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Abstract: Fluctuating light (FL) is a typical natural light stress that can cause photodamage to
photosystem I (PSI). However, the effect of growth light on FL-induced PSI photoinhibition remains
controversial. Plants grown under high light enhance photorespiration to sustain photosynthesis,
but the contribution of photorespiration to PSI photoprotection under FL is largely unknown. In this
study, we examined the photosynthetic performance under FL in tomato (Lycopersicon esculentum)
plants grown under high light (HL-plants) and moderate light (ML-plants). After an abrupt increase
in illumination, the over-reduction of PSI was lowered in HL-plants, resulting in a lower FL-induced
PSI photoinhibition. HL-plants displayed higher capacities for CO2 fixation and photorespiration
than ML-plants. Within the first 60 s after transition from low to high light, PSII electron transport
was much higher in HL-plants, but the gross CO2 assimilation rate showed no significant difference
between them. Therefore, upon a sudden increase in illumination, the difference in PSII electron
transport between HL- and ML-plants was not attributed to the Calvin–Benson cycle but was caused
by the change in photorespiration. These results indicated that the higher photorespiration in HL-
plants enhanced the PSI electron sink downstream under FL, which mitigated the over-reduction
of PSI and thus alleviated PSI photoinhibition under FL. Taking together, we here for the first time
propose that photorespiration acts as a safety valve for PSI photoprotection under FL.

Keywords: photorespiration; cyclic electron flow; photoinhibition; photoprotection; photosystem I

1. Introduction

Growth light significantly affects photosynthetic performance in plants. Plants usually
modulate their biochemical composition and leaf morphology to acclimate to the specific
growth light conditions [1–5]. In general, plants grown under high light (HL-plants) have
higher content of proteins and enzymes involving in photosynthetic electron flow and
the Calvin–Benson cycle than plants grown under low light [6,7]. These characteristics
favors the higher photosynthetic capacity in HL-plants. Concomitantly, the rate of ribulose-
1,5-bisphosphate (RuBP) oxygenation is also increased in HL-plants due to the higher
ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) content [8]. Photorespiration
is essential for the normal photosynthesis ambient CO2 and oxygen [9]. A stronger electron
flow for photorespiration can protect photosystem II (PSII) by consuming the excess light
energy [9,10]. However, the role of photorespiration in protecting photosystem I (PSI)
under fluctuating light is not well known.

In natural habitats, leaves usually experience fluctuations of illumination owing
to cloud, wind and changing leaf sun angle [11,12]. Under fluctuating light (FL), light
absorption and PSII electron flow rapidly increased after an abrupt increase in light inten-
sity [13,14]. Meanwhile, stomatal opening and the activation of the Calvin–Benson cycle
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have much slower kinetics [15–17]. Under such conditions, the reducing power in PSI can-
not be immediately consumed by CO2 fixation. The resulting over-reduction of PSI triggers
the donation of electrons to O2, producing reactive oxygen species in PSI [12,18,19]. More-
over, the antioxidant systems cannot immediately scavenge the reactive oxygen species [18].
Therefore, FL can give rise to PSI photoinhibition in many angiosperms [20–24]. Once
PSI was damaged, CO2 assimilation and photoprotection were depressed, impairing the
growth of plants [19,25–28].

To protect PSI under FL, plants have evolved several photoprotective strategies to
optimize the PSI redox state [29–32]. In non-angiosperm plants, flavodiiron proteins
mediate the photo-reduction of O2 and prevent PSI photoinhibition under FL, which is
supplemented by cyclic electron flow (CEF) around PSI [29,32–35]. In angiosperms, the
genes of flavodiiron proteins are lost and CEF is reserved to protect PSI under FL [19,36–38].
When light intensity increased abruptly, CEF activity rapidly increased to help the building
up of trans-thylakoid proton gradient (∆pH) [13]. Such CEF-dependent ∆pH formation
can down-regulate the oxidation of plastoquinone and thus controls electron flow to PSI at
the cytochrome (Cyt) b6/f complex [39]. Furthermore, the CEF stimulation can provide
additional ATP, facilitating the operation of the primary metabolism [40]. Consequently,
CEF significantly alleviates PSI photoinhibition under FL at donor and acceptor side [21].
In previous studies, plants grown under low light were usually used to investigate the role
of CEF in PSI photoprotection under FL, and found that the donor side regulation was the
primary target of CEF [19–21,38]. However, the underlying mechanism of acceptor side
regulation in dependence of CEF have not yet been clarified. Furthermore, how HL-plants
protects PSI under FL is poorly understood.

By transitioning from low to high light, the full activation of the Calvin–Benson cycle
requires several minutes [41]. Meanwhile, photorespiration has relatively faster kinetics,
making photorespiration to be a major alternative sink [42]. During photorespiration,
the oxygenation of RuBP consumes high amounts of NADPH, leading to an increase in
NADP+/NADPH ratio, which facilities the electron transport from PSI to NADP+ [43].
Under low CO2 concentration, the suppression of photorespiration by decreasing RubisCO
content induced PSI over-reduction, and, thus accelerated PSI photoinhibition under excess
light energy [44]. Therefore, photorespiration has the potential to promote the oxidation
of PSI under excess light energy. The highly oxidation of PSI suppressed the donation of
electrons from PSI to O2, and, thus prevented oxidative damage to PSI [45]. Accordingly,
photorespiration might alleviate PSI photoinhibition under FL. We hypothesize that the
increased capacity of photorespiration in HL-plants favors PSI photoprotection under FL.

In the present study, we measured gas exchange, chlorophyll fluorescence, P700 and
electrochromic shift signals under fluctuating light for tomato plants grown under high
light (HL-plants) and moderate light (ML-plants). Our aims were: (1) to compare the
photosynthetic regulation under FL between HL- and ML-plants; (2) to assess the role of
photorespiration in PSI photoprotection under FL. We found that FL induced a stronger PSI
photoinhibition in ML-plants than HL-plants, and the higher capacity of photorespiration
in HL-plants significantly alleviated FL-induced PSI photoinhibition.

2. Materials and Methods
2.1. Plant Materials

Tomato (Lycopersicon esculentum Miller cv. Hupishizi) plants were cultivated in full
sunlight (HL-plants) or 40% full sunlight (ML-plants). The day/night air temperatures were
approximately 30/20 ◦C, and the maximum light intensity at noon for HL- and ML-plants
were approximately 2000 and 800 µmol photons m−2 s−1, respectively. All plants were
grown with humus soil and any water and nutrient stress was prevented. After cultivation
for one month, we used the canopy mature leaves for measurements.
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2.2. Measurements of Gas Exchange and Photorespiration

We used an open gas exchange system (LI-6400XT; Li-Cor Biosciences, Lincoln, NE,
USA) to simultaneously measure gas exchange and chlorophyll fluorescence. After pho-
tosynthetic induction at 1500 µmol photons m−2 s−1 and 400 µmol mol−1 CO2 concen-
tration for 30 min, the net CO2 assimilation rates (AN) and chlorophyll fluorescence were
recorded. The effective quantum yield of PSII photochemistry (ΦPSII) was calculated as
(Fm
′ − Fs)/Fm

′ [46]. The total electron transport rate through PSII (JPSII) as follows [47]:

JPSII = ΦPSII × PPFD× 0.84× 0.5 (1)

The electron transport rate for photorespiration was calculated as follows [48]:

JO = 2/3× (JPSII − 4(AN + Rd) (2)

where Rd was measured after incubation in darkness for 20 min.
After adequate photosynthetic induction, the response of CO2 assimilation rate to

incident intercellular CO2 concentration (A/Ci) curves were measured by decreasing the
CO2 concentration to a lower limit of 50 µmol mol−1 and then increasing stepwise to an
upper limit of 1500 µmol mol−1. For each CO2 concentration, photosynthetic measurement
was completed in 3 min. Using the A/Ci curves, the maximum rates of electron flux (Jmax)
and RuBP carboxylation (Vcmax) were calculated [49].

2.3. PSI and PSII Measurements

We used a Dual-PAM 100 measuring system (Heinz Walz, Effeltrich, German) to
measure PSI and PSII parameters under atmospheric CO2 condition. After illumination
at 1455 µmol photons m−2 s−1 for 5 min to activate photosynthetic electron sinks, leaves
were exposed to FL alternating between low light (59 µmol photons m−2 s−1, 2 min)
and high light (1455 µmol photons m−2 s−1, 1 min). PSI parameters were calculated as
follows: Y(I) = (Pm’ − P)/Pm; Y(ND) = P/Pm; Y(NA) = (Pm − Pm

′)/Pm. Y(I), the quan-
tum yield of PSI photochemistry; Y(ND), the quantum yield of PSI non-photochemical
energy dissipation due to donor side limitation; Y(NA), the quantum yield of PSI non-
photochemical energy dissipation due to acceptor side limitation. PSII parameters were
calculated as follows: Y(II) = (Fm

′ − Fs)/Fm
′; NPQ = (Fm − Fm

′)/Fm
′; Y(NO) = Fs/Fm. Y(II),

the effective quantum yield of PSII photochemistry; NPQ, non-photochemical quench-
ing in PSII; Y(NO), the quantum yield of non-regulatory energy dissipation in PSII. The
relative photosynthetic electron transport rate through PSI and PSII were calculated as:
rETRI = PPFD× Y(I)× 0.84× 0.5; rETRII = PPFD× Y(II)× 0.84× 0.5. rETRI minus rETRII
is assumed to be the rate of CEF.

2.4. Electrochromic Shift Measurement

A Dual-PAM 100 equipped with a P515/535 emitter-detector module (Heinz Walz) was
used measure the electrochromic shift (ECS) signals. After light adaptation at 1455 µmol
photons m−2 s−1 for 5 min, leaves were illuminated at 59 µmol photons m−2 s−1 for 2 min.
Afterwards, light intensity was changed to 1455 µmol photons m−2 s−1, and ECS dark
interval relaxation kinetics (DIRKECS) were recorded after this light transition for 10 s or
60 s. The proton gradient (∆pH) component of proton motive force were calculated using
DIRKECS [50,51]. The chloroplast ATP synthase activity (gH

+) was estimated as the inverse
of the decay time constant of the first-order ECS relaxation [52].
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2.5. Statistical Analysis

We determined whether significant differences existed between HL- and ML-plants
using t-test (α = 0.05). The software SigmaPlot 10.0 was used for graphing and fitting.

3. Results

Upon the light intensity changing from LL (59 µmol photons m−2 s−1) to HL (1455 µmol
photons m−2 s−1), the quantum yield of PSI photochemistry (Y(I)) rapidly decreased in both
types of leaves (Figure 1A). Under high-light phases, HL-plants had higher Y(I) values than
ML-plants (Figure 1A). At LL, the quantum yield of energy dissipation due to donor-side
limitation, Y(ND), was similar in HL- and ML-plants. However, after the transition from
LL to HL for 10 s, Y(ND) increased more quickly in HL-plants (Figure 1B). Concomitantly,
the quantum yield of energy dissipation due to acceptor-side limitation, Y(NA), increased
to a much higher level in ML-plants (Figure 1C), indicating that the PSI over-reduction
under FL was aggravated in ML-plants. Similar to the performance of Y(I), the effective
quantum yield of PSII photochemistry, Y(II), rapidly decreased in both types of leaves
by transitioning from LL to HL (Figure 2A). Furthermore, HL-plants displayed higher
Y(II) values under high-light phases (Figure 2A). After transition from LL to HL for 10 s,
non-photochemical quenching in PSII, NPQ, rapidly increased to approximately 80% of the
maximum level in both HL- and ML-plants (Figure 2B), diminishing the quantum yield of
non-regulatory energy dissipation in PSII (Y(NO)) (Figure 2C). Furthermore, ML-plants
had higher Y(NO) than HL-plants, indicating more excess light energy in ML-plants.

By transitioning from LL to HL, the relative PSI electron flow (rETRI) progressively
increased in HL-plants (Figure 3A). By comparison, rETRI first increased and then decreased
in ML-plants. The relative PSII electron flow (rETRII) progressively increased in both types
of leaves, and HL-plants showed much higher rETRI and rETRII values in high-light phases
(Figure 3B). In HL-plants, the rETRII values after this light transition for 60 s were much
higher than those for 10 s. By comparison, rETRII just increased slightly in ML-plants. These
results indicated that, within the initial 10 s after this light transition, the CO2 assimilation
was strongly restricted in HL-plants. In order to evaluate the performance of CEF under
fluctuating light, we analyzed the change in rETRI–rETRII during FL treatment. HL-
and ML-plants showed similarly low values of rETRI–rETRII under LL. Interestingly, the
changing pattern of CEF under FL varied between HL- and ML-plants (Figure 3C). After the
transition from LL to HL, rETRI–rETRII rapidly increased to the maximum value in 10 s and
maintained stable over time in HL-plants. By comparison, rETRI–rETRII firstly increased
and subsequently rapidly decreased in ML-plants. In the first four cycles of LL/HL, the
increase of CEF to the maximum value in ML-plants needed 30 s, indicating the delayed
CEF activation in ML-plants. After the abrupt increase in illumination, the rETRI/rETRII
ratio first increased and then decreased, suggesting the transient CEF stimulation under FL
(Figure S1). Furthermore, the contribution of CEF to total photosynthetic electron flow was
enhanced in ML-plants (Figure S1).
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Figure 1. Changes in PSI parameters during fluctuating light in HL- and ML-plants of tomato.
(A) Y(I), the quantum yield of PSI photochemistry; (B) Y(ND), the quantum yield of PSI non-
photochemical energy dissipation due to the donor side limitation; (C) Y(NA), the quantum yield of
PSI non-photochemical energy dissipation due to the acceptor side limitation. Data are shown as
means ± SE (n = 5). Green bars indicate low light (59 µmol photons m−2 s−1); yellow bars indicate
high light (1455 µmol photons m−2 s−1). Asterisk indicates a significant difference between HL- and
ML-plants.
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Figure 2. Changes in PSII parameters during fluctuating light in HL- and ML-plants of tomato.
(A) Y(II), the effective quantum yield of PSII photochemistry; (B) NPQ, non-photochemical quenching
in PSII; (C) Y(NO), the quantum yield of non-regulatory energy dissipation in PSII. Data are shown
as means ± SE (n = 5). Green bars indicate low light (59 µmol photons m−2 s−1); yellow bars indicate
high light (1455 µmol photons m−2 s−1). Asterisk indicates a significant difference between HL- and
ML-plants.
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Because ∆pH significantly regulates PSI redox state and NPQ induction under high
light [53,54], we next examined the change in ∆pH under fluctuating light. After transition
from LL to HL for 10 s, the ∆pH value was slightly lower than that for 60 s in HL-plants
(Figure 4A), suggesting that the ∆pH formation within the first 10 s was almost sufficient
for photosynthetic regulation in HL-plants. By comparison, the ∆pH value for 10 s was
significantly lower than that for 60 s in ML-plants (Figure 4A), indicating that the ∆pH
formation within the first 10 s was insufficient to regulate photosynthetic apparatus in
ML-plants. After this light transition, the chloroplast ATP synthase activity (gH

+) gradually
increased in HL-plants but was maintained stable in ML-plants (Figure 4B). Because a
decrease in gH

+ can enhance the formation of ∆pH, the flexibility of gH
+ upon a sudden

transition from LL to HL in HL-plants likely favored the rapid generation of ∆pH.
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from 59 to 1455 µmol photons m−2 s−1 for 10 s and 60 s. Data are shown as means ± SE (n = 5).
Asterisk indicates a significant difference between 10 s and 60 s.

After fluctuating light treatment for eight cycles of low/high light, ML-plants showed
a larger decrease in Pm than HL-plants (Figure 5A). Thus, FL induced a stronger PSI
photoinhibition in ML-plants. Furthermore, we found a tight positive relationship between
PSI photoinhibition and Y(NA) after transition from LL to HL for 10 s (Y(NA)10s) (Figure 5B).
Therefore, the greater PSI photoinhibition in ML-plants induced by FL was mainly caused
by the transient PSI over-reduction.

The PSI redox state under FL is significantly affected by the electron sink downstream
of PSI [38,55,56]. Compared with ML-plants, HL-plants not only displayed higher ca-
pacities for the maximum rates of RuBP carboxylation (Vcmax) and regeneration (Jmax),
and photosynthetic CO2 assimilation rate (Asat), but also showed higher electron flow for
photorespiration (JO) when CO2 assimilation was restricted at low CO2 concentrations
(Figure 6). Therefore, the electron sink downstream of PSI was significantly enhanced in
HL-plants. Within the first 60 s after transition from 50 to 1500 µmol photons m−2 s−1, the
gross CO2 assimilation rate did not differ between HL- and ML-plants (Figure 6), indicating
that the variation of Y(NA)10s between HL- and ML-plants was caused by photorespiration
rather than the Calvin–Benson cycle. Furthermore, we found the maximum JO was nega-
tively correlated to the PSI over-reduction under FL and FL-induced PSI photoinhibition
(Figure 7), indicating that the enhancement of photorespiration in HL-plants alleviated the
PSI over-reduction under FL and thus mitigated PSI photoinhibition.
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Figure 5. (A) The decrease in Pm after fluctuating light treatment for 24 min in HL- and ML-plants of
tomato, and the decreasing amplitude was displayed in it. (B) Relationships between the decrease
in Pm and the average Y(NA) after transition from 59 to 1455 µmol photons m−2 s−1 for 10 s
during fluctuating light treatment in HL- and ML-plants. Data are shown as means ± SE (n = 5).
Asterisk indicates a significant difference between HL- and ML-plants. Each symbol represents an
individual leaf.
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4. Discussion

After an abrupt increase in illumination, the slow kinetics of CO2 assimilation led to
the lack of NADP+ and made PSI to be over-reduced owing to the restriction of electron
flow from PSI to NADP+. Some previous studies reported that FL induced a marked PSI
photoinhibition in some angiosperms [20,21,57,58]. Furthermore, in Arabidopsis thaliana
(Arabidopsis) and Erigeron annuus, FL-induced PSI photoinhibition was stronger in LL-
plants than in HL-plants [59]. Therefore, growth light can significantly affect the response
of PSI to FL. However, the underlying mechanisms are not clear. Here we demonstrated
that, upon transition from LL to HL, tomato ML-plants significantly showed a stronger PSI
over-reduction than HL-plants, ultimately causing higher PSI photoinhibition in ML-plants.
Therefore, ML-plants can fine-turn the redox state of PSI under FL to a much lesser extent.
Plants grown under high light might display slight damage of PSI FeS cluster after exposure
to high light [60]. In this study, we measured all photosynthetic parameters in the morning
(a.m. 9:00–12:00), which might exclude the possibility of PSI photodamage in HL-plants.

The PSI redox state under FL is largely affected by donor and acceptor side regula-
tion [21]. During donor side regulation, a high ∆pH can down-regulates the plastoquinone
(PQ) oxidation at the Cyt b6/f complex, which restricts the electron transport from PQ
to plastocyanin (PC) and, thus, avoids excess electron flow to PSI [61]. If ∆pH formation
under high light was impaired, PSI would be over-reduced, leading to uncontrolled PSI
photoinhibition [62,63]. Therefore, a sufficient ∆pH is indispensable to PSI photoprotection
under high light. The ∆pH formation under high light is mainly affected by photosynthetic
electron flow and chloroplast ATP synthase activity [53,64]. After transition from LL to HL,
HL-plants displayed high levels of photosynthetic electron transport rates and a relatively
low chloroplast ATP synthase activity, contributing to the sufficient ∆pH formation. By
comparison, the ML-plants generated an insufficient ∆pH after this light transition for 10 s.
Therefore, HL-plants reinforced the PSI donor side regulation under FL.

In PSI acceptor side regulation, reducing power in PSI is consumed by linear electron
flow, photo-reduction of O2 mediated by the Mehler reactions and Flvs [33,65,66]. Flv-
dependent alternative electron flow was lost in angiosperms during evolution [37]. The O2
photo-reduction mediated by the Mehler reactions, called water-water cycle, could rapidly
consume excess electrons in PSI and thus avoided PSI over-reduction under FL [56,67,68].
In the present study, a transient PSI over-reduction under FL indicated that water-water
cycle was not significant in tomato leaves. The excess PSII electron flow is the prerequisite
for PSI over-reduction [36,63,69,70]. Although HL-plants displayed much higher PSII
electron flow than ML-plants, HL-plants showed a rapid oxidation of PSI upon the sudden
transition from LL to HL. These results suggested that HL-plants have the ability to rapidly
consume the large amounts of reducing power in PSI through acceptor side regulation.

After transition from LL to HL for 10 s, the value of rETRII was much higher in
HL-plants than ML-plants (Figure 3B), whereas the gross CO2 assimilation rate showed
no significant difference between them (Figure 6). These results indicated that, upon a
sudden increase in illumination, the difference in rETRII between HL- and ML-plants
was not attributed to the Calvin–Benson cycle but was caused by the change in photores-
piration. Accordingly, within the first 10 s after this light transition, electron flow for
photorespiration was the major component of PSII electron flow in HL-plants. Furthermore,
photorespiration could rapidly consume the excess reducing power in PSI [42]. An increase
in photorespiratory pathway can accelerate the consumption of NADPH and subsequently
elevates the NADP+/NADPH ratio. Therefore, the enhanced photorespiratory pathway in
HL-plants facilitates the outflow of electrons from PSI to NADP+ under FL and eventually
alleviates PSI over-reduction at acceptor side. Furthermore, the higher electron flow to
photorespiration in HL-plants helped the rapid formation of ∆pH after transition from low
to high light, which alleviated PSI over-reduction under FL at donor side. Taking together,
the enhancement of photorespiration in HL-plants protected PSI against photoinhibition
under FL at donor and acceptor sides.
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The photorespiratory pathway starts with the oxygenation of RuBP, which leads to
the formation of 3-phosphoglycerate (3-PGA) and 2-phosphoglycolate (2-PG) [71]. 2PG is
a dead-end intermediate of photosynthesis, which cannot directly be used and strongly
impairs plant carbon metabolism [72–74]. To prevent the accumulation of 2-PG, photores-
piratory pathway converts 2-PG into 3-PGA to replenish the Calvin–Benson cycle [75,76].
Therefore, acceleration of the photorespiratory pathway can significantly boost CO2 as-
similation rate and plant growth via optimized RuBP regeneration and preventing 2-PG
mediated down-regulation of the Calvin–Benson cycle [43,77–79]. Thus, the enhancement
of photorespiratory pathway has the potential to improve plant growth and crop yield
under field FL conditions. Under FL conditions, avoiding PSI photoinhibition is a premise
of the maintenance of CO2 assimilation rate [31,80]. This is in good agreement with the
presented results and the hypothesis that that the photorespiratory pathway acted as a
safety valve to protect PSI under FL.

In previous studies on PSI photoprotection under FL, CEF is thought to be the main
factor affecting the PSI redox state. During CEF, electrons are transferred from ferredoxin
to PSI, which is accompanied with the proton translocation [81–83]. The CEF-dependent
formation of ∆pH is critical for NPQ induction and PSII photoprotection under high
light [84]. Moreover, once CEF activity was decreased by mutation of PGR5- and/or NDH-
pathway, the PSI over-reduction under high light would be aggravated, leading to severe
PSI photoinhibition [62,63,80,85]. After transition from LL to HL, CEF first increased and
then rapidly decreased in ML-plants, which was consistent with previous results reported
in Arabidopsis and tobacco plants grown under low light [20,22]. The first transient CEF
stimulation helped the formation of ∆pH. The latter decrease in CEF prevented an over-
acidification of thylakoid lumen, which maximized the photosynthetic light use efficiency.
However, we found that the CEF performance in HL-plants was different from ML-plants.
After the same light transition, the rate of CEF rapidly increased and then was maintained
stable in HL-plants. Furthermore, within the first 30 s after transition from LL to HL,
ML-plants displayed higher rETRI/rETRII ratios than HL-plants (Figure S1). These results
indicated that ML-plants showed a larger contribution of CEF to total photosynthetic
electron transport under FL. Therefore, to prevent uncontrolled over-reduction of PSI
under FL, ML-plants enhanced the stimulation of CEF to compensate for the shortage
of photorespiration.

5. Conclusions

We here showed that ML-plants displayed a greater PSI over-reduction under FL
than HL-plants in tomato. As a result, FL induced a stronger PSI photoinhibition in ML-
plants. Furthermore, the up-regulation of photorespiration in HL-plants enhanced the
outflow of electrons from PSI under FL and thus alleviated PSI photoinhibition. Therefore,
photorespiration acts as an important valve for PSI protection under FL. In ML-plants,
CEF was highly activated to compensate for the lower capacity of photorespiration, which
prevented uncontrolled PSI photoinhibition. Taking together, HL- and ML-plants likely
use different strategies to protect their photosynthetic apparatus under FL. Future studies
involving defined photorespiration mutants are needed to shed more light on these aspects.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11020195/s1, Figure S1: Changes in the rETR/rETRII ratio
during fluctuating light in HL- and ML-plants of tomato. Green bars indicate low light (59 µmol
photons m−2 s−1); yellow bars indicate high light (1455 µmol photons m−2 s−1). Data are shown as
means ± SE (n = 5).
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