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A promising deep learning‑assistive 
algorithm for histopathological 
screening of colorectal cancer
Cowan Ho1,6, Zitong Zhao2,6, Xiu Fen Chen2,6, Jan Sauer3, Sahil Ajit Saraf3, Rajasa Jialdasani3, 
Kaveh Taghipour3, Aneesh Sathe3, Li‑Yan Khor2,4, Kiat‑Hon Lim2,4 & Wei‑Qiang Leow2,4,5*

Colorectal cancer is one of the most common cancers worldwide, accounting for an annual estimated 
1.8 million incident cases. With the increasing number of colonoscopies being performed, colorectal 
biopsies make up a large proportion of any histopathology laboratory workload. We trained and 
validated a unique artificial intelligence (AI) deep learning model as an assistive tool to screen for 
colonic malignancies in colorectal specimens, in order to improve cancer detection and classification; 
enabling busy pathologists to focus on higher order decision‑making tasks. The study cohort consists 
of Whole Slide Images (WSI) obtained from 294 colorectal specimens. Qritive’s unique composite 
algorithm comprises both a deep learning model based on a Faster Region Based Convolutional Neural 
Network (Faster‑RCNN) architecture for instance segmentation with a ResNet‑101 feature extraction 
backbone that provides glandular segmentation, and a classical machine learning classifier. The initial 
training used pathologists’ annotations on a cohort of 66,191 image tiles extracted from 39 WSIs. A 
subsequent application of a classical machine learning‑based slide classifier sorted the WSIs into ‘low 
risk’ (benign, inflammation) and ‘high risk’ (dysplasia, malignancy) categories. We further trained the 
composite AI‑model’s performance on a larger cohort of 105 resections WSIs and then validated our 
findings on a cohort of 150 biopsies WSIs against the classifications of two independently blinded 
pathologists. We evaluated the area under the receiver‑operator characteristic curve (AUC) and other 
performance metrics. The AI model achieved an AUC of 0.917 in the validation cohort, with excellent 
sensitivity (97.4%) in detection of high risk features of dysplasia and malignancy. We demonstrate 
an unique composite AI‑model incorporating both a glandular segmentation deep learning model 
and a classical machine learning classifier, with excellent sensitivity in picking up high risk colorectal 
features. As such, AI plays a role as a potential screening tool in assisting busy pathologists by 
outlining the dysplastic and malignant glands.

Artificial intelligence (AI) is rapidly revolutionizing the field of  pathology1,2. Founded on the specialty practice 
of interpreting expressed histomorphological changes in cellular or tissue structure caused by disease pro-
cesses, pathology has maintained its clinical utility till  today3. The objective evaluation of histological slides by 
highly-trained pathologists remains the gold standard for cancer  diagnosis4. With ever increasing workloads on 
pathologists, this time-consuming and manpower intensive work has recently seen the advent of computational 
 pathology5 largely enabled by whole slide images (WSIs) which are digital counterparts of traditional glass slides 
and which have received selected FDA approval for primary clinical  diagnosis5,6. Through application of medical 
image analysis, machine learning and deep convolutional neural networks (CNN), artificial intelligence have 
been used to inspect WSIs and produce computer-aided diagnosis (CAD) of  cancers1,5,7–9. These CADs have 
demonstrated non-inferiority in the identification of malignancy compared to traditional  means8,10–12.

While human pathologists can outperform such AI systems, they are subject to fatigue, time-constraints 
and observer bias in clinical settings. As such CNN has the additional benefit of unimpaired accuracy only 
subject to the operational capacity of its processing hardware. With ever-increasing workloads, the integra-
tion of artificial intelligence into the field of computational pathology is a growing  necessity8. With an annual 
estimated 1.8 million cancer cases and 900,000 cancer deaths globally it places significant strain on healthcare 
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 systems13,14. The number needed to diagnose (NND) is further increased as some studies showed that as few as 
7.4% of colonoscopy biopsies had any positive findings at  all15. This means that an AI, which is capable of reli-
ably screening the colonoscopy biopsies, could considerably reduce the workload of a practicing  pathologist16,17. 
Additionally, it is worth noting that the assistive effect of AI on pathology is not limited to the evaluation of 
slides but extends to the acquisition of the target tissue of interest during sampling in a clinical setting such as 
narrow-band  imaging18–24. If combined with in-vivo endoscopic assessments, AI can effectively revolutionize 
and streamline current diagnostic  workflows1,25.

However, the development of CNN for colonic histopathology lags behind that for breast and prostate 
 tissue1,5,8. We attempted to address these issues with our own CNN model by replacing outdated heatmaps and 
saliency maps with segmentation as the  output11,26,27. Unlike other studies that typically rely purely on established 
datasets or open source segmentation architecture, we independently designed our own model which was trained 
and validated on separate training and validation  sets1,6,28.

This successful application of a highly functional CNN to colonic biopsy WSI demonstrates the capability 
of AI in detecting epithelial tumours from a non-neoplastic background. This further shows that AI is very 
relevant in the specific field of colonic  histopathology5. Expanding on these research developments, we describe 
our experience in this single-centre pilot study.

Materials and methods
Our AI algorithm consisted of two distinct models. The first is a gland segmentation model that identifies poten-
tially high risk regions on WSIs. The second involves a slide classification model that classifies WSIs as either ‘high 
risk’ or ‘low risk’. Using two separate models ensures robustness of the results and gives the operating pathologist 
more insight into the reasoning behind the slide classification. This allows for easier resolution of incongruent 
diagnoses and closer surveillance of the output data at this early stage of validation.

To produce these WSIs, our laboratory processed colonic specimens with haematoxylin and eosin (H&E) 
and scanned them with the Philips digital pathology whole-slide scanner, which satisfies current best practice 
 recommendations29.

Inclusion and exclusion criteria. We included samples from colon biopsies (May to June 2019) and resec-
tions (June 2019 to October 2019) obtained from Singapore General Hospital’s pathology archives and The 
Cancer Genome Atlas (TCGA). All slides from our institution were anonymized and de-identified H&E slides. 
We excluded all slides that did not contain mucosa, were poor in image quality (e.g., image being blurred, tissue 
being folded) or contained malignancies other than colonic adenocarcinoma. We also excluded slides sugges-
tive of mucinous adenocarcinoma and signet ring carcinoma as these entities were poorly represented in our 
training data. This ensured proper robustness of our AI model in achieving our objective of detecting classic 
adenocarcinoma histology.

Slide classifier. The gland segmentation model is a deep neural network that is built according to a Faster 
Region Based Convolutional Neural Network (Faster-RCNN) architecture for instance segmentation with 
a ResNet-101 feature extraction backbone. This is a standard architecture for segmentation tasks and many 
state-of-the-art instance segmentation models utilize this architecture or a variant thereof. The cost of this high 
accuracy complex model is a longer runtime. This is deemed as an acceptable trade-off for this device due to 
the relatively high importance of accuracy in the context of cancer detection. The slide classification model is a 
gradient-boosted decision tree classifier that uses the outputs of the gland segmentation model to classify slides 
as either high or low risk.

The training data for our gland segmentation model was extracted from WSIs. Ten WSIs were of colon resec-
tions obtained from TCGA, while 21 WSIs were of colon resections and 8 WSIs were of colon biopsies obtained 
from Singapore General Hospital.

These slides underwent ground truth annotation by an expert pathologist studying the dataset. Slides were 
classified as either “high risk” or “low risk”. The WSIs were further annotated with labels from the following 7 
categories: (1) benign glands, (2) glands that are either characteristic for adenocarcinoma or high-grade dysplasia, 
(3) low-grade dysplasia, (4) blood vessels, (5) necrosis, (6) mucin or (7) inflammation (Fig. 1).

Training algorithm and protocols. To train our gland segmentation model, heuristic algorithms were 
used to identify tissue regions on WSIs. These were then divided into tiles of 775 × 522 pixels each. Tiles that did 
not contain any tissue (as determined by a tissue masking algorithm) were discarded. Likewise, ground truth 
annotations were separated into corresponding tiles so that each pixel was clearly labeled as either background 
or one of the categories described above. This resulted in a total of 73,546 image and ground truth tiles. Of these, 
66,191 tiles (corresponding to 90% of all tiles) were used to train the neural network itself. We used the standard 
training paradigm for neural networks of backpropagation with stochastic gradient descent to adjust the param-
eters of the network. This is an iterative training procedure that gradually adjusts parameters to minimize a loss 
function. Five percent of all tiles (3678 tiles) were used for model selection. The neural network was trained with 
a constant learning rate of 0.016 over 15 epochs. We also performed data augmentation to artificially increase the 
training set and make the resulting model robust against predictable variations in data, such as imaging artifacts 
or variations in staining intensity. We have detailed the augmentations in Table 1. At regular intervals through-
out the training, the model was evaluated on this development set. At the end of the training, the model param-
eters which resulted in the best performance on this development set were selected as the final model param-
eters. These yielded the final 3677 tiles (corresponding to 5% of all tiles) which were used to prevent overfitting.
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The slide classification model was trained with data comprising 105 WSIs of colon resection slides from 
Singapore General Hospital. As with the segmentation model, resection slides were intentionally chosen to train 
our model to ensure that the final device was able to generalize on new datasets and no bias was introduced into 
the feature selection at this stage. As tissue on colon resection slides are typically much larger and have different 
composition compared to colon biopsy slides, a model that performs equally well on both types of slides can be 
assumed to generalize well over new data.

The ground truth annotations used in the training dataset for the slide classification model was created by two 
pathologists analyzing the WSIs. Slides were classified as either “high risk” (contains sign of adenocarcinoma or 
dysplasia) or “low risk” (contains normal histology/inflammation/reactive changes without signs of adenocar-
cinoma or dysplasia). Disagreements between pathologists were solved through discussion. Upon agreement, 
this final diagnosis was utilized as the ground truth (Fig. 2).

Validation protocols. The fully trained segmentation model was applied to all 105 WSIs. The segmentation 
results were aggregated to obtain numeric features for each slide. Features were selected from an ensemble of 
potential features based on their relative impact on the slide classification. These were: (1) the total area classified 
as either adenocarcinoma or dysplasia by the segmentation model with a prediction certainty of greater than 
70% (this area is expressed as a percentage of the total tissue), (2) the average prediction certainty for adenocar-
cinoma or dysplasia objects weighted by their areas, (3) an additional Boolean flag that was set to 1 if the slide 
had adenocarcinoma or dysplasia predictions with a prediction certainty of greater than 85% that cover area 
of at least 0.1  mm2, and (4) the bottom 1-percentile of adenocarcinoma or dysplasia predictions weighted by 
their areas. Once these numeric features were obtained, fivefold cross validation was applied and an ensemble of 
models was trained, tuned, and compared. The model and hyperparameter combination with the optimal cross 

Figure 1.  A sample analysis on a whole slide image (WSI). Left: original image. Right: the segmentation model 
highlighted regions of the WSI as (1) likely benign or normal (green), (2) likely dysplastic (orange), and (3) 
likely malignant (red). The AI model also segmented blood vessels (pink) and inflammation (yellow), and these 
segmentations were taken into account for slide labeling.

Table 1.  Data augmentations applied during training.

Augmentation method Details

Rotation Images were randomly rotated by 0°, 90°, 180°, or 270° with equal probability

Mirroring Images were randomly mirrored along either the horizontal axis, the vertical axis, or neither axis with equal 
probability

Contrast Increases or decreases the contrast of an image by shifting pixel values either away from or towards the mean 
intensity of the image, respectively, by a uniformly sampled random multiplicative factor between 0.7 and 1.3

Brightness Increases or decreases the brightness of an image by increasing or decreasing the pixel values, respectively, by a 
uniformly sampled random multiplicative factor between 0.7 and 1.3

H&E color augmentation

The image is transformed from the RGB color space into the H&E color space so the first image channel now 
corresponds to the intensity of the hematoxylin and the second to the eosin stains. These two channels are now 
modulated by adding or subtracting uniformly sampled random numbers between − 0.05 and 0.05 to each 
channel. The image is then converted back to the RGB color space

This augmentation is meant to simulate the effects of variability in the staining intensity

Gaussian noise Every pixel is additively modulated by a normally distributed number (sigma = 0.1). This is meant to simulate 
various digital image artifacts that can occur during the scanning process

Gaussian blur A Gaussian blur effect is applied to the entire image (radius = 0.1) to simulate microscope images that may be 
slightly out of focus
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validation performance, a gradient boosting classifier, was selected. Inputs to these models were the features 
described in the previous step and the output was a binary classification into high risk or low risk. The highest 
performing model with greatest accuracy was selected to be trained and finalized on the entire dataset consisting 
of 105 WSIs.

Declarations. We confirm that all methods were carried out in accordance with relevant guidelines and reg-
ulations. All experimental protocols were approved by the SingHealth Centralized Institutional Review Board. 
Informed consent was obtained from all subjects and/or their legal guardian(s) prior to having their data used 
in this study.

Results
The composite AI model, consisting of the gland segmentation and slide classification, was fully trained on the 
105 resection WSIs and validated on the separate dataset of 150 biopsy WSIs. The biopsy WSIs were classified 
into high risk and low risk, similar to the resection slides used for training the slide classifier. After obtaining 
the output labels produced by the AI algorithm from the validation set, we compared them to the ground truth 
labels produced by our expert pathologists. We calculated the number of true positives, true negatives, false 
positives, and false negatives. Using these statistics, we then calculated several performance metrics, such as the 
sensitivity, specificity, and area under the receiver-operator characteristic curve (AUC).

Our AI model classified 119 of the 150 biopsies correctly. There were 31 errors consisting of 2 false negatives 
and 29 false positives. With these, the AI model achieved high sensitivity of 97.4% and lower specificity of of 
60.3 with an AUC of 91.7 (Fig. 3). These performance metrics and trade-off between sensitivity and specificity is 
demonstrated in Fig. 4. By changing the prediction threshold to values above 0.7, we could obtain both sensitiv-
ity and specificity values above 80%. This prediction threshold refers to the probability cut-off in which the AI 
classifies a slide as either high risk or low risk. We deliberately set this threshold of 0.7 to suit the operation needs 
of our institution. Such a threshold allows the model to achieve greater sensitivity in detection of malignancy 
and functioning as a triage system. The prediction threshold can be adjusted easily to suit other operational 
requirements as the user deems appropriate.

Discussion
Upon evaluation of the output data from the validation set, its high AUC of 91.7 demonstrates a good concord-
ance between the AI model and the expert pathologist. With a sensitivity of 97.4, it validates our AI model to 
function as a screening tool that minimizes false negatives extensively. This favour of sensitivity over specificity 
shows its usability in assistive workflow and has added practicality into the application of a clinical workflow. 
Since our AI model is designed solely as an assistive tool, the final diagnosis during reporting remains with the 
pathologist. This high sensitivity ensures with greater certainty that all lesions suspicious for malignancy are 
highlighted for further pathological review. This triage system is part of a diagnostic workflow we recommend 
the AI model be implemented in. We also propose four other possible ways in which AI model could be incor-
porated in pathology workflow; it could act as first reader, second reader, triage, and pre-screening (Fig. 5)10,30,31.

Although multiple studies have reported the role of AI in colorectal polyp detection and characterization, our 
study is unique in the usage of segmentation as the output. The prevailing trends in the literature are based mainly 
on heat maps or saliency  maps9,26,32. We believe that segmentation offers significant advantages over heatmaps. In 
segmentation, WSIs are split apart into small patches which are analysed by an AI algorithm. These segmentation-
based annotations are individually more detailed, have more intuitive presentation of results to pathologists and 
enable pathologists to derive more insightful quantitative information from the WSIs  segment11,27. There is also 

Figure 2.  Labelling of “high-risk” (red) versus “low-risk” (green) regions based on the ground truth. A tile is 
labeled high-risk if there is overlap with any amount of high-risk ground truth annotations. Otherwise, the tile 
is labeled as low-risk. In this example, the highlighted tile would be labeled high-risk. The same rule was also 
applied to AI annotations. If a tile contains any amount of high-risk annotation given by AI, the tile is labeled as 
high-risk by AI, and low-risk otherwise.
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more explicability behind prediction made by the system. Segmentation also allows for calculation of tumor area 
and higher potential for biomarker discovery while allowing pre-annotation of whole-slide images using  AI33. 
Finally, it is also more versatile and is able to segregate more elements on the slide, which means we can view 
multiple parameters on a single  image1. For example, in addition to being able to segment the colonic tissue into 
three main categories: likely benign or normal (green), likely dysplastic (orange), and likely malignant (red), our 
AI system also segments additional structures such as blood vessels (pink) and inflammation (yellow) (Fig. 1). 
Additional parameters can be easily programmed into our algorithm, allowing for more detailed information.

By having separate training and validation sets, we have avoided overfitting and reduced bias in our study. 
We have also compared our F1 scores over existing segmentation algorithms with similar convolutional neural 
network architecture (Table 2). This composite metric is based on precision and recall sameness which directly 
correlates to the product of sensitivity and specificity in the AI  model25,27. The vast majority of current AI stud-
ies utilize fully-supervised learning based on established datasets which are available as open-source  data1,25,27. 
There are few similar studies that have presented an AI algorithms based on an architecture consisting of two 
independently trained models, though an attempt has been made to separately segment glands from the back-
ground to identify gland  edges1,7. There has also been the development of a neural network architecture that is 
similar to but less efficient than the RCNN architecture which is more commonly used in instance segmentation 

Figure 3.  Performance data from applying the AI model on the validation set of 150 WSIs.

Figure 4.  AUC curve from applying the AI model on the validation set of 150 WSIs. The system achieves an 
AUC of 91.7%.
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 tasks34. This architecture consisted of three arms—one to separate glands from the background, one to identify 
gland edges, and a third one to perform instance bounding box detection.

Our study was not without limitations. Our small sample size is susceptible to heterogenicity of data and that 
could hence diminish it’s applicability to clinical practice in screening a general population. Further studies on 
a larger dataset are underway. Additionally, while the performance data from the validation had a high AUC of 
91.7, it still contained 2 false negatives but 29 false positives. This was largely attributable to the manipulation 
of the prediction threshold values. In a clinical institution with AI model being applied to patient care in the 
context of cancer diagnosis, the system was designed to favour sensitivity over specificity to ensure usability in 
assistive workflow. This allows the AI model to categorize all high grade dysplasia and adenocarcinoma as ‘high 
risk’. This carry-over effect, when applied onto the validation set, resulted in higher false positives as the predic-
tion certainty of the various features were forced into a binary classification, leading to images with relatively 
low prediction certainty of 70% being highlighted as ‘high risk’.

The issue of false positives can be addressed by further training and validation of the composite AI model. It 
is estimated that at least 10,000 WSIs are required to train a weakly supervised AI model for histopathology even 
before accounting for the lack of the heterogeneity encountered in WSIs with regard to staining, anomalies, tissue 
textural variation and  polymorphism12,33,38. Our dataset will need further expansion to a much larger sample 
size and conduct a large-scale multi-site clinical validation to improve the quality of our AI model to reduce 
misclassification rate and achieve better results. Ideally, we intend to eventually remove the machine learning 
classifier and transition entirely into a gland segmentation model. The machine classifier was added to avoid 
overfitting as we expand on our current dataset. Currently, two separate models provide more insight into the 
reasoning behind the slide classification. This allows for easier deconflicting of incongruent diagnoses and closer 
surveillance of the output data as we further refine our AI algorithm.

Additionally, current segmentation output models utilise the most frequent tile classification output as the 
resulting predicted slide label and aggregated to produce a slide-level output but this provides limited contextual 
knowledge with a narrow field of view, while grossly increasing computational  complexity39–43. Such patch-based 
models are not consistent with the manner pathologists analyse slides under microscopes and fail to take into 
consideration the characteristics of the surrounding structures and the overall morphology of the  WSI1. While 
approaches to alleviate this issue such as designing multi-magnification networks exist, they have largely been 

Figure 5.  Proposed workflow for the use of AI in pathology.

Table 2.  Comparison of studies with similar convolutional neural network architecture. GLAS Gland 
Segmentation in Colon Histology Images Challenge Contest, WSI whole slide images.

Study Objectives Dataset F1 score

Xu et al. (2017) Segmentation of colon glands GLAS challenge (165 images) 0.893–0.843

Xu et al. (2016) Nuclei segmentation 537 images from Case Western Reserve University 0.858–0.771

Korbar et al. (2017) Deep Neural Network Visualization to Interpret WSI Analysis 
Outcomes for Colorectal Polyps 176 WSIs from Dartmouth-Hitchcock Medical Center 0.925–0.841

MIMO—Net35 Various studies Various studies 0.913–0.724

DeepLab v3+36 Various studies Various studies 0.862–0.764

SegNet37 Various studies Various studies 0.858–0.783

FCN—837 Various studies Various studies 0.783–0.692

Qritive Colon AI (current study) Glandular segmentation deep learning model to detect high 
risk colorectal polyps

WSIs produced from 294 colorectal specimens from Singapore 
General Hospital 0.974–0.856
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 limited44. Some authors have proposed a variant of a fully conventional network (FCN) which consists of dense 
scanning, anchor layers, or combining FCNs with  CNNs41,42.

Furthermore, more work can be done in regard to pre-processing of slides for increased standardisation, 
including, but not limited to, stain normalization, augmentation and stain  transfer1. While our laboratory’s 
process of H&E staining and scanning with the Philips digital pathology whole-slide scanner satisfies cur-
rent best practice recommendations, it is worth noting that earlier works in digital pathology had previously 
assumed staining attenuated optical density and applied uniformity  assumptions29. However, this has fallen out 
of favour with chemical staining and tissue morphology now being considered in the generation of stain transfer 
 matrices45–48.

Conclusion
In summary, we demonstrated that our unique composite AI model incorporating a glandular segmentation 
deep learning model and a machine learning classifier has promising ability in picking up high risk colorectal 
features. The high sensitivity highlighted its role as a potential screening tool to create initial interpretations and 
assist pathologists to streamline the workflow, thereby effectively reducing the diagnostic burden on pathologists. 
Ongoing calibration and training of our composite AI model will improve its accuracy in risk classification of 
colorectal specimens.

Received: 13 August 2021; Accepted: 24 January 2022
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