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Abstract

Background

Tendinopathy is a common musculoskeletal disorder and current treatment options show

limited success. Genipin is an effective collagen crosslinker with low cytotoxicity and a

promising therapeutic strategy for stabilizing an intratendinous lesion.

Purpose

This study examined the mechanical effect and delivery of intratendinous genipin injection

in healthy and degenerated tendons.

Study design

Controlled laboratory study

Methods

Bovine superficial digital flexor tendons were randomized into four groups: Healthy control

(N = 25), healthy genipin (N = 25), degenerated control (N = 45) and degenerated genipin (N

= 45). Degeneration was induced by Collagenase D injection. After 24h, degenerated ten-

dons were subsequently injected with either 0.2ml of 80mM genipin or buffer only. 24h post-

treatment, samples were cyclically loaded for 500 cycles and then ramp loaded to failure.

Fluorescence and absorption assays were performed to analyze genipin crosslink distribu-

tion and estimate tissue concentration after injection.

Results

Compared to controls, genipin treatment increased ultimate force by 19% in degenerated

tendons (median control 530 N vs. 633 N; p = 0.0078). No significant differences in mechan-

ical properties were observed in healthy tendons, while degenerated tendons showed a sig-

nificant difference in ultimate stress (+23%, p = 0.049), stiffness (+27%, p = 0.037), work to
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failure (+42%, p = 0.009), and relative stress relaxation (-11%, p < 0.001) after genipin injec-

tion. Fluorescence and absorption were significantly higher in genipin treated tendons com-

pared to control groups. A higher degree of crosslinking (+45%, p < 0.001) and a more

localized distribution were observed in the treated healthy compared to degenerated ten-

dons, with higher genipin tissue concentrations in healthy (7.9 mM) than in degenerated tis-

sue (2.3 mM).

Conclusion

Using an ex-vivo tendinopathy model, intratendinous genipin injections recovered mechani-

cal strength to the level of healthy tendons. Measured by genipin tissue distribution, injection

is an effective method for local delivery.

Clinical relevance

This study provides a proof of concept for the use of intratendinous genipin injection in the

treatment of tendinopathy. The results demonstrate that a degenerated tendon can be

mechanically augmented by a clinically viable method of local genipin delivery. This war-

rants further in vivo studies towards the development of a clinically applicable treatment

based on genipin.

1 Introduction

According to estimates, one in four adults will be affected by a tendon disorder during their

lifetime.[1–4] In addition to patient suffering from disability, dysfunction and pain, tendon

injuries generate substantial costs to the healthcare system.[2,5,6] The accumulation of micro-

trauma by repetitive overloading exceeds the maximum healing capacity of the tendon and

induces a pathological response leading to hypercellularity, collagen matrix disruption, an

increased proteoglycan content and neovascularization.[7,8] Tendinopathic lesions often do

not resolve by natural healing and intervention is required in many cases to prevent lesion pro-

gression and restore tissue function.[9–11] The rotator cuff, forearm extensors, biceps brachii

and tibialis posterior, patella and Achilles tendons are most commonly affected.[3,5]

A wide range of treatment options exists such as rest, physical therapy, nonsteroidal anti-

inflammatory drugs and injection of glucocorticoids or platelet rich plasma (PRP).[12–14]

Even though some options offer good short-term improvements, long-term benefits are lim-

ited and results are inconclusive.[15–21] Strengthening exercises improve symptoms and mus-

cle-tendon function, but may in turn increase the risk for further mechanical damage.[22]

Whereas most of these therapies aim to improve the healing capacity of the tissue, an alterna-

tive approach is to augment the mechanical strength of the affected tendon in order to prevent

further damage accumulation.[23] Due to its low cytotoxicity, genipin (GP), a naturally occur-

ring collagen cross-linking agent, is regarded as a promising candidate for tendon mechanical

augmentation. In vivo intratendinous administration of high GP concentration in horses

showed no local or systemic toxicity.[24] Incubation of animal tendon explants in 20 mM GP-

solution improved suture retention strength by 30% after 24 hours[25] and successfully miti-

gated propagation of partial tendon tears[26]. In an ex-vivo model for tendon rupture repair,

GP-coated sutures showed an increased suture retention strength by localized tissue strength-

ening when compared to uncoated sutures [27]. To date, the potential of GP in the repair of
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degenerative tendon lesions is still unknown. A key obstacle to clinical implementation is that

no clinically viable method of localized GP application has yet been demonstrated for colla-

gen-cross-linking based treatment of this indication. Therefore, this ex vivo laboratory study

was performed in order to investigate the viability of intra-tendinous GP-injection to improve

mechanical resistance of degenerated tendon tissue. Applied to chemically degenerated ten-

dons, we hypothesized that GP injection increases ultimate tensile strength by locally cross-

linking and repairing the damaged tissue. By making use of the distinct optical spectral

properties (fluorescence, absorption) of GP-induced collagen-crosslinking, we analyzed the

spatial GP distribution after intratendinous injection. In a separate set of experiments, we

determined the relationship between GP incubation-concentration and induced fluorescence.

2 Materials and methods

A total of 70 bovine superficial digital flexor tendons (SDFT) were obtained from a local abat-

toir (Mean age 14 months; Abattoir: Metzgerei Angst AG, Zürich, Switzerland). Freshly har-

vested tendons were wrapped in gauze, moistened with phosphate buffered saline (PBS)

solution and stored at -20˚C until testing. At the day of testing the tendons were thawed and

cut in half. Then the cross sectional area at the central part of the tendon was determined

using a custom made laser based measuring device. Subsequently, each half was randomized

into one of four groups: Healthy control (N = 25), healthy GP injection (N = 25), degenerated

control (N = 45) and degenerated GP injection (N = 45). An overview of the experiment setup

is provided in Fig 1A. The institutional review board approved the animal protocol (non-live

tissue) for this investigation and that all investigations were conducted in conformity with eth-

ical principles of research.

2.1 Tendon repair

On the first day of testing, the degenerated testing groups were injected centrally with 0.2 ml

of collagenase D in PBS (8mg/ml, Collagenase D type Ref Number 11088866001, Roche Diag-

nostics GmbH, Rotkreuz, Switzerland) to disrupt the collagen matrix and model a degenera-

tive tendon lesion.[28,29] The tendon degeneration protocol was established in a preliminary

experiment. Both healthy groups were injected with 0.2ml PBS at the same point in time.

Thereafter, all explants were wrapped in gauze, moistened with PBS and stored at room tem-

perature for 24h until repair.

At 24 hours after the introduction of collagenase, the tendon specimens were injected cen-

trally with either 0.2 ml PBS-DMSO (control groups, 2% DMSO) or 0.2 ml of 80 mM GP in a

PBS-DMSO solution (treatment groups). The GP treatment solution contained 80mM GP

(Challenge Bioproducts Co, Ltd, Taiwan, Republic of China) and 2% of the solvent dimethyl

sulfoxide (DMSO, Sigma-Aldrich, St Louis, MO, USA) in PBS.

After the second treatment, all samples were wrapped in moist gauze (PBS) and stored at

room temperature for 24h until mechanical testing. All injections were performed with a 24G

needle.

2.2 Mechanical testing

Mechanical testing was performed on day three of the experiment. Both ends of the tendon

were wrapped in pieces of cloth and glued with cyanoacrylate to prevent slippage. The samples

were kept moist by PBS spraying for the duration of mechanical testing. The tendon ends were

fixed to a 20 kN load cell (Gassmann Theiss, Bickenbach, Germany) of a universal material

testing machine (Zwick 010, Zwick GmbH, Ulm, Germany) using dedicated clamps at a

clamp-to-clamp distance of 45mm. After applying a preload of 0.1 MPa for one minute the
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specimens were cyclically elongated from 0% to 5% strain for 500 cycles with a frequency of

approximately 1 Hz. Finally, the explants were loaded to failure at 15% strain/s. Force (N) and

displacement (mm), time (s) were recorded at a sampling frequency of 100 Hz with a dedicated

software (testExpert1 10, Zwick-Roell, Ulm, Germany). Displacement was measured from

clamp to clamp. The mode of failure was documented for each test. One specimen was

removed due to a preexisting laceration incurred during sample preparation.

2.3 Optical spectral properties

Subsequent to mechanical testing, 36 tendons (9 from each group) were randomly selected for

optical spectral testing. The required samples were determined by a priori power analysis (t-

test). From each selected explant, 7 tissue biopsies measuring approximately 3 mm by 3 mm

were harvested as highlighted in Fig 1B. The tendon extracts were lyophilized for 6h (Alpha

2–4 LSCplus, Martin Christ Gefriertrocknungsanlagen GmbH, Osterode am Harz, Germany)

and tissue dry weight was recorded. Thereafter, extracts were digested in 0.6mg/mL papain

(0.9 mL per sample; Sigma-Aldrich, St. Louis, MO, USA) in PBE buffer (100 mmol/L phos-

phate, 10 mmol/L EDTA, pH 6.5) at 65˚C for 72 h.[30] Subsequently, the tissue extracts were

centrifuged for one hour at 8000 relative centrifugal force (RCF). Each centrifuged sample was

divided into three 0.2 mL aliquots on a 96 cell culture well-plate (Thermo Fisher Scientific,

Waltham, MA, USA). These aliquots were diluted at a ratio of 1:7 with de-ionized water to

reach optimal light transmittance. Fluorescence was recorded at 590 nm excitation and 645

nm emission wavelength (SpectraMax GeminiXS, Molecular Devices, LLC., Sunnyvale, CA,
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Fig 1. A: Study design and timeline of the main experiment. B: Cubes represent the sites of tissue sample harvesting

for optical spectral testing.

https://doi.org/10.1371/journal.pone.0231619.g001
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USA).[31–34] Absorption was measured with a spectrophotometer (Epoch, BioTek Instru-

ments GmbH, Luzern, CH) for wavelengths from 380 to 700nm at 10 nm increments, with

peak absorption at 590 nm. Fluorescence and absorption readouts were normalized by dry

weight.

2.4 Experiment GP concentration-fluorescence intensity relationship

In a separate set of experiments, the relationship between GP induced fluorescence and GP

concentration was established. A total of 75 tissue samples measuring approximately 3 mm by

3 mm were extracted from two bovine SDFTs. The samples were randomly assigned to be

incubated for 24 hours in either a 0, 0.5, 1, 2, 5, 10, 20, or 40 mM GP-PBS solution (10 samples

per group, 5 samples in the control group). The desired GP concentrations were obtained by

diluting a solution containing 80mM GP (Challenge Bioproducts Co, Ltd, Taiwan, Republic of

China) and 2% of the solvent dimethyl sulfoxide (DMSO, Sigma-Aldrich, St Louis, MO, USA)

in PBS. Lyophilization, dry weight recording, digestion, centrifugation and fluorescence mea-

surement was performed identically to the main experiment and are described above.

2.5 Data analysis

Ultimate force, ultimate stress and strain were defined at the maximum load reached. Stiffness

and the elastic modulus was defined as the maximum gradient obtained from a series of linear

regressions (Force = a+b�displacement, ordinary least squares (OLS)) from the end of preload

up to maximum load. Work to failure was computed from the end of preload up to maximum

load. Relative stress relaxation was defined as the relative drop in maximum cyclic force from

the first to the last tested cycle. An a priori power analysis (independent samples t-test) using

the results of the degeneration protocol experiment and a minimally important difference of

20% in ultimate force yielded a required sample size of 23 and 43 for healthy and degenerated

tendons, respectively.[25, 43] Normality assumption was rejected by the Shapiro-Wilk test for

some mechanical variables. Hence, Kruskal-Wallis and Dunn’s multiple median comparison

test were used for inter-group comparison of mechanical data.

Normality was not rejected for fluorescence and absorption. Difference from zero was

tested by t-tests. To analyze the difference at the injection site across groups, a linear regression

(estimated by ordinary least squares, OLS) with dependent variable being fluorescence and

absorption and independent variables a dummy for each group was estimated. Another regres-

sion was used to compare spatial distribution of GP across the treatment groups, which is

highlighted in Eq 1.

Y ¼ b0 þ b1 � DColGP

þ b
GP
9mm � D9mm � ð1 � DColGPÞ þ b

GP
15mm � D15mm � ð1 � DColGPÞ

þ b
ColGP
9mm � D9mm � DColGp þ b

ColGP
15mm � D15mm � DColGp

ð1Þ

The dependent variables were fluorescence and absorption (Y). A separate regression was

estimated for each dependent variable. The independent variables were a dummy for healthy

(1−DColGP) and degenerated GP (DColGp), and dummy interaction terms for each group and

distance from injection site (D9mm,D15mm). The injection site was used as baseline, the interac-

tion coefficients (b
GP
9mm; b

GP
15mm; b

ColGP
9mm ; b

ColGP
15mm) show the decrease in fluorescence or absorption

for each group at a certain distance.

Finally, the baseline relationship between GP induced fluorescence and GP concentration

was assessed by estimating a linear regression model (OLS) with fluorescence (excitation 590

nm, emission 645 nm) as dependent and the natural logarithm of GP concentration as
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independent variable. The obtained equation was subsequently used with input factors being

fluorescence and absorption at the injection site to estimate GP concentration in the main

experiment. The significance level was set at 0.05 and the results are reported as medians and

range if not stated otherwise. The statistical analyses and graphs were computed using

MATLAB (MATLAB and Statistics Toolbox Release 2016b, The MathWorks, Inc., Natick,

Massachusetts, USA) and Stata 14.0 (StataCorp LP, College Station, TX, USA).

3 Results

3.1 Mechanical effects of genipin injection

All tendon samples survived cyclic testing and ruptured at the midportion during ramp-to-

failure testing with no failure due to slippage being observed. Table 1 summarizes the effects of

GP treatment on the mechanical properties of healthy and degenerated tendons. Fig 2 depicts

the ultimate force to failure across groups. Cross sectional area (CSA) was homogenously dis-

tributed among all groups (p = 0.137). GP treatment augmented maximum tendon rupture

force (ultimate force) in healthy (+22%, p = 0.325) and in degenerated tendons (+19%,

p = 0.008). In healthy tendons median ultimate force after 24 h of GP and PBS (healthy con-

trol) treatment was 833 N and 685 N, respectively.

This difference of +148 N was statistically non-significant (p = 0.325). In the degenerated

tendons, GP treatment improved ultimate force from 530 N in the untreated tendons to 633

N. In this case, GP showed a statistically significant therapeutic effect of +103 N (p = 0.008) on

degenerated tendons. While untreated degenerated tendons ruptured at a lower force com-

pared to the healthy controls (-155 N, p = 0.004), no statistically significant difference was

detectable after GP treatment of degenerated tendons and the healthy controls (-52N,

p = 0.521). Compared to ultimate force, GP treatment had a similar effect on other mechanical

properties of the tendons. In healthy tendons GP injected samples had higher ultimate stress

(+36%, p = 0.272), stiffness (+43%, p = 0.245), elastic modulus (+23%, p = 0.469), and work to

failure (+12%, p = 0.567) compared to the controls, however, these differences were statistically

not significant. Relative stress relaxation was the only value that was reduced by GP injection

in healthy tendons (—26%, p = 0.025). In contrast to healthy tendons, the degenerated tendons

showed a statistically significant GP induced improvement in all measured biomechanical var-

iables. Ultimate stress was improved by +23% (p = 0.049), stiffness by +27% (p = 0.037), work

to failure by +42% (p = 0.009) and relative stress relaxation by -11% (p< 0.001). The increase

in elastic modulus +24% (p = 0.285) and strain at failure +4% (p = 0.701) were statistically

non-significant in degenerated tendons. Furthermore, GP injection recovered degenerated

tendons to an extent that there was no statistically significant difference detectable compared

to healthy controls for ultimate force (-8%, p = 0.521) ultimate stress (-11%, p = 0.176), stiff-

ness (-7%, p = 0.359), elastic modulus (-12%, p = 0.083), and work to failure (0%, p = 0.541),

and strain at failure (+32%, p = 0.157). Relative stress relaxation was +18% higher in GP

treated degenerated tendons (p = 0.008) than in the healthy control group. When discussing

statistically non-significant differences between groups it is important to keep in mind the

properties of a-priori sample size calculation. In particular for non-significant differences

between the healthy groups, which were as high as 43% (stiffness), and could be due to insuffi-

cient power retrospectively.

3.2 Optical spectral properties

As highlighted in Fig 3, GP specific fluorescence (excitation and emission wavelength are

590nm and 645nm, respectively) at the injection site was higher in healthy GP treated tendons

compared to healthy control, degenerated control and degenerated GP treated tendons (all
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p< 0.001). Moreover, no difference in fluorescence was detected between the healthy and

degenerated control tendons (p = 0.946). GP induced 45% less fluorescence attributed to cross-

links in the degenerated than in the healthy explants (p< 0.001). Furthermore, the distribution

of crosslinks induced by GP injection differed between healthy and degenerated tendons. In

healthy GP treated tendons, fluorescence attributed to crosslinks was centrally localized and

dropped by 32% (p = 0.004) and 69% (p< 0.001) 9mm and 15mm away from the injection

site, respectively. In contrast, GP was not confined centrally in degenerated tendons with no

significant colorimetric difference at 9mm (-11%, p = 0.278) away from the injection site. For

this group, fluorescence dropped as well at 15mm distance by 44% (p< 0.001).

Compared to fluorescence at 590 nm excitation and 645 nm emission, absorption at 590

nm is a less specific indicator for GP-induced crosslinks [34]. Yet, our results for both optical

properties were similar and absorption across groups is exhibited in Fig 3B. Healthy GP-

injected tendons absorbed significantly more light at 590 nm centrally than degenerated GP

treated tendons (p = 0.010), healthy (p< 0.001) and degenerated controls (p< 0.001). For GP

treated tendons, the absorption at the injection site was 45% higher in the healthy compared to

the degenerated group. Absorption levels did not differ between the healthy and degenerated

controls (p = 0.898), and were not significantly different from zero. The relative level of

absorption along the tendon was also similar to the distribution of fluorescence. Healthy ten-

dons which were injected with GP exhibited a 37% (p = 0.003) and 69% (p< 0.001) drop 9

mm and 15 mm from the injection site, whereas absorption remained unchanged at 3mm

(-10%, p = 0.405). In contrast, absorption was unchanged 3 mm (-8%, p = 0.499) and 9 mm

(-9%, p = 0.435) from the injection site in the degenerated group. Absorption dropped by 47%

(p< 0.001) in a distance of 15 mm in the degenerated GP group.

Table 1. Results of mechanical testing for each group with the respective differences. P-values are two-sided and based on a nonparametric pairwise comparison of

multiple groups (median, Dunn’s test). Stiffness and elastic modulus were calculated as the maximum gradient obtained from a series of linear regressions on the force-dis-

placement curve.

Healthy

Control (N = 25) GP-Treated (N = 25)

Median (Range) Median (Range) Difference p-value

Ultimate force [N] 685 (184–1062) 833 (310–1403) 22% 0.325

Ultimate stress [MPa] 25.6 (6.4–41.8) 34.7 (9.7–66.8) 36% 0.272

Stiffness [N/mm] 152 (29–282) 218 (44–314) 43% 0.245

Elastic modulus [MPa] 193 (53–497) 237 (48–622) 23% 0.469

Work to failure [mJ] 2304 (842–4133) 2577 (1151–4671) 12% 0.567

Strain at failure [] 0.22 (0.13–0.59) 0.27 (0.13–0.55) 23% 0.219

Relative stress relaxation [] -0.66 (-0.88 - -0.48) -0.49 (-0.72 - -0.39) -26% 0.025

CSA [mm2] 26.4 (16.8–35.1) 25.3 (17–39.8) -4% 0.493

Degenerated

Control (N = 45) GP-Treated (N = 44)

Median (Range) Median (Range) Difference p-value

Ultimate force [N] 530 (89–848) 633 (151–1065) 19% 0.008

Ultimate stress [MPa] 18.4 (4.4–52.7) 22.7 (6.7–38.8) 23% 0.049

Stiffness [N/mm] 111 (17–222) 141 (25–290) 27% 0.037

Elastic modulus [MPa] 137 (27–526) 170 (53–321) 24% 0.285

Work to failure [mJ] 1612 (172–3278) 2294 (446–4847) 42% 0.009

Strain at failure [] 0.28 (0.12–0.6) 0.29 (0.12–0.6) 4% 0.701

Relative stress relaxation [] -0.88 (-0.98 - -0.05) -0.78 (-0.94 - -0.45) -11% 0.000

CSA [mm2] 27.8 (11.9–43.2) 28.5 (17.8–42.2) 3% 0.537

https://doi.org/10.1371/journal.pone.0231619.t001
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3.3 Quantification of intratendinous GP concentration

Fig 4 exhibits the results of the separate experiments conducted to quantify the relationship

between GP concentration and induced fluorescence at excitation 590 nm and emission 645

nm. The results suggest a moderate linear relationship between fluorescence and the natural

logarithm of GP concentration (R2adj = 0.61). An increase of 1% in GP concentration caused

weight adjusted fluorescence to rise by 0.12 (p< 0.001). This relationship was used to estimate

the concentration of GP based on the measured fluorescence in the main experiment (Fig 5).

For healthy GP treated tendons, GP concentration was estimated to be 7.9 mM at the injection

site and drops to 3.6 mM and 1.5 mM 9 mm and 15mm from the center, respectively. Degen-

erated tendons showed lower GP concentrations of 2.3 mM and 1.8 mM, at the injection site

and at a distance of 9 mm, respectively. GP concentration in degenerated tendons 15mm from

the center was 1.3 mM and similar to levels in healthy tendons.

4 Discussion

This study aimed to investigate the potential of genipin (GP) injection as a treatment of tendi-

nopathy. To our knowledge, this is the first study to investigate the biomechanical effects of

GP-treatment by route of injection. The study confirmed the feasibility of minimally invasive

injection to strengthen tissue and arrest propagation of pre-rupture damage in tendinopathic

lesions. Additionally, this study characterized the resulting degree of intratendinous GP-cross-

linking in order to estimate potential cytotoxic effect at a functionally relevant concentration

and to characterize dissemination behavior after injection.
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Tendinopathy is caused by repetitive microtrauma exceeding the healing capacity of the

tendon. Hence, sustained overloading results in damage accumulation and stepwise weakening

of the tendon.[11,13,35,36] Continued damage accumulation can even lead to spontaneous

rupture of the tendon.[37] Physical rest may prevent further damage at the lesion site, how-

ever, might result in deleterious changes to other musculoskeletal structures and is often unde-

sirable by competitive and recreational athletes alike.[13,38]

One approach to break the vicious cycle of damage, inadequate repair and subsequent fur-

ther damage is to locally strengthen the tendon tissue. Following local tissue stabilization, pain

monitored physical activity[22] may provide tenocytes with the appropriate mechanical cues

to promote repair at subcritical strain.[39,40]

For this controlled laboratory study, 140 bovine superficial digital flexor tendon explants

were either centrally injected with collagenase D to model tendinopathy or with a placebo

(PBS) to serve as healthy controls. Injection of collagenase type D disrupts the collagen matrix

and is a well-established method to induce degenerative tendon lesions in-vivo [7,8,41] and ex-
vivo [28,29]. The average reduction in ultimate tensile strength of 23% by collagenase injection

reported in this study is within the range observed in human post-mortem Achilles tendon

explants showing histological degenerative changes.[42] Furthermore, biological and struc-

tural changes after collagenase injection in vivo, such as loss of matrix organization, hypercel-

lularity, and increased vascularity, resemble human tendinopathy.[43,44] At 24 hours after

induction of chemical degeneration, half of the healthy and degenerated tendons were
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randomly selected and treated by central intratendinous injection of 0.2 ml of 80 mM GP,

while the remaining samples received a placebo (PBS) injection.

In line with our hypothesis, GP injection into chemically induced degenerative tendon

lesions significantly increased the ultimate tensile strength by 19% compared to the degener-

ated control comparable to the strength level of healthy tendons. The GP-treatment however

only minimally affected the elastic properties as well as strain behavior of the tendon, implying

collagen crosslinking only in proximity to the injection site. The viscoelastic behavior on the

other hand was strongly affected by GP as assessed by the relative stress relaxation crosslinking

and is in agreement with existing literature. [25,45,46].

The spatially confined effect of GP-injection was confirmed by analyzing the GP-specific

optical spectral properties of tendon biopsies taken at different distances from the injection

site. Average fluorescence intensity decreased by 69% and 47% within 15mm of the injection

site for the healthy and the degenerative tendons, respectively. These findings suggest that GP

is able to readily diffuse through degenerated tissue whereas the structural integrity of healthy

tissue prevents similar diffusion. Absorption analysis further support these results. This

implies that an extensive lesion could be treated by a single high-dose GP injection.

In a separate experiment, GP incubation concentration and corresponding fluorescence

was examined. This allowed the quantification of crosslinking induced by GP-treatment and

provides an estimate for the respective GP incubation concentration. According to this rela-

tionship, the respective incubation concentration was 7.9 mM at the site of injection and

decreased to 1.5 mM within 15 mm for healthy tendons. Earlier studies have shown cytotoxic-

ity to be dose dependent on GP concentration within the tissue.[24,46–49] Applying the results

from previous in vitro work of Fessel et al.[46] to GP concentration estimates of this study, cell
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survival is predicted to be 48% and 68% at the injection site and 15mm away, respectively.

These cell viability estimates have to be treated with caution as Fessel et al.[46] used isolated

tenocytes from equine tendons and the method of GP application differed (incubation vs.

injection). Even though our results suggest a spatially limited GP diffusion, further experi-

ments are needed to determine the critical cell survival for repopulation and stabilization of

the tissue.

These results are in line with Bellefeuille et al.[24], who examined the local and systemic

toxicity of high dose GP injection (355mM) in subcutaneous and intratendinous tissue of

horses. There were no signs of inflammatory infiltrates and vasculature appeared normal in all

examined tendon tissue samples at short- and long-time follow-up. None of the treated horses

showed any apparent discomfort or other adverse clinical effects. Blood cell count and serum

chemistry analyses revealed no abnormal findings associated with GP-injection.

Several limitations must be noted. First, while the studied method of GP application showed

promising results ex-vivo, future work in experimental animal models or in controlled veteri-

nary clinical studies will be necessary to further study the potential of GP-treatment in tendi-

nopathy. The biological effect of GP in general and in an acute or chronic inflammatory

response in particular is not fully understood, although limited evidence suggests that GP has

no measurable influence on secretion of pro- or anti-inflammatory cytokines.[50] Due to tis-

sue degradation processes, the current model allowed to study only short-term GP-effects.

Further, the mechanical testing setup represented a crude approximation of the in vivo
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mechanical regime of human tendons during daily activities and traumatic failure. Whereas

palpation of the tendon samples 24h following collagenase injection indicated collagen damage

to be primarily located at the sample mid-portion, the spatial extent of chemical collagen dam-

age could not be assessed objectively. It is therefore unverified that GP-repair covered the

entire chemically damaged volume. Knowledge of the local strain field during tensile testing

may be informative in this situation. Tendon stretch however is dominated by fibre-to-fibre

sliding rendering the interpretation of local strain measurements difficult. [51]Inducing

degenerative changes to the tendon tissue using bacterial collagenase rather than using actual

human tendinopathic specimens also represents a limitation of this study. More generally, cau-

tion is always warranted when extrapolating results obtained from in vitro experiments on ani-

mal models to humans.

5 Conclusion

This study established proof of concept of a potential clinical method of GP application for the

treatment of tendinopathy, provided a comprehensive baseline for GP dosage in the design of

future experiments and will be helpful in the interpretation thereof. GP injection into degener-

ative lesions recovered the mechanical strength of tendons to the level of healthy ones. After

injection, GP disseminated within a tendon lesion whereas healthy tissue acts confining.

Mechanically functional GP dosage was predicted to yield sufficient cell survival for subse-

quent repopulation of the affected tissue and warrants further in vivo work.
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