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C57BL/6 is the most often used laboratory mouse strain. However, sometimes it is beneficial to cross the transgenic mice on the
C57BL/6 background to the other strain, such as FVB. Although this is a common strategy, the influence of crossing these different
strains on homeostatic expression of cytokines is not known. Here we have investigated the differences in the expression of selected
cytokines between C57BL/6J and C57BL/6JxFVB mice in serum and skeletal muscle. We have found that only few cytokines were
altered by crossing of the strains. Concentrations of IL5, IL7, LIF, MIP-2, and IP-10 were higher in serum of C57BL/6J mice than
in C57BL/6JxFVB mice, whereas concentration of G-CSF was lower in C57BL/6J. In the skeletal muscle only the concentration of
VEGFwas higher in C57BL/6Jmice than in C57BL/6JxFVBmice. Concluding, the differences in cytokine expression upon crossing
C57BL/6 and FVB strain in basal conditions are not profound.

1. Introduction

Laboratory mouse is one of the central model organisms in
modern biology, especially since the sequencing of mouse
genome. Mouse fanciers and scientists created first inbred
strains in the early XX century [1]. Till now numerous
mouse types were introduced. Mouse strains differ not only
in the coat color but also in blood parameters [2], immune
response [3], behavior [4] and reaction to stress [5], and
susceptibility to diseases, that is, atherosclerosis [6], diabetes
[7] and its complications [8], cancer [9], as well as response
to the gene knock-out [10, 11] or transgene expression [12].
Different strains can also vary in lethality after the snake
venom treatment [13].

The strain ontology can be assessed with the analysis of
single nucleotide polymorphisms (SNP) [14] combined with
quantitative trait locus mapping (QTL) and gene expression
analysis [15, 16], as well as with microarray gene expression
profiling [17] or mitochondrial DNA analysis [18]. Of note,
gene targeting by homologous recombination or generation

of multiple gene knock-out animals often requires the cross-
ing of different inbred strains of mice and therefore increases
mouse genetic variability. However, it may also lead to the
phenomenon called hybrid vigor [19] or heterosis [20], which
consists in the higher viability and improved parameters of
heterozygous progeny in comparison to the inbred parents.

One of the examples where crossing different strains
turned out to be beneficial was observed in case heme
oxygenase knock-out animals (Hmox1−/−). Hmox1−/− mice
were created on the background of C57BL/6J mice by Poss
and Tonegawa [21]. Hmox1−/− animals were smaller than
their wild type littermates, had microcytic anemia, reduced
serum iron levels while iron accumulated in kidney and
liver, and showed chronic inflammation and splenomegaly
[21]. What is more, Hmox1+/− mice bred poorly and only
less than 5% of newborns from Hmox1+/− parents were
Hmox1−/− homozygotes [21]. Other group reported even
lower yield (1-2 Hmox1−/− homozygotes in 160–200 pups)
[22]. Therefore, in order to improveHmox1−/+ mice breeding
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(Hmox1−/− female homozygotes are infertile),Hmox1+/−mice
were backcrossed 4-5 times to wild type FVB mice. Such
Hmox1−/− C57BL/6JxFVBmice could bemore easily bred, but
maintained other characteristics of original Hmox1−/− strain
[22]. On the other side, the backcrossing of predominantly
C57BL/6J to FVBmice resulted as well in creation of another
wild type control strain.

Expression of Hmox1 can be driven by nuclear factor
(erythroid-derived 2)-like 2, also known as NFE2L2 or Nrf2,
in response to oxidative stress [23]. Nrf2−/− mice were gen-
erated in 1997 on the ICR mouse strain background [24] and
then backcrossed to C57BL/6 strain for at least 6 generations
[25].Hmox1−/− mice show impaired regeneration in response
to the hind limb ischemia [26]whileNrf2−/−mice showbetter
revascularization due to the inflammatory angiogenesis [27].
However, due to the different genetic background it is difficult
to compare directly effects of Hmox1 and Nrf2 deletion.
Given that Nrf2/HO-1 pathway is recognized as potent anti-
inflammatory mechanism, we were wondering how crossing
of C57BL/6 mice with FVB strain expression of the growth
factors and inflammatory mediators. This is of particular
importance for interpretation of results obtained on mouse
with mixed C57BL/6xFVB genetic background that is often
the case for mouse gene knock-out models.

2. Methods

Animals were handled in a strict accordance with good
animal practice as defined by the relevant national and local
animal welfare bodies. All animal work was approved by the
Local Ethical Committee for Animal Research at the Jagiel-
lonian University. Breeding heterozygote pairs of Hmox1
deficient mice were initially kindly provided by Dr. Anupam
Agarwal, University of Alabama, Birmingham, USA.

2.1. Serum Analysis. Female 5-month-old C57BL/6J and
C57BL/6JxFVB mice were euthanized by overdosage of
xylazine and ketamine. Blood was collected from the vena
cava and after clot formation centrifuged for 10 minutes at
1000 g. Serum was collected and frozen at −80∘C for further
analysis.

Luminex assay (MILLIPLEXMAPMouse Cytokine/Che-
mokine-Premixed 32 Plex, Merck, Millipore) was performed
according to manufacturer’s instructions. The samples were
diluted 1 : 1 in Assay Buffer and incubated with Premixed
Beads overnight at 4∘C. Signal detection was done using
FLEXMAP 3D system.

2.2. Muscle Lysate Analysis. Female and male C57BL/6J
and female C57BL/6JxFVB 2- to 3-month-old mice were
injected with 25 𝜇L saline intramuscularly (to both legs).
Mice were euthanized by isoflurane overdose and gastrocne-
mius muscles were excised and homogenized in lysis buffer
(PBS, 10% Triton, protease inhibitor cocktail tablets, Roche–1
tablet/50mL) in tissue lyser (Qiagen).

Luminex assay (The Cytokine Mouse Magnetic 20-Plex
Panel, Invitrogen) was performed according to manufac-
turer’s instructions. The samples were diluted in lysis buffer

and incubated with Premixed Beads overnight at 4∘C. Sig-
nal detection was done using FLEXMAP 3D system. Total
protein concentration was measured by BCA assay. Briefly,
100 𝜇L of 1 : 50 mixture of CuSO

4

and bicinchonic acid was
added to 5 𝜇L of sample on 96-well plate, incubated 30min
at 37∘C and absorbance was measured at 562 nm on Tecan
microplate reader.

2.3. Statistical Analysis. Statistical analysis was done with
GraphPad Prism software. Data are presented asmean + SEM
of at least 4 measurements. Two-tailed unpaired 𝑡-test was
applied. Results were considered as statistically significant,
when 𝑃 ≤ 0.05 (∗

𝑃

≤ 0.05; ∗∗
𝑃

≤ 0.01).

3. Results

We observed increased concentration of granulocyte colony-
stimulating factor (G-CSF) in the serum of C57BL/6JxFVB
mice in comparison to C57BL/6J mice (374.5 ± 10.73 pg/mL
versus 220.8 pg/mL ± 27.41, 𝑃 = 0.0021, Figure 1). Concen-
trations of other hematopoietic growth factor, macrophage
colony-stimulating factor (M-CSF) was low (<4 pg/mL) and
similar between the two strains. The level of granulocyte-
macrophage colony-stimulating factor (GM-CSF) was not
detectable in the serum. Crossbreeding did not affect the
concentration of vascular endothelial growth factor (VEGF)
in serum (Figure 1).

We observed the same small amounts (∼2 pg/mL) of
proinflammatory cytokines, tumor necrosis factor 𝛼 (TNF𝛼)
and interferon 𝛾 (INF𝛾) in C57BL/6JxFVB and C57BL/6J
(Figure 2).

Out of the whole panel of interleukins measured, only
few were in different concentrations between the strains. IL5,
leukemia inhibitory factor (LIF) and IL7 concentrations were
lower in the serum of C57BL/6JxFVB than in C57BL/6J mice
(Figure 3), however the concentrations of IL7 and LIF were
on the border of detection in C57BL/6JxFVB. Concentrations
of IL-1𝛼, IL9, IL10, IL12p40, IL13 and IL17 were similar
in both strains, whereas concentrations of IL1𝛽, IL2, IL3,
IL4, IL6, IL12p70 were below the detection limit. Most of
the interleukins were at levels of 1–10 pg/mL, whereas IL1𝛼
and IL13 were more abundant (300–500 pg/mL and 50–
120 pg/mL, resp.).

Next we have analyzed the concentration of selected che-
mokines in serum. None of the measured chemokines from
the CCL family, monocyte chemotactic protein 1 (MCP-1),
macrophage inflammatory protein-1 𝛽 (MIP-1𝛽), RANTES,
or eotaxin was different between the compared strains.
However two CXCL chemokines, macrophage inflammatory
protein-2 (MIP-2) and interferon gamma-induced protein
(IP-10), were decreased in serum of C57BL/6JxFVB when
compared to C57BL/6J mice (52.1 versus 77.4 pg/mL and
39.3 versus 58.7 pg/mL, resp.). Concentrations of other CXCL
chemokines, KC, LPS-induced CXC chemokine (LIX) and
monokine induced by gamma interferon (MIG), were the
same in both strains (Figure 4). Macrophage inflammatory
protein-1 𝛼 (MIP-1𝛼) was not detectable in any of the strains.
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Figure 1: Concentrations of growth factors in serum. G-CSF concentration was higher in C57BL/6JxFVB than in C57BL/6J mice.There were
no differences in concentrations of M-CSF and VEGF.
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Figure 2: Concentrations of proinflammatory cytokines in serum. Concentrations of TNF𝛼 and INF𝛾 did not differ between C57BL/6JxFVB
and C57BL/6J mice.

Finally, we evaluated the expression of several cytokines
in the lysates from the gastrocnemius muscle. Cytokines
which were in different concentrations in plasma in
C57BL/6JxFVB and C57BL/6J, IL5 and IP-10, were at
the same concentration in the muscle in both strains.

We observed no differences in the concentrations of
GM-CSF, IL1b, IL10, MCP-1 and KC in the muscles of
C57BL/6JxFVB and C57BL/6J. However, the expression
of vascular endothelial growth factor (VEGF) was lower
in C57BL/6JxFVB than in C57BL/6J. At the same time
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Figure 3: Continued.
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Figure 3: Concentrations of interleukins in serum. Concentrations of IL5, IL7, and LIF were higher in C57BL/6J mice than in C57BL/6JxFVB
mice. Concentrations of IL-1𝛼, IL9, IL10, IL12p40, IL13, and IL17 did not differ between C57BL/6J and C57BL/6JxFVB mice. Dashed line
indicates the detection limit.

concentration of another proangiogenic cytokine, basic
fibroblast growth factor (bFGF), was unchanged (Figure 5).

4. Discussion

The presented study revealed the degree of changes within
concentration of inflammatory mediators in serum and
muscles between C57BL/6J strain and mixed C57BL/6JxFVB
strain.

It is widely accepted that various mouse strains are
phenotypically different. The differences between commonly
used mouse strains are also visible on genomic level. Sig-
nificant gene content variation characterizes the genomes
of inbred mouse strains [28, 29] and includes large dele-
tions and amplifications observed between strains.Therefore,
when interpreting experimental results one should take into
account a possible influence of genetic background of studied
mouse strain. This is especially important when choosing
controls for knock-out genetic mouse model.

Several phenotypical differences were observed between
C57BL/6 and FVB strains. C57BL/6 mice are more sus-
ceptible to anesthetic agents, pentobarbital, ketamine, and
nitrous oxide in comparison to FVB mice [30]. Mam-
mary tumors develop later in MMTV-PyMT model on
C57BL/6J background than on FVB/NJ background [31].
Osteoblasts isolated from C57BL/6 and C3H/HeJ male mice
had higher expression and activity of alkaline phosphatase
than osteoblasts isolated from female mice, but such differ-
ence was not observed in FVB and BALB/c strains [32].

Differences in expression of cytokines between the strains
were also reported. For example, profiles of serum cytokines
were different both in control mice, as well as after induc-
tion of experimental immune thrombocytopenia between
C57BL/6J and BALB/c [33].

C57BL/6 strain is commonly used for generation of novel
knock-out animal models. However, this strain possesses
features that may be unfavorable in given experimental set-
tings comparing to other strains. FVB/N strain is frequently
used as a background for transgenic mouse models due to

its high fertility and large litters [34, 35]. Therefore, knock-
out animals on C57BL/6 background that are hard to breed
are often crossed with FVB/N strain to improve their prop-
agation. Accordingly, poor breeding of C57BL/6 Hmox1+/−
mice was improved after crossing with FVB [22]. Crossing of
Hmox1+/− mice which were predominantly on the C57BL/6
background resulted in Hmox1−/− offspring in the number
of 2–6.25% of expected mice from Mendelian ratio [22]. In
our laboratoryHmox1−/− pups are 5.1% of delivered newborns
when crossing C57BL/6JxFVB Hmox1 heterozygotes, what
is in consistence with the original report [22]. We could
further increase efficiency of Hmox1-/- mouse generation to
20.1% of delivered pups when Hmox1−/− males are crossed
with Hmox1+/− females. One should be aware, however, that
manipulating the background may influence the phenotype
of the transgenic animal. Different phenotype of the same
mutation in different strains gives the opportunity to choose
the strain which better resembles the human disease. In the
model of hereditary inclusion body myopathy (HIBM) the
GneM712T/+ transgenic mice of C57BL/6 strain developed
severe kidney dysfunction and died within few days after
birth [36]. Kidney dysfunction is not observed among HIBM
patients with GNE mutations, so the mouse model did not
reflect properly the human disease. After crossing with FVB,
the GneM712T/M712T glomerular disease was less pronounced
andmice survived longer, retaining skeletalmuscle pathology
[36].

Despite the fact that crossing genetic mouse models
on C57BL/6 background with FVB mice helps to avoid
limitations, is it has not been studied how such strategy
influence the expression of inflammatory mediators. Given
that crossing to FVB strain partially rescued the embryonic
lethality of Hmox1 deficiency and glomerular disease of
transgenic GneM712T/M712T mouse we addressed this question
in the presented work.

We found several differences in cytokine concentra-
tion in serum between the C57BL/6J and the mixed
strain C57BL/6JxFVB. IL5 concentration was lower in
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Figure 4: Continued.
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Figure 4: Concentrations of chemokines in serum. Concentrations ofMIP-2 and IP-10 were higher in C57BL/6J mice than in C57BL/6JxFVB
mice. Concentrations of MCP-1, MIP-1𝛽, RANTES, eotaxin, KC, LIX, and MIG did not differ between C57BL/6J and C57BL/6JxFVB mice.
Dashed line indicates the detection limit.

C57BL/6JxFVB in comparison to the C57BL/6J. However
we have not seen any differences in the levels of the same
cytokine family members, GM-CSF and IL3. Out of the
common cytokine receptor gamma-chain family, only IL7
was affected, concentrations of IL2, IL4, and IL9 remained
unchanged. We observed smaller concentration of LIF in
serum of C57BL/6JxFVB than in C57BL/6J mice. Level of
IL6, member of the same family as LIF, was similar in both
mouse strains. However concentrations of these cytokines
are very small, on border of detection limit and therefore
they may not have the biological significance. The important
difference seems to occur in case of G-CSF. C57BL/6JxFVB
mice had 1.7x higher concentration of G-CSF than C57BL/6J
mice (374.5 versus 220.8 pg/mL, resp.). G-CSF is important
for neutrophil precursors proliferation and differentiation,
and mature neutrophils release from the bone marrow to the
blood [37, 38]. Difference in G-CSF concentration between
the strains can supposably affect granulocyte function and
their mobilization in response to injury or infection, as well
asmobilization of hematopoietic stem cells (HSC).This could
be especially important, as C57BL/6 mice are known to be
“poor mobilizers” [39].

In the earlier mentioned work by Valles-Ayoub et al. sur-
vival of hereditary inclusion body myopathy GneM712T/M712T
transgenic mice was significantly improved by crossing the
original C57BL/6 background with FVB strain [36]. Inter-
estingly, Volpi et al. reported the increased concentration
of VEGF-A

165b in the muscle biopsies from patients with
idiopathic inflammatory myopathies, among them sporadic
inclusion body myositis (IBM) [40]. Our results show the
lower concentration of VEGF in the muscle of mixed
C57BL/6JxFVB strain in comparison toC57BL/6J.Thismight
contribute to the less severe phenotype of the disease in
GneM712T/M712T transgenic mice on the mixed background.

Differential expression of cytokines can influence the
results of various in vivo experiments. It should be also taken
into consideration when the cells isolated from mice are

cultured ex vivo in the presence of cytokines. Possibly, for cells
isolated from some of the strains different concentrations of
supplemented cytokines may be needed to induce differenti-
ation or functional activity.

5. Conclusions

Considering significant genetic differences between various
mouse strains it could be expected that concentration of
proinflammatory cytokines in often used C57BL/6JxFVB
mixed strain will be also affected. However our study showed
that crossbreeding of C57BL/6J with FVB mice did not affect
majority of cytokines in serum and skeletal muscle. The only
cytokines that were significantly different between C57BL/6J
and mixed C57BL/6JxFVB strain include G-CSF concentra-
tion in serum and VEGF concentration in gastrocnemius
muscle. Therefore findings of the study should be considered
when using this mixed background in hematological studies
due to different G-CSF concentrations in serum and myopa-
thy and muscle regeneration studies due to the different
concentrations of VEGF in muscles.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors thank Ewa Werner, Elżbieta Śliżewska, Karolina
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