disorders (attention-deficit/hyperactivity, autism, bipolar, major 

depressive, obsessive–compulsive and schizophrenia) and 1,465 matched controls 

(54% male) recruited across 25 scan sites. We developed a framework to characterize 

deviation heterogeneity at multiple spatial scales, from individual voxels, through inter-

regional connections, specific brain regions, and spatially extended brain networks. 

Results. The specific locations of white matter volume deviations were highly 

heterogeneous across participants, affecting the same voxel in fewer than 8% of 

individuals with the same diagnosis. For autism and schizophrenia, negative deviations 

(i.e., areas where volume is lower than normative expectations) aggregated into common 

tracts, regions and large-scale networks in up to 35% of individuals. 

Conclusions. The prevalence of white matter volume deviations was lower than 

previously observed in grey matter, and the specific location of these deviations was 

highly heterogeneous when considering voxel-wise spatial resolution. Evidence of 

aggregation within common pathways and networks was apparent in schizophrenia and 

autism but not other disorders.  
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Introduction  

The brain’s white matter comprises densely packed myelinated axons that inter connect 

distinct regions of grey matter and play a critical role in healthy brain function (1,2). 

Damage to white matter can disrupt coordinated neuronal activity, leading to clinical 

symptoms of mental illness. Accordingly, magnetic resonance imaging (MRI) studies 

report diverse white matter abnormalities in different psychiatric diagnoses (3–10). 

These abnormalities are commonly revealed by traditional statistical approaches 

that rely on comparisons of group means, which can overlook the tremendous clinical 

and biological inter-individual variability that characterizes psychiatric illness (11–14). 

Normative modelling (15,16) offers a framework for characterizing this variability by 

allowing one to quantify the extent to which individuals deviate on a given phenotype 

from normative expectations given relevant demographic characteristics, such as age 

and sex (15–17). This approach has been applied to a range of MRI-derived phenotypes 

in different neurodegenerative and psychiatric disorders (18–26). 

 However few studies have used normative modelling to investigate the 

heterogeneity of white matter deviations in psychiatric disorders but they have generally 

agreed that no more than 20% of individuals with the same diagnosis show a significant 

WMV deviation in the same white matter location or tract (20,23,24,26). While this 

heterogeneity aligns with the noted clinical variability of psychiatric populations (11), it 

raises an important question: how can individuals be assigned the same diagnosis if their 

brain deviations are so heterogeneous? 
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One possibility is that deviations occurring in different anatomical locations but 

aggregate within common, spatially distributed brain networks. Our recent work on grey 

matter volume (GMV) showed that while individuals with attention-deficit hyperactivity 

disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder (BP), major 

depressive disorder (MDD), obsessive-compulsive disorder (OCD), or schizophrenia 

(SCZ) had minimal overlap in GMV deviation locations, these deviations were often within 

shared functional networks (22). We hypothesized that a similar pattern might occur in 

white matter tracts; i.e. WMV deviations may not necessarily co-localize in space with 

the same diagnosis, but they may nonetheless implicate a common white matter tract, 

brain region, or extended brain network. 

To test this hypothesis, we quantified the anatomical heterogeneity of  WMV 

deviations in 1465 healthy controls and 1294 cases diagnosed with one of six psychiatric 

conditions (ADHD, ASD, BP, MDD, OCD, SCZ) (22). We developed a framework to 

characterize WMV deviations at multiple scales of analysis to determine the degree to 

which spatially heterogeneous deviations may accumulate within common white matter 

pathways, connections tied to individual brain regions, or spatially extended brain 

networks. 

Materials and methods  

The study was approved by the local ethics committee of the site contributing each 

dataset, and written informed consent was obtained from each participant. The overall 

study was approved by the Monash University Research Ethics Committee (Project ID: 
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23534). Data processing was conducted using Multi-modal Australian ScienceS Imaging 

and Visualisation Environment (MASSIVE) (27). 

Participants 

A final sample of 1294 cases and 1465 controls was obtained from a larger cohort drawn 

from 14 separate, independently acquired datasets and 25 scan sites following various 

exclusion criteria (see Supplementary Material: Participants) (22). All cases were 

diagnosed according to clinical judgement and diagnostic instruments as per individual 

study procedures. All individuals were aged between 18-64 years old. Basic 

demographic details of the final sample are provided in Table 1. For a comprehensive 

overview inclusion criteria and demographic details for each site see relevant references 

in Table 1 and Supplementary Material: Data Availability. 

Table 1. Summary of demographic data of the clinical and control groups 

 

Groups: HC, healthy control; ADHD, attention-deficit hyperactivity disorder; ASD, autism spectrum 

disorder; BP, bipolar disorder; major depressive disorder, MDD, obsessive-compulsive disorder, OCD; 

schizophrenia, SCZ.  

Group Datasets No. Sites No. Subjects (% Male) Age (year), median 
(SD) [range] 

HC ALL CLINICAL DATASETS, MON (1) 25 1465 (54.47) 27 (10.70) [18 - 64] 

ADHD IMpACT-NL (2) 1 153 (41.18) 34 (10.77) [18 - 61] 

ASD ABIDE I) (3) (CALTECH, CMU, 
LEUVEN_1, MAX_MUN, NYU, PITT, 
SBL, USM), ABIDE II (4) (BNI, IU), 
MITASD (5,6), WASHASD (7,8) 

12 202 (100) 24.5 (10.41) [18 - 
62] 

BP FEMS (9), TOP15 (10) 2 228 (47.37) 29 (11.46) [18 - 64] 

MDD KANMDD (11,12), RUSMDD 
(13,14), YoDa (15) 

3 161 (34.16) 22 (7.49) [18 - 55] 

OCD OCDPG (16), SPAINOCD (17) 2 167 (50.30) 34 (9.40) [18 - 58] 

SCZ ASRB (18), TOP15(10) 5 383 (62.14) 32 (10.09) [19 - 64] 
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Datasets: ABIDE I,Autism Brain Imaging Data Exchange I (CALTECH, California Institute of Technology; 

CMU, Carnegie Mellon University; LEUVEN_1, University of Leuven; MAX_MUN, Ludwig Maximilians 

University, Munich; NYU, NYU Langone Medical Center, New York; PITT, University of Pittsburgh School of 

Medicine; SBL, Social Brain Lab BCN NIC UMC Groningen and Netherlands Institute for Neurosciences; 

USM, University of Utah School of Medicine); ABIDE II, Autism Brain Imaging Data Exchange I (BNI, Barrow 

Neurological Institute; IU, Indiana University); ASRB, Australian Schizophrenia Research Bank; FEMS, First 

Episode Mania Study; IMpACT-NL, International Multi-centre persistent ADHD CollaboraTion; 

KANMDD, OpenNeuro - Kansas Musical Depression Study; MON, Monash Cohort; MITASD, OpenNeuro - 

Massachusetts Institute of Technology Autism Study; OCDPG, Obsessive-compulsive and problematic 

gambling study; RUSMDD, OpenNeuro - Russia fMRI Depression Study; WASHASD, OpenNeuro – 

University of Washington ASD Study  

Analysis Overview 

We  characterized neural heterogeneity across various “scales” of network resolutions: 

individual white matter volume (WMV) voxels, white matter tracts (i.e., connections 

between pairs of grey matter regions), brain regions, and canonical functional networks. 

To map WMV heterogeneity at the voxel scale, we used normative models to create 

person-specific voxel-wise deviation maps, showing how each person's WMV deviates 

from normative predictions (Figure 1a-e). This involved (1) estimating voxel-wise WMV for 

each individual, (2) quantifying deviations from normative expectations, and (3) applying 

thresholds to identify deviant WMV clusters. 

Next, we examined whether WMV deviations affected common axonal pathways 

linking similar brain regions or networks, using an independent normative diffusion 

tractography dataset. This generated a dysconnectome map for each person, 

representing affected pairwise connections (Figure 2a-f). We then assessed if these 

connections were concentrated in specific brain regions or large-scale networks (Figure 

3a-e). This approach tested the hypothesis that while disorders show substantial 
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heterogeneity in the anatomical location of WMV deviations, these deviations commonly 

affect specific axonal pathways linking brain regions or networks. 

Voxel-scale WMV heterogeneity 

We estimated voxel-wise WMV using voxel-based morphometry (VBM) of T1-weighted 

anatomical MRI scans (28,29) as per (22) (see Supplementary Materials: Anatomical 

data). Details of the VBM procedure, image acquisition, and quality assurance 

procedures for the T1-weighted images are detailed in (22).  

 We used normative modelling to obtain person-specific WMV deviation maps 

relative to a model, based on Bayesian linear regression (BLR) with likelihood warping 

(30),  of population expectations for voxel-wise WMV variations (see 

https://github.com/amarquand/PCNtoolkit, version=0.21) (15,17). Following 

stratification of the sample into training (HCtrain, n = 1,196)  and test subsets (clinical data, 

n = 1,294; HCtest, n = 269) (Figure 1a) (see Supplementary Materials: Normative modelling 

and (22)), we fitted separate models to each white matter voxel to predict WMV as a 

function of age, sex, and site (Figure 1b) (see Supplementary Materials: Normative 

modelling). We then computed deviation 𝑧-maps for each individual (Figure 1c), which 

quantify the extent to which individual voxel-wise WMV estimates deviate from the model 

prediction (see (15,16) for details). See Supplementary Materials: Evaluation of model 

performance for the evaluation of model performance.  Extreme deviations were 

defined as clusters of 10 contiguous voxels with deviation scores of |z| > 2.6 (i.e., p < .005) 

(22,23) (Figure 1d). See Supplementary Materials: Normative modelling for details. 
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To characterize the inter-individual heterogeneity of deviation locations, we 

calculated the proportion of individuals showing an extreme deviation within each white 

matter voxel, separately for positive and negative deviations (Figure 1e-f) (22).  We then 

used permutation testing to test for statistically significant differences in the proportions 

of cases and controls (HCtest) showing an extreme deviation in each voxel (see 

Supplementary materials: Characterizing voxel-wise heterogeneity of extreme deviations 

for details).  

Tract-scale WMV heterogeneity  

The network context of WMV deviations was evaluated with respect to a normative 

connectome estimated in an independent healthy unrelated cohort of 150 diffusion-

weighted MRI scans (71 males, aged 21-35 years) from the S900 release of the Human 

Connectome Project (HCP150) (31). The connectome mapped 8646 tracts linking each 

pair of 100 cortical and 32 subcortical regions, as defined using established atlases 

(32,33) (see Supplementary Materials: Diffusion-weighted imaging acquisition 

parameters and processing for details).  

 We produced a 132×132 dysconnection overlap matrix for each group using 

extreme deviation maps for each participant and tractograms from the HCP150 cohort. 

Each matrix element represents the fraction of participants whose WMV deviation 

intersected the tract linking regions i and 𝑗, with separate matrices for positive and 

negative deviations. Tract-scale heterogeneity was quantified using a permutation-

based inferential procedure similar to the analysis of voxel-scale deviations. See Figure 

2 and Supplementary Materials: Streamline region assignments and Supplementary 

Materials: Identifying streamlines intersecting with WMV deviations for details. 
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Region-scale WMV heterogeneity 

To determine whether any affected tracts were preferentially linked to specific brain 

regions, we generated a map of grey matter regions attached to at least one affected tract 

in the dysconnectome matrix of each individual in the clinical and HCtest groups, (Figure 

3a). The resulting person-specific binary regional maps (Figure 3b), obtained separately 

for positive and negative deviations, were then aggregated across individuals to obtain 

group-specific overlap maps quantifying, at each region, the proportion of people within 

a given group for whom at least one affected connection was attached to that region 

(Figure 3e). We next evaluated case-control differences in overlap proportions for each 

region using the same procedures as those used in the voxel-wise and tract-scale 

analyses (see Supplementary Materials for details).  

Network-scale WMV heterogeneity  

We next examined the degree to which WMV deviations aggregated within distinct 

functional networks. Using extreme region deviation maps (Figure 3b), we assigned each 

cortical region to one of seven canonical functional cortical networks using a well-

validated network parcellation (34) and assigned each subcortical region to either medial 

temporal lobe (amygdala and hippocampus), thalamus, or basal ganglia (nucleus 

accumbens, globus pallidus, putamen, caudate nucleus), as done previously (33), 

resulting in a total of 10 distinct functional networks (Figure 3d). 

For each network, we then estimated the proportion of individuals in each 

diagnostic group with at least one extreme deviation in any region of each network, 

creating group-specific dysconnection networks for positive and negative deviations 
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separately (Figure 3e). Case-control differences in overlap proportions for each network 

were evaluated using the same procedures as those outlined in previous analyses (see 

Supplementary Materials for details).  We repeated the analysis using a 20-network 

parcellation (17 cortical networks and 3 subcortical groups). 

Results  

Normative Modelling 

The model evaluation metrics indicated good model fits and successful removal of site 

effects. We only excluded 1.70% of voxels due to poor model fit (see Table S2 and 

Supplementary materials: Model evaluation).   

Figure 1i shows the distribution of positive and negative person-specific deviation 

burden scores (i.e., the total number of extreme deviation voxels identified in a person) 

across individuals, stratified by diagnostic group. In total, 21.56% of controls showed at 

least one negative extreme deviation; for cases, between 13.17% (OCD) and 35.77% 

(SCZ) showed at least one negative extreme deviation. For positive deviations, 60.59% of 

controls showed at least one extreme value, compared to a range of 50.93% (MDD) to 

71.78% (ASD) for the clinical group (Table 2). People with ASD and SCZ showed a higher 

median extreme negative deviation burden compared to held-out control group (HCtest) 

(nonparametric rank sum test, p<.001, one-tailed), and people with ASD also showed a 

higher median extreme positive deviation burden compared to HCtest (p=.001, one-

tailed). No other significant case-control differences were identified. 
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Voxel-scale WMV heterogeneity  

Figures S2 and S5 quantify the spatial overlap across scales for the HCtest cohort for 

negative and positive extreme deviations, respectively. As there were fewer significant 

case-control differences in overlap for positive deviations (Figure S5-9), we focused on 

negative WMV deviations (i.e., areas where volume is lower than normative 

expectations). We quantified heterogeneity in WMV deviations as the proportion of 

individuals showing an extreme deviation in each voxel, estimated separately for each 

diagnostic group and the HCtest cohort. Across all groups, we found very little spatial 

overlap in the location of voxel-scale negative extreme deviations, with the maximum 

percentage overlap never exceeding 5% (Table 2, Figure 1f-g).  

Table 2. Deviation burden at the voxel-scale 
 Negative extreme deviations Positive extreme deviations 

 Participants 
with deviation, 
% 

Max 
overlap, % 

Significant voxels at 
p<.05 (pFDR<.05), % 

Participants 
with deviation, 
% 

Max 
overlap, % 

Significant voxels at 
p<.05 (pFDR<.05), % 

   PAT HC   PAT HC 

HCtest 21.56 1.49   60.59 5.2   

ADHD 16.34 1.96 0 0 68.63 7.19 1.24 (0) 0.22 (0) 

ASD 34.16 3.47 0.42 (0) 0 71.78 5.94 4.31 (0) 0.12 (0) 

BP 20.18 1.75 0 0 59.65 4.82 0.30 (0) 3.00 (0) 

MDD 19.88 4.35 0.02 (0) 0 50.93 4.97 0.06 (0) 2.92 (0) 

OCD 13.17 3.59 0 0 64.07 4.19 0.14 (0) 2.58 (0) 

SCZ 35.77 3.39 0.07 (0) 0 63.97 5.22 1.52 (0) 0.51 (0) 

 

Comparison of overlap between patients and controls, revealed small, isolated 

areas (<1% of WMV voxels) of greater overlap in ASD, MDD, and SCZ that did not survive 

false discovery rate (FDR) (35) correction (pFDR < .05, two-tailed; Table 2, Figure 1h). No 

voxels showed significantly greater overlap in the HCtest group (Table 2). These results 

extend past findings (23,24), indicating that there is minimal overlap in person-specific 

extreme WMV deviations, highlighting a high degree of heterogeneity in voxel-wise WMV 

pathology across psychiatric disorders. 
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Figure 1. Voxel-wise heterogeneity of extreme WMV deviations. (a-g) Workflow to 

characterise voxel-scale WMV heterogeneity:      (a) WMV maps of individuals in the HCtrain cohort 

were used to train a normative model to make voxel-wise WMV predictions given someone’s age, 

sex, and scan site. The predictions for the held-out control (HCtest; red) and clinical (cases; dark 

blue) participants were then compared to the empirical WMV estimates.      (b) Shows an example 

of model predictions for a given voxel, with light blue dots representing individuals in the training 

set, dark blue representing held-out controls (HCtest), and red representing participants in the 

clinical group.      (c) For each individual, deviations from model predictions are quantified as z-

scores and scaled by model uncertainty to yield a deviation z-map.      (d) This deviation map is 

then thresholded at z <- 2.6 to identify regions showing extreme negative deviations. (e) For the 

HCtest and each clinical group, we quantified the proportion of individuals showing an extreme 

deviation in a given voxel, yielding an extreme deviation overlap map. (f-g) Spatial overlap of 
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extreme negative WMV deviations: (f) Spatial maps showing the extreme deviation overlap map 

for each clinical group. (g) Histograms showing the distribution of overlap percentages observed 

across all voxels. Note that the y-axis is broken to show the distribution of non-zero values. (h) 

Spatial maps showing voxels with significantly greater overlap in cases compared to controls in 

extreme negative deviations (p < .05, two-tailed, cases>controls).      There were no extreme WMV 

deviations with significantly greater overlap in ADHD, OCD, and OCD compared to controls at 

p<.05 uncorrected, no extreme WMV deviations with significantly greater overlap in ASD, MDD, 

and SCZ at p<.05 FDR-corrected, and no extreme WMV deviations with significantly greater 

overlap in controls compared to cases. (i) Distribution of positive (Z > 2.6; blue) and negative (Z < 

-2.6; red) deviation burden scores (i.e., the total number of extreme deviations) in each 

diagnostic group. * Indicates clinical groups showing a statistically significant difference in 

extreme deviation burden compared to the HCtest group (Mann Whitney U-test, p < .05, one-

tailed). Steps (d-h) were subsequently repeated for positive deviations, with the deviation map is 

thresholded at z > 2.6 to identify regions showing extreme positive deviations. 

Tract-scale WMV heterogeneity 

We investigated whether heterogeneous extreme deviations in each clinical group 

converged on common axonal pathways linking specific brain regions. The maximum 

overlap across the 8646 connections linking 132 grey matter regions ranged from 4.19% 

(OCD) to 15.40% (SCZ), with 8.18% in the HCtest group (Table S3, Figure 2g-h). 

Connections showing statistically significant differences in overlap scores are 

shown for each disorder in Figure 2i.  We observed significantly greater overlap in tracts 

that were predominately connected to visual and amygdala regions for individuals with 

ASD, and connections to somatomotor areas for SCZ (p<.05 FDR-corrected, two-tailed), 

compared to controls (Table S3, Figure 2i). For ADHD, BP, MDD, and OCD, no 

connections survived FDR correction.  

Controls showed some evidence of greater overlap in compared to individuals 

with OCD, but very few connections survived FDR correction (Table S3, Figure 2i). 
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Alternative analysis thresholds yielded comparable findings (see Methods, Table S4 and 

Figure S3). These results suggest that WMV deviations affect common axonal pathways 

in some disorders, although the overlap was only marginally higher than in the voxel-wise 

analysis, suggesting considerable heterogeneity at the tract-scale. 

 

Figure 2. Inter-regional connections affected by extreme negative WMV deviations. (a-f) 

Workflow to characterise pairwise tract-scale WMV heterogeneity: (a) For each participant in 

HCtest and each clinical group, we used the extreme deviation map to (b-c) filter a tractogram 

obtained for each participant in an independent sample of controls (HCP150). (d) This resulted in 

an adjacency matrix of the pairwise connections affected by a deviation in each case and control, 

and each person in the HCP150 sample, denoted C’. We thresholded (number streamlines >= 10) 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.08.04.606523doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.04.606523
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
 

17 

and binarised each matrix. (e) For each participant in HCtest and each clinical group, we 

aggregated across the HCP150 adjacency matrices, resulting in a consensus matrix for each case 

and control, denoted 𝐶!. We then thresholded (50% or 75% of HCP150 cohort) and binarised this 

matrix to identify structural connections affected by WMV extreme deviations for each case and 

control. (f) For the HCtest and each clinical group, we quantified the proportion of individuals 

showing structural connections affected by WMV extreme deviations in each edge, yielding an 

edge-scale dysconnection overlap matrix. (g-i) Spatial overlap of edge-scale dysconnection: (g) 

Matrices showing tract-scale dysconnection for each clinical group (h) Histograms showing the 

distribution of overlap percentages observed across all inter-regional connections. Note that the 

y-axis is truncated to better illustrate the shape of the distribution. (i) Matrices showing edges 

structurally connected to extreme negative WMV deviations (Z < - 2.6, cluster size threshold=10 

voxels) with significantly greater overlap in cases, compared to controls (top), and significantly 

greater overlap in controls, compared to cases (bottom, p < .05,      two-tailed). All matrices are 

sorted according to the Yeo et al(34) network parcellation, followed by the medial temporal lobe, 

thalamus, and basal ganglia systems. 

Region-scale WMV heterogeneity 

The maximum overlap observed in any given brain region was 14.87% for the held-out 

control group, and ranged between 8.98% (OCD) and 33.42% (SCZ) for the clinical groups 

(Table S5, Figure 3f-g). We observed significantly greater overlap across the cortex and 

subcortex in ASD and SCZ, compared to controls, with differences identified in 86% and 

91% of regions, respectively (pFDR < .05, two-tailed, Figure 3h). ADHD and OCD showed 

evidence of significantly less overlap than controls, but these results did not survive FDR 

corrections (Figure 3h).  
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Figure 3. Regions and functional networks attached to connections affected by extreme 

negative WMV deviations. (a-e) Workflow to characterise region- and network-scale WMV 

heterogeneity. Region scale: (a) For each individual in HCtest and each clinical group, we used the 

binarised consensus adjacency matrix (b) to generate a map of affected grey matter regions. We 

then quantified the proportion of individuals in each group showing edge-scale dysconnection to 

each region, yielding a region-scale dysconnection map (c). Network scale: (d) For each 

individual in the HCtest and each clinical group, we assigned each brain region showing region-

scale dysconnection to one of 10 canonical cortical functional networks. An entire network was 

considered deviant if it contained at least one region linked to an extreme deviation. (e) We 

quantified the proportion of individuals in each group showing a deviation within each network, 

yielding a network scale dysconnection map. (f-h) Spatial overlap of region-scale dysconnection: 

(f) Spatial maps quantifying the proportion of individuals showing significant structural 
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connectivity in each region, yielding a region-scale dysconnection map for each diagnostic 

group. (g) Histograms showing the distribution of overlap percentages observed across all 

regions. (h) Statistical maps showing regions structurally connected to extreme negative WMV 

deviations (z < - 2.6, cluster size threshold=10 voxels) with significantly greater overlap in cases, 

compared to controls (top), and significantly greater overlap in controls compared to cases 

(bottom, p < .05, two-tailed).  

Network-level WMV heterogeneity  

Finally, we evaluated network-scale overlap scores between cases and controls across 

seven cortical networks and three subcortical areas. Overlap ranged from 10.18% 

somatomotor, dorsal attention, salience/ventral attention, and frontoparietal networks 

in OCD) to 35.25% (dorsal attention network and basal ganglia in SCZ). In controls, the 

maximum overlap was 19.70% in the dorsal attention network and basal ganglia (Figure 

4a). Networks showing statistically significant differences in network-scale overlap are 

shown for each disorder in Figure 4b. ASD and SCZ had greater overlap in all networks 

compared to controls (pFDR < .05, two-tailed), while OCD showed less overlap in all 

networks except the medial temporal lobe compared to controls (pFDR < .05, two-tailed, 

Figure 4b). No significant differences were found for ADHD, BP, or MDD. Similar results 

were obtained with a 20-network parcellation (Table S7, Figure S4). 
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Figure 4. Functional networks affected by extreme negative WMV deviations. (a) Network 

maps quantifying the proportion of individuals showing at least one significant deviation in each 

network, for each diagnostic group. (b) The network-scale difference in percent overlap for 

extreme negative WMV deviations (z < - 2.6, cluster size threshold=10 voxels) between each 

clinical group and the control cohort. ** corresponds to pFDR < .05, two-tailed, * corresponds to p 

< .05, two-tailed. The solid black line indicates -log10 p =1.6 (p=.05, two-tailed, uncorrected).  

VIS, Visual; SM, Somatomotor, DA, Dorsal attention; SAL/VA, Salience/ventral attention; L, 

Limbic; F, Frontoparietal; DM, Default mode; MeTe, Medial Temporal; Tha, Thalamus; Bas, Basal 

Ganglia. 

Discussion  

We characterised the structural network context of anatomically heterogeneous white 

matter volume (WMV) abnormalities in a diverse range of psychiatric disorders. We found 

that extreme heterogeneity of voxel-wise WMV abnormalities is a feature of most 

psychiatric disorders. For ASD and SCZ, these heterogeneous loci affected connections 

linked to almost all brain regions and implicating nearly all brain networks. Our findings 

thus suggest that WMV deviations are highly heterogeneous at the voxel and tract scales 
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in all disorders, and only aggregate within common, yet widespread brain regions and 

networks, in ASD and SCZ. 

At a voxel-scale, few areas showed significantly greater overlap in cases 

compared to controls. No voxel in any disorder showed an extreme deviation in more 

than 5% of cases for negative deviations and 8% of cases for positive deviations. The high 

degree of voxel-wise heterogeneity in WMV deviations across disorders aligns with 

previous normative modelling studies of WMV in SCZ, BP and ADHD (23,24) that used a 

subsample of the data in the current study, in addition to similar normative modelling 

studies of other neural phenotypes in a range of psychiatric diagnoses (19–21,25,26). The 

high degree of voxel-wise heterogeneity supports the contention that group-level maps 

of case-control differences are likely to mask considerable within-group heterogeneity.      

Despite voxel-scale heterogeneity, we found that deviations aggregated within 

common tracts, regions, and functional networks for some disorders. This aggregation is 

expected as coarser scales combine data over larger regions. The HCtest sample provided 

a normative benchmark for expected overlap at each network scale. At the tract-scale, 

ASD showed greater overlap in edges linking visual areas and between visual areas and 

the amygdala. This aligns with ASD's social impairments (36) and atypical visual 

perception (37), with research implicating amygdala dysfunction (38). Amygdala lesions 

have also been associated with impairments in social judgement (39), which have been 

likened to “acquired autism” (38,40). SCZ showed greater overlap in edges linking 

sensory-motor areas and connecting the sensory-motor cortex with the thalamus, 

consistent with previous findings of altered somatomotor-thalamic connectivity in SCZ 

(41–44). However, for both disorders, the maximum overlap for any connection did not 

exceed 15%, indicating significant individual variability. 
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At the region-scale, robust differences in negative deviation overlap were found 

for ASD and SCZ across nearly the entire brain, except for some parietal and temporal 

areas in the left hemisphere for ASD, and medial frontal areas and the basal ganglia for 

SCZ. For positive deviations in ASD, differences were observed across most of the brain, 

except for unimodal regions in the right hemisphere. At the network-scale, almost all 

functional networks were implicated in individuals with ASD or SCZ who had extreme 

negative deviations (34% and 36% of participants, respectively), and all individuals with 

ASD who had extreme positive deviations (72% of participants). These findings support 

evidence of widespread connectivity changes in both conditions (45–47) and align with 

reports of high comorbidity and overlaps in genetics, neuroimaging, clinical signs, and 

cognitive features between ASD and SCZ (48). 

 In OCD, all functional networks were less likely to be implicated compared to 

controls, which may simply reflect a lower total WMV deviation burden in the disorder. 

While past work suggests that disruption of frontostriatal systems is linked to OCD (49), 

our work aligns with a recent study reporting that altered structural connectivity is 

unlikely to drive the observed functional dysregulations (50). 

We found no significant differences in WMV overlap between controls and ADHD, 

BP, or MDD, suggesting that WMV aberrations may be less pronounced in these 

conditions compared to SCZ or ASD. Indeed when taken together with our previous work 

examining grey matter volume (22), the current findings suggest that WMV deviations, as 

assessed by VBM, may be relatively sparse in psychiatric disorders. Less than 36% of 

individuals in any group showed at least one extreme negative WMV deviation, compared 

to 76% for grey matter volume deviations in our prior study (22). Positive WMV deviations 

were more common, with over 61% of people showing at least one extreme deviation, 
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consistent with previous research (23,24). It remains unclear if this increase in WMV is a 

true biological phenomenon or a limitation of current normative models in capturing non-

linearities in the voxel-wise WMV estimates. Using more flexible normative models 

(30,51) might help address this issue. 

Limitations and conclusions  

The quantification of WMV deviations was based on our previous work on grey matter 

volume deviations, using the Jacobian of the non-linear warp field. However, unlike grey 

matter, white matter's fibrous bundles have a strong orientation dependence. Changes 

perpendicular to fibre orientations indicate modifications in axon number or calibre, 

while changes along fibre orientations mainly affect fibre length, which has a weaker 

impact on information transfer. Combining registration tailored to white matter with 

tractography may provide greater specificity (52,53). 

Diagnoses based on nosological systems such as the DSM (36) are clinical 

heuristics that do not necessarily define biological entities, with several well-

documented limitations including pervasive comorbidity (54) and within-group clinical 

heterogeneity (11). As per our previous work (22), we used DSM diagnoses to evaluate 

heterogeneity and explore potential neural correlates of phenotypic similarities. 

However, this reliance may limit observed neural overlap. Focusing on syndromes that 

cut across diagnostic boundaries (55) might yield more precise mappings of voxel-wise 

deviations, their network context, and behaviour. Group differences in total deviation 

burden can drive differences in group overlap, complicating inferences about specific 

targeting of connections, regions, or networks. While grey matter volume studies have 

methods to address this (22), WMV analyses lack such null models. Therefore, we cannot 
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determine if observed overlaps reflect differences in deviation burden or selective 

targeting, although these differences still have phenotypic consequences (see (22) for a 

detailed discussion). 

In summary, our analysis across six psychiatric disorders found very little overlap 

among individuals with the same disorder in the location of MRI-based WMV deviations. 

For ASD and SCZ, these deviations affect common axonal pathways linking pairs of brain 

regions and distributed brain networks. However, the prevalence of WMV deviations is 

lower than prior observations for grey matter volume using the same sample (22), 

suggesting that WMV may be relatively spared in psychiatric illness. 
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