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Abstract 

Background:  Ovarian cancer is the most women malignancy in the whole world. It is difficult to differentiate ovarian 
cancers from ovarian borderline tumors because of some similar imaging findings.Radiomics study may help clini-
cians to make a proper diagnosis before invasive surgery.

Purpose:  To evaluate the ability of T2-weighted imaging (T2WI)-based radiomics to discriminate ovarian borderline 
tumors (BOTs) from malignancies based on two-dimensional (2D) and three-dimensional (3D) lesion segmentation 
methods.

Methods:  A total of 95 patients with pathologically proven ovarian BOTs and 101 patients with malignancies were 
retrospectively included in this study. We evaluated the diagnostic performance of the signatures derived from T2WI-
based radiomics in their ability to differentiate between BOTs and malignancies and compared the performance dif-
ferences in the 2D and 3D segmentation models. The least absolute shrinkage and selection operator method (Lasso) 
was used for radiomics feature selection and machine learning processing.

Results:  The radiomics score between BOTs and malignancies in four types of selected T2WI-based radiomics models 
differed significantly at the statistical level (p < 0.0001). For the classification between BOTs and malignant masses, 
the 2D and 3D coronal T2WI-based radiomics models yielded accuracy values of 0.79 and 0.83 in the testing group, 
respectively; the 2D and 3D sagittal fat-suppressed (fs) T2WI-based radiomics models yielded an accuracy of 0.78 and 
0.99, respectively.

Conclusions:  Our results suggest that T2WI-based radiomic features were highly correlated with ovarian tumor sub-
type classification. 3D-sagittal MRI radiomics features may help clinicians differentiate ovarian BOTs from malignancies 
with high ACC.
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Background
Ovarian borderline tumors (BOTs) account for approxi-
mately 10–15% of epithelial ovarian tumors, with an 
annual prevalence of 1.8–4.8/100,000 women worldwide 
[1]. Compared with other ovarian malignant tumors, 
ovarian BOTs often occur in young patients with early-
stage disease, and patients have a good prognosis with 
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fertility-sparing conservative treatments [2, 3] . There-
fore, preoperative identification of patients with ovarian 
lesions suspected of being BOTs may be helpful in their 
management.

Magnetic resonance imaging (MRI) has many advan-
tages in determining the etiology of ovarian masses and 
is widely used in clinical centers [4] . MRI has high diag-
nostic performance in differentiating between ovarian 
benign tumors and malignant tumors [5–9] . Consid-
ering the ability to discriminate BOTs from malignant 
epithelial ovarian tumors, conventional MRI varies with 
a sensitivity of 58% to 100% and a specificity of 61% to 
100%, respectively [7, 10–13]. Functional MRI (for exam-
ple, dynamic contrast-enhanced MRI, diffusion-weighted 
imaging and MR spectroscopy) showed a higher ability 
to distinguish a BOT from ovarian epithelial cancer than 
conventional MRI, such as T1-weighted imaging (T1WI) 
and T2-weighted imaging (T2WI), as shown in recently 
published studies [11, 12]. However, given that functional 
MRI acquisition is not routinely used in clinical scenar-
ios, the scanning parameters are not presently standard-
ized universally and may change across MRI machines or 
institutions. Gross morphological characteristic imaging 
features appreciated on T1WI and T2WI still have bet-
ter applicability in the differentiation of BOTs from other 
malignancies.

As a research hotspot, radiomics is defined as a new 
‘data-driven’ approach for extracting large sets of quan-
titative signatures from radiological images and shows 
its potential application in medicine [14, 15]. MR-based 
radiomic signatures has been shown to help to catego-
rize tumor subtypes and assess tumor presence, spread, 
recurrence or response to treatment in female cancer 
patients [16–21]. To date, there have been limited MRI 
radiomics studies concerning ovarian BOT and epithelial 
cancer categorization. The purpose of this research was 
two-fold: first, we planned to evaluate the diagnostic per-
formance of the MRI radiomics model in discriminating 
ovarian BOTs from malignancies; second, we sought to 
clarify whether three-dimensional MR-based radiomic 
signatures (of the whole lesion) could show better dis-
criminative performance than two-dimensional radiomic 
signatures (of the maximum lesion) could in the same 
study sample.

Patients and methods
Patients
Our institutional review board (Gynecological and 
Obstetric Hospital, School of Medicine, Fudan Univer-
sity, Shanghai, China) approved this retrospective study, 
and the requirement for informed consent was waived 
for all participants. From January 2014 to December 
2017, 438 consecutive patients with clinically suspected 

gynecological diseases were retrospectively retrieved 
from our institutional picture archiving and communi-
cation system (PACS, GE). The inclusion criteria were as 
follows: 1) patients with no previous pelvic surgery; 2) 
patients with no previous gynecological disease history; 
and 3) patients who had MRI examinations performed 
at our institution before pelvic or laparoscopic surgery. 
The exclusion criteria were as follows: 1) patients with 
previous pelvic surgical history or radiation history; 2) 
patients whose MRI data were unavailable either due 
to the examination being performed at another institu-
tion or due to claustrophobia; or 3) patients whose data 
lacked histological results. A total of 91 patients (average 
age, 39.8 ± 14.9 years) with pathologically proven ovarian 
borderline tumors and 105 patients with ovarian malig-
nancies (average age, 51.9 ± 12.1 years) were selected as 
the study sample for signature selection (Table  1). The 
information on FIGO stage, pathological type, immuno-
histological staining results, and laboratory tests were 
collected through a hospital information system.

MR image acquisition and lesion segmentation 
and radiomics feature selection
MRI was performed using a 1.5-T MR system (Mag-
netom Avanto, Siemens) with a phased-array coil. The 
routine MRI protocols used to assess pelvic masses 
included axial turbo spin-echo (TSE) T1-weighted imag-
ing (T1WI), coronal TSE T2-weighted imaging (T2WI), 
and axial/sagittal TSE fat-suppressed T2WI (fs-T2WI). 
All lesion segmentation was performed by an experi-
enced radiologist (H.Z.). The lesion segmentation on 
MRI was manually outlined using ITK-SNAP software 
(ITK-SNAP, version 3.4.0, www.​itksn​ap.​org) (Fig. 1). Two 
segmentation methods were used in this study: maxi-
mum lesion segmentation (two-dimensional, 2D) and 
whole-lesion segmentation (three-dimensional, 3D) on 
both sagittal fs-T2W images and coronal T2W images. 

Table 1  The summary of the pathological types and numbers of 
the selected samples

a mean ± standard deviation

Pathological type Numbers Age (yrs.)a

Ovarian borderline tumor 91 39.75 ± 14.85

Ovary malignancies 105 51.91 ± 12.05

Endometroid cancer 3 44.67 ± 6.02

Low-grade adenocarcinoma 3 42.33 ± 19.96

Clear cell type 5 49.4 ± 10.33

High-grade serous carcinoma 83 52.93 ± 11.28

Mucinous carcinoma 7 50 ± 16.33

Mixed carcinoma 4 50 ± 7.65

Total 196 46.26 ± 14.71

http://www.itksnap.org
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Fig. 1  A 58-year-old woman with pathologically proved high-grade serous carcinoma. We selected the maximum lesion slice on sagittal fs-T2WI 
and segmented manually along the lesion margin with segmentation tool on ITK-SNAP software. The original fs-T2WI image (A) and region of 
interest selected image (B)
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In 2D segmentation, we chose one slice with the largest 
lesion diameter in two protocols as the premium picture 
for segmenting the whole lesion. In 3D segmentation, the 
entire lesion from both protocols was outlined and seg-
mented slice by slice. After the tumor segmentation pro-
cess, MR-based radiomics signatures were extracted from 
2D/3D sagittal fs-T2W and 2D/3D coronal T2W images 
using AK software on a personal computer (Fig. 1).

Image feature extraction and selection
A total of 396 radiomics features from the volume of 
interest were extracted automatically using in-house soft-
ware (Analysis Kit, version 3.0.0, GE Healthcare). There-
after, the whole dataset was randomly divided into two 
parts: a training cohort and a testing cohort. The radi-
omics score-based signatures were constructed with the 
least absolute shrinkage and selection operator (LASSO) 
method, which was used to select the most useful prog-
nostic features in the training data set. A radiomics score 
(Rad-score) was computed for each patient through a 
linear combination of selected features weighted by their 
respective coefficients. These radiomics scores were first 
assessed in the training data set and then validated in the 
testing data set.

Statistical analysis
First, two-sample t-tests were performed to compare 
MR-based signature values between ovarian BOT and 
ovarian cancer. Next, the sensitivity (SEN), specificity 
(SPE), positive predictive value (PPV), and negative pre-
dictive value (NPV) were calculated when the perfor-
mance of the two methods was evaluated for their ability 
to identify ovarian malignancies. Additionally, receiver 
operating characteristic (ROC) curve analysis was per-
formed to evaluate various MR-based signature diagnos-
tic values in discriminating BOTs from malignancies. A 
value of p < 0.05 was considered statistically significant.

Results
Clinical characteristics in both the training and testing data 
sets
In this study, we included 91 ovarian borderline tumors 
and 105 ovarian malignancies (83 serous epithelial carci-
nomas, 7 mucinous carcinomas, 4 mixed carcinomas, 5 
clear cell type carcinomas, 3 endometrioid carcinomas 
and 3 low-grade carcinomas, Table 1). There was no sta-
tistically significant difference found between the training 
and the validation data set in either clinical characteris-
tics or pathological subtypes (Table 2).

Table 2  Clinical and pathological data summaries in both training and testing cohort

Training group (N = 99) Testing group (N = 97) P value

Age (yrs.) 45.9 ± 13.35 46.64 ± 15.90 0.961

  < 30 17(17.2%) 14(14.4%)

 30–50 35(35.4%) 40(41.2%)

  > 50 47(47.5%) 43(44.3%)

Ki-67 expression (%) 32.37 ± 28.01 25.05 ± 26.35 0.946

  < 50 59(67.0%) 74(84.1%)

 50–75 20(22.7%) 5(5.7%)

  > 75 9(10.2%) 9(10.2%)

CA-125 level(IU/L) 553.32 ± 994.28 300.30 ± 452.27 0.000

  < 35 15(22.7%) 18(27.7%)

 35–200 17(25.8%) 24(36.9%)

 200–500 13(19.7%) 10(15.4%)

  > 500 21(31.8%) 13(20.0%)

Category 0.980

 Borderline tumor 47(47.5%) 44(45.4%)

 Malignancies 52(52.5%) 53(54.6%)

 Endometroid cancer 2(2.0%) 1(1.0%)

 Low-grade adenocarcinoma 0(0.0%) 3(3.1%)

 Clear cell type 1(1.%) 4(4.1%)

 Serous carcinoma 45(45.5%) 38(39.2%)

 Mucinous carcinoma 2(2.0%) 5(5.2%)

 Mixed carcinoma 2(2.0%) 2(2.1%)
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Identification results based on MRI‑radiomics signatures
The radiomics signature was weighted with the regres-
sion coefficients for the signature construction presented 
in the form of a histogram in Fig.  2. Overall, there was 
a statistically significant difference observed in the aver-
age Rad-score between BOTs (Fig.  3) and malignan-
cies in each of the selected MR-based radiomics models 
(p < 0.0001, Table 3). Table 4 illustrates the final classifi-
cation results of the training data set and the validation 
data set. The model was first determined on the training 
data set based on the area under the ROC curve (AUC). 
Then, we evaluated the model on the validation data set. 
The coronal MR-based radiomics segmentation model 
yielded an accuracy of 78.9% to 82.8%, while the sagittal 
model yielded an accuracy of 77.8% to 100%. The 3D sag-
ittal MR-based radiomics model yielded an ACC and an 
AUC of as high as 100% in differentiating between BOTs 
and malignancies in the validation data set (Table 4).

Comparison of the performance results between the 2D 
and 3D radiomics models
Considering two acquisition protocols, both coronal and 
sagittal MR-based features showed competitive accuracy 
in discriminating BOTs from malignancies either in 2D 
or 3D segmentation mode (2D AUC: 0.82 versus 0.84 
and 3D AUC: 0.79 versus 1.0, respectively). 3D sagittal 

fs-T2W images have the best performance compared to 
the other three methods in discriminating malignancies 
from BOTs, with an accuracy of 99% in the testing model. 
The ROC curve analysis with four kinds of segmentation 
methods in the validation group is summarized in Fig. 4.

Discussion
Ovarian BOT is a type of low-potential epithelial tumor 
with a relatively good prognosis after treatment. Some-
times, it is difficult to discriminate BOTs from ovarian 
malignancies solely on imaging information due to some 
overlapping imaging findings between the two [22]. Our 
current results showed that the 3D MR-based radiom-
ics signatures derived from sagittal fs-T2WI yielded 
an ACC of 100% in differentiating ovarian malignan-
cies from BOTs and may help clinicians make a correct 
diagnosis before surgery. To the best of our knowledge, 
this is the first reported study focusing on the diagnostic 
performance of MR-based radiomics signatures in ovar-
ian tumor classification with 2D and 3D segmentation 
methods.

In the present study, the 3D signatures showed bet-
ter performance than the 2D signatures did. This result 
can be easily appreciated because the 3D model utilized 
information of the whole lesion, more truly reflecting 
the tumoral heterogeneity than the 2D model did. The 

Fig. 2  Histogram shows the weight of various features that contribute to the 3D signatures on sagittal fs-T2WI. The features that contribute to the 
radiomics signature model are displayed on the y-axis, with their coefficients in the LASSO analysis model dotted on the x-axis
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current result is contrary to the previous CT radiomics 
study in which 2D radiomics features performed slightly 
better in non-small cell lung cancer prognostic estima-
tion than 3D did [23]. The authors concluded that the 
reason might be related to the various axial CT image 
resolutions in their study in which the training and vali-
dation cohorts in the study sample were selected from 
different institutions.

Considering the two selected MRI protocols, the fs-sag-
ittal sequences performed better than coronal sequences 
did on both 2D and 3D segmentation methods. Of note, 
the 3D-sagittal MR radiomics model yielded ACCs 
of 100% and 99% in the training and testing groups, 

Fig. 3  The Stem-and-leaf plots of the average Rad-score in the LASSO model using 3D fs-sagittal T2WI radiomics signatures. Training group (left) 
and Testing group (right)

Table 3  The average Rad-score between BOT and malignancies 
in various MR-based radiomics models

a mean ± sd

Model BOTa M P value

2D Coronal Training -0.73 ± 0.88 0.63 ± 0.58  < 0.0001

2D Sagittal Training -0.63 ± 0.78 0.75 ± 0.93  < 0.0001

3D Coronal Training -0.74 ± 0.66 0.87 ± 1.34  < 0.0001

3D Sagittal Training -8.94 ± 2.15 9.55 ± 2.4  < 0.0001

2D Coronal Testing -61.3 ± 295.1 0.22 ± 0.90  < 0.0001

2D Sagittal Testing -0.19 ± 3.28 0.38 ± 2.99  < 0.0001

3D Coronal Testing -0.66 ± 0.76 1.14 ± 1.41  < 0.0001

3D Sagittal Testing -9.16 ± 2.65 8.89 ± 2.47  < 0.0001

Table 4  The diagnostic performance in differentiating malignancies from BOT based on various MR-based radiomics models

SEN sensitivity, SPE specificity, PPV positive predictive value, NPV negative positive value, ACC​ accuracy, AUC​ area under the curve, CI confidence interval

Model Group SEN SPE PPV NPV ACC​ AUC(95% CI)

2d_cor Training 0.708 0.936 0.919 0.759 0.821 0.90(0.85–0.96)

2d_cor Testing 0.729 0.851 0.833 0.755 0.789 0.82(0.73–0.90)

3d_cor Training 0.875 0.717 0.764 0.846 0.798 0.85(0.77–0.93)

3d_cor Testing 0.936 0.717 0.772 0.917 0.828 0.84(0.76–0.93)

2d_sag Training 0.776 0.902 0.884 0.807 0.840 0.89(0.83–0.96)

2d_sag Testing 0.729 0.824 0.795 0.764 0.778 0.79(0.69–0.88)

3d_sag Training 1.000 1.000 1.000 1.000 1.000 1.0(1.0–1.0)

3d_sag Testing 1.000 0.980 0.980 1.000 0.990 1.0(1.0–1.0)
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respectively. This finding is in accordance with our previ-
ous study in which fs-T2WI was also superior to coronal 
T2WI in Type I and Type II ovarian cancer categoriza-
tion [5]. We believe that the sharp contrast between the 
lesion and the background on the fs MR sequence may 
play a role in the final determination. However, the true 
mechanism is unclear, and this result should also be vali-
dated in a future study with a large study sample.

Several radiomics studies using CT images have been 
reported for ovarian mass classification and prognostic 
estimation [24–27]. Fathi et  al. found that the time-to-
peak and wash-in rate parameters showed a high SEN 
(89% for the linear discriminant analysis [LDA] classifier 
and 97% for the support vector machine [SVM] classi-
fier) and a high SPE (93% for LDA and 100% for SVM) 
in distinguishing malignancies from benign ovarian con-
ditions among 55 sonographically indeterminate ovarian 
masses [26]. Qiu et  al. acquired two sets of CT images 
(pretreatment and posttreatment) to compare three 
image features (tumor volume, tumor density, and den-
sity variance) between the two image sets in 30 ovarian 
cancer patients, and their model achieved an area under 
the curve of 0.831 in predicting progression-free sur-
vival when combining all three features together [25]. In 
this study, we used the LASSO method to establish the 
radiomics features model during the radiomics signature 

selection step as well as during the machine learning pro-
cess. The Lasso model is reportedly a suitable method 
for analyzing a small sample with high-dimensional fea-
tures due to its advantage of avoiding overfitting. A simi-
lar method was also reported in two recently published 
studies with promising results [18, 28].

There remains a limited number of studies on MR-
based radiomics in ovarian tumor classification and 
posttreatment response prediction. In one study with 
22 patients with advanced ovarian cancer, the authors 
found that apparent diffusion coefficient (ADC) values 
derived on the ADC map between primary ovarian can-
cer and metastatic sites differed significantly and may 
be used as response markers [29]. In the present study, 
we did not include DW images in the texture analysis. 
The lesion resolution on DWI, especially with large 
lesions, is relatively low, which is sometimes difficult to 
precisely outline in postprocess software. Moreover, in 
our previous study, we did not find that the ADC map 
could contribute more useful signatures in task classi-
fication than conventional MR images (T1W and T2W 
images) could [5]. Compared with traditional MRI 
analysis in differentiating BOTs from malignancies, 
radiomics signature results show better performance. 
In a traditional MRI reading session, the imaging signs 
always overlap with each other to some extent (for 

Fig. 4  ROC analysis of four kinds of MR-based radiomics signature models in determining ovarian malignancies from BOTs. Training group (A) and 
Testing group (B)
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example, large size, solid components, irregular and 
thick septa) and lead to an inaccurate diagnosis [27, 
30–32]. A recent study with proton MR spectroscopy 
(MRS) reported that the SEN and SPE were 91% and 
100% for solid components, respectively; additionally, 
the SEN and SPE were 84% and 82% for cystic compo-
nents, respectively [12]. However, MRS scans are highly 
unit-dependent and time-consuming examinations and 
require operators with more experience than conven-
tional methods do. From this point of view, radiomics 
signature analysis shows the potential clinical applica-
tion owing to its simple segmentation step.

The limitations of this study included the fact that we 
did not include contrast-enhanced (CE) MR images to 
establish the MRI radiomics model. The CE-MRI scan 
was not available for all included patients in the current 
study, and therefore, we did not select this protocol 
for analysis to diminish the selection bias. Further-
more, in the present study, we only used conventional 
T2WI to establish a radiomics diagnostic model, which 
is different from the clinical reading scenario (mostly 
including T1WI, T2WI and DWI). Further study is 
necessary to explore the difference between one acqui-
sition sequence and multiple acquisition sequences 
as in the clinical setting. In addition, all segmentation 
procedures were manually outlined on T2WI showing 
the best of the lesion; however, it is still an operator-
dependent procedure, and interoperator variation in 
segmentations may be emphasized, especially with 
multiple sequence images. Finally, all MR images were 
acquired in a 1.5-T MRI scanner, and a comparison 
study between 1.5-T and 3.0-T MRI machines should 
be validated in a large study in the future.

In summary, our results suggest that radiomics fea-
tures that were extracted from T2W images were highly 
correlated with ovarian tumor subtype classification. 
3D fs-sagittal MRI radiomics features may help clini-
cians differentiate ovarian BOTs from malignancies 
with high ACC.
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