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Structure of the Dicer-2–R2D2 heterodimer 
bound to a small RNA duplex

Sonomi Yamaguchi1, Masahiro Naganuma2,3, Tomohiro Nishizawa4, Tsukasa Kusakizako1, 
Yukihide Tomari3,5 ✉, Hiroshi Nishimasu1,6,7 ✉ & Osamu Nureki1 ✉

In flies, Argonaute2 (Ago2) and small interfering RNA (siRNA) form an RNA-induced 
silencing complex to repress viral transcripts1. The RNase III enzyme Dicer-2 
associates with its partner protein R2D2 and cleaves long double-stranded RNAs to 
produce 21-nucleotide siRNA duplexes, which are then loaded into Ago2 in a defined 
orientation2–5. Here we report cryo-electron microscopy structures of the Dicer-2–
R2D2 and Dicer-2–R2D2–siRNA complexes. R2D2 interacts with the helicase domain 
and the central linker of Dicer-2 to inhibit the promiscuous processing of microRNA 
precursors by Dicer-2. Notably, our structure represents the strand-selection state in 
the siRNA-loading process, and reveals that R2D2 asymmetrically recognizes the end 
of the siRNA duplex with the higher base-pairing stability, and the other end is 
exposed to the solvent and is accessible by Ago2. Our findings explain how R2D2 
senses the thermodynamic asymmetry of the siRNA and facilitates the siRNA loading 
into Ago2 in a defined orientation, thereby determining which strand of the siRNA 
duplex is used by Ago2 as the guide strand for target silencing.

The specialized RNase III enzyme Dicer has a central role in the pro-
duction of small RNAs, such as siRNAs and microRNAs6,7 (miRNAs). 
Drosophila has two Dicer enzymes, Dicer-1 and Dicer-2, which associate 
with their double-stranded RNA (dsRNA)-binding proteins Loqs-PB 
and R2D2 and cleave short hairpin miRNA precursors (pre-miRNAs) 
and long dsRNA substrates to produce miRNA and siRNA duplexes, 
respectively2,8. Subsequently, miRNA duplexes are loaded into Ago1 and 
induce deadenylation, decay and/or translational repression of their 
endogenous mRNA targets9,10. By contrast, siRNA duplexes are loaded 
into Ago2 and facilitate nucleolytic cleavage of genetic invaders, such 
as viral transcripts and transposable elements11–16.

The Dicer-2–R2D2 heterodimer has critical roles in both siRNA pro-
duction and siRNA loading onto Ago2. Dicer-2–R2D2 processively 
cleaves long dsRNA substrates in an ATP-dependent manner to pro-
duce 21-nucleotide (nt) siRNA duplexes4,5. Subsequently, Dicer-2–R2D2 
re-associates with an siRNA duplex, which is then loaded into Ago2 with 
the aid of the Hsc70/Hsp90 chaperone machinery17–21. R2D2 contributes 
to determining the specificities in the siRNA production and siRNA load-
ing. Dicer-2 processes pre-miRNAs inaccurately in vitro, but R2D2 inhibits 
the promiscuous pre-miRNA processing by Dicer-2 (ref. 5). Dicer-2–R2D2 
efficiently binds highly paired siRNA duplexes, but not miRNA duplexes 
with central mismatches, thereby preventing the inappropriate loading 
of miRNA duplexes into Ago2 (ref. 22). Notably, Dicer-2–R2D2 binds an 
siRNA duplex in a fixed orientation: the more thermodynamically stable 
5′ end of the siRNA duplex is located near R2D2, whereas the other 5′ end 
with the weaker base-pairing stability is positioned near Dicer-2 (ref. 3). 
In general, Ago2 uses the siRNA strand with the less thermodynamically 
stable 5′ end as the guide strand for target silencing23,24, whereas the 

other strand in the siRNA duplex is cleaved by Ago2 and discarded as 
the passenger strand25. Thus, the Dicer-2–R2D2 heterodimer senses the 
siRNA thermodynamic asymmetry and transfers the siRNA duplex into 
Ago2 in a defined orientation, thereby determining which strand of the 
siRNA duplex is used by Ago2 as the guide strand.

Previous structural studies of the Dicer enzymes from Giardia intes-
tinalis, human (Dicer), Drosophila (Dicer-2) and Arabidopsis (DCL1 and 
DCL3) provided insights into their substrate recognition and cleav-
age mechanisms26–31. However, it remains unknown how Dicer-2–R2D2 
selectively cleaves dsRNA substrates to produce siRNA duplexes, senses 
the siRNA thermodynamic asymmetry, and facilitates the loading of an 
siRNA duplex onto Ago2 in a fixed orientation. In this study, we solved 
the high-resolution cryo-electron microscopy (cryo-EM) structure of the 
Dicer-2–R2D2–siRNA complex, and provide mechanistic insights into 
dsRNA cleavage and siRNA loading by the Dicer-2–R2D2 heterodimer.

Overall structure
An asymmetric let-7-derived siRNA can be loaded by Dicer-2–R2D2 
into Ago2 in a fixed orientation in vitro21. To reconstitute the Dicer-2–
R2D2–siRNA complex in the pre-loading state, we mixed the purified 
Dicer-2–R2D2 heterodimer with the let-7 siRNA duplex, and then puri-
fied the ternary complex on a gel-filtration column. We determined the 
cryo-EM structures of the Dicer-2–R2D2 heterodimer and the Dicer-2–
R2D2–siRNA complex at 3.3 Å resolution (Extended Data Fig. 1a–h and 
Supplementary Table 1).

The present structures illuminated the detailed architectures of the 
individual domains and interdomain linkers of Dicer-2, which were not 
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visible in the previous cryo-EM reconstructions at approximately 7 Å 
resolution28, and revealed that Dicer-2 comprises an amino-terminal 
helicase domain, a DUF283 domain, a platform–PAZ domain, two RNase 
III domains (RIIIa and RIIIb) and a carboxy-terminal dsRNA-binding 
domain (CRBD) (Fig. 1a–e and Supplementary Video 1). The helicase 
domain consists of the Hel1, Hel2 and Hel2i domains, and a pincer-like 
helix. The platform and PAZ domains are linked by a connector helix. 
The RIIIa and RIIIb domains form an intramolecular dimer to create the 
central RNase III active site. The RIIIa domain interacts with the con-
nector helix and the DUF283–platform linker (Extended Data Fig. 2a), 
whereas the RIIIb domain interacts with the Hel1, DUF283 and CRBD 
domains (Extended Data Fig. 2b). Our high-resolution structures further 
revealed the presence of an α-helical domain inserted within the RIIIa 
domain (referred to as RIIIi) and a prominent linker region between 
the PAZ and RIIIa domains (referred to as the central linker) (Fig. 1a,d).  
The RIIIi domain interacts with the DUF283–platform linker and the plat-
form domain (Extended Data Fig. 2c). Notably, the central linker is mostly 
ordered and extensively interacts with the eight domains (Hel1, Hel2i, 
Hel2, platform, PAZ, RIIIa, RIIIb and CRBD) of Dicer-2 and R2D2 (Fig. 1d 
and Extended Data Fig. 2d–f). The central linker regions are highly con-
served among the Dicer-2 orthologues, but not the miRNA-producing 
Dicers (human Dicer and Drosophila Dicer-1) (Extended Data Fig. 3a,b). 
R2D2 comprises two dsRNA-binding domains (RBD1 and RBD2) and a 
carboxy-terminal domain (CTD) (Fig. 1b,d). The three domains adopt 
dsRNA-binding domain folds with an αβββα topology.

The Dicer-2–R2D2–siRNA structure revealed two RNA duplex mol-
ecules: one bound to the helicase domain of Dicer-2 and the other 
bound to R2D2 (Fig. 1c–e, Extended Data Fig. 4a). The Dicer-2-bound 
RNA duplex was not well resolved in the density map (Extended Data 
Fig. 4b), suggesting that it does not bind stably to the helicase domain of 
Dicer-2. Since the density was ambiguous but fitted to the unstable end 

relative to the stable end of the RNA duplex, we modelled the nucleo-
tides at the unstable end (nucleotides g1–5 and p15–21 in Fig. 1c) into 
the density. Nonetheless, the guide and passenger strands cannot be 
functionally defined at the dicing step17, so we do not discriminate 
between the two strands hereafter. By contrast, the R2D2-bound RNA 
duplex (except for nucleotides g21 and p21) was well resolved in the 
density map (Extended Data Fig. 4c), enabling us to unambiguously 
model the guide and passenger strands. These observations indicate 
that the RNA molecules bound to Dicer-2 and R2D2 represent a dsRNA 
substrate at the initial recognition state in the dicing process and an 
siRNA product at the strand-selection state in the loading process, 
respectively. Thus, we refer to the RNA molecules bound to Dicer-2 
and R2D2 as dsRNA and siRNA, respectively.

Structural changes upon siRNA binding
A structural comparison of Dicer-2–R2D2 and Dicer-2–R2D2–siRNA 
revealed that, although their overall structures are similar, the central 
linker becomes ordered and interacts with Dicer-2 CRBD and R2D2 
RBD2 upon siRNA binding (Extended Data Fig. 5a–c). R2D2 RBD1 in 
the Dicer-2–R2D2 structure was not resolved in the density map 
(Extended Data Figs. 1g and 5a), suggesting that RBD1 is highly mobile 
in the siRNA-unbound state. By contrast, RBD1 becomes ordered and 
interacts with RBD2 in the Dicer-2–R2D2–siRNA structure (Extended 
Data Figs. 1h and 5b–d), indicating a structural change in R2D2 upon 
siRNA binding.

Interaction between Dicer-2 and R2D2
The Dicer-2 Hel2i domain interacts with the R2D2 CTD domain through 
hydrophobic and electrostatic interactions (Fig. 2a), consistent with 
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previous studies indicating that Dicer-2 binds R2D2 via its helicase 
domain32,33. In particular, R324 and E331 of Dicer-2 form salt bridges with 
D288 and R223 of R2D2, respectively (Fig. 2a). Indeed, the R324E/E331R 
mutations substantially reduced the interaction between Dicer-2 and 
R2D2 (Fig. 2b). Furthermore, the central linker hydrophobically inter-
acts with Dicer-2 Hel2/Hel2i/CRBD and R2D2 RBD2/CTD. Specifically, 
Y1089, Y1109, V1105 and Y1103 in the central loop interact with the RBD2 
domain of R2D2 (Fig. 2a). The Dicer-2 mutant with a truncated central 
linker (residues 1082–1115) bound to R2D2 less efficiently (Fig. 2b), 
confirming the involvement of the central linker in R2D2 binding.  
The Dicer-2 mutant lacking the central linker (residues 1023–1187) was 
not expressed in insect cells as a soluble protein (Fig. 2b), suggesting 
that the central linker is essential for the structural integrity of the 
Dicer-2 protein.

dsRNA recognition by Dicer-2
The helicase domain of Dicer-2 adopts a C-shaped structure similar to 
that of RIG-I34, and contains a canonical ATP-binding site formed by P29–
T35 (motif I), D139–C141 (motif II), and R494–R496 (motif VI) (Extended 
Data Fig. 6a–e), consistent with the ATPase activity of Dicer-2 (refs. 4,5). 
F225 forms a hydrophobic core in the Hel2 domain (Extended Data 
Fig. 6f), explaining why the F225G mutation abolished Dicer-2-mediated 
siRNA production28. RIG-I contains a carboxy-terminal regulatory 
domain, which is connected to the Hel2 domain with the V-shaped 
pincer helix (Extended Data Fig. 6c). By contrast, the helicase domain 
of Dicer-2 lacks the carboxy-terminal regulatory domain and has a 
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shorter pincer-like helix (Extended Data Fig. 6b). In the Dicer-2–R2D2–
siRNA structure, dsRNA is recognized by V67, G90, H147 and K177 in the 
Hel1 domain of Dicer-2 in a sequence-independent manner (Extended 
Data Fig. 6g), similar to the blunt-end dsRNA in the Dicer-2–dsRNA 
structure28 (Extended Data Fig. 6h). These structural observations are 
consistent with previous studies indicating that the Dicer-2 helicase 
domain initially recognizes both long dsRNA substrates with a blunt 
end and a 2-nt 3′-overhanging end in the dicing process28,35,36.

dsRNA cleavage by Dicer-2
The Dicer enzymes recognize the 5′-monophosphate and 3′-overhang 
of dsRNA substrates, using a basic pocket in the platform domain 
(5′-pocket) and a hydrophobic pocket in the PAZ domain (3′-pocket), 
respectively27,30,31. The present structure revealed that Dicer-2 has both 
5′- and 3′-pockets similar to those of human Dicer and Arabidopsis DCL3 
(Fig. 3a–c and Extended Data Fig. 7a–f). A previous mutational analysis 

indicated that H743 and R943 in the 5′-pocket are involved in siRNA 
production37.

The RNase III domain of Dicer-2 is structurally similar to those of 
human Dicer29 and Arabidopsis DCL331, and contains the active sites 
formed by conserved acidic residues (E1213, D1217, D1368 and E1371 
in RIIIa and E1472, D1476, D1614 and E1617 in RIIIb) (Fig. 3a–c). A struc-
tural comparison of Dicer-2–R2D2 with DCL3–dsRNA suggested that 
Dicer-2 recognizes the 5′-monophosphate of dsRNA substrates in the 
5′-pocket and cleaves the dsRNAs 21 nt away from the 5′ end in the RIIIb 
active site (Extended Data Fig. 8a,b), consistent with a previous pro-
posal37. The modelled dsRNA sterically clashes with the helicase and 
CRBD domains of Dicer-2 (Extended Data Fig. 8b), suggesting that 
these domains undergo structural rearrangements upon the binding 
of dsRNA substrates. Supporting this notion, in the Dicer-2 structure 
predicted by AlphaFold2 (ref. 38), the helicase domain is arranged 
similarly to that in the DCL1–dsRNA structure30 and interacts with the 
DUF283 domain (Extended Data Fig. 8c,d). Furthermore, a comparison 
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of Dicer-2–R2D2 with human Dicer–TRBP–pre-miRNA suggested that 
R2D2 could sterically clash with a modelled pre-miRNA substrate 
(Extended Data Fig. 9a–c), explaining why R2D2 inhibits promiscu-
ous pre-miRNA processing by Dicer-2 (ref. 5).

siRNA strand selection by R2D2
The present structure revealed that R2D2 fixes the siRNA duplex in a 
defined orientation (Fig. 4a,b and Extended Data Fig. 10a). The central 
region (nucleotides g5–15 and p5–15) and the stable end (nucleotides 
g16–20 and p1–4) of siRNA are recognized by R2D2. By contrast, the 
unstable end (nucleotides g1–4 and p16–20, containing a U–U pair) 
is not recognized by either the 3′- or 5′-pocket of Dicer-2, and instead 
is exposed to the solvent. The central region of siRNA is extensively 
recognized by RBD1 (Q11, R50, K52, R53, K56 and H57) and RBD2 (S124, 
P123, K145 and K147) of R2D2 through sugar–phosphate backbone 
interactions (Fig. 4c), consistent with a previous study showing that 
Dicer-2–R2D2 preferentially binds an siRNA duplex without central 
mismatches22. Notably, the 1-nt 3′-overhang at the siRNA stable end 
is anchored by the RBD2 and CTD of R2D2 (Fig. 4d and Extended 
Data Fig. 10b). The 5′-phosphate group of the nucleotide p1 interacts 
with R101 and R150 of R2D2, consistent with a previous study show-
ing that Dicer-2–R2D2 preferentially binds an siRNA duplex with a 
5′-phosphate3. The ribose and nucleobase moieties of the nucleotide 
g20 stack with K98 and W205 of R2D2, respectively (Fig. 4d). Y204 in 
the second α-helix (α2) in CTD stacks with R101 in RBD2, stabilizing 
the RBD2–CTD interface.

To validate our structural findings, we performed photocrosslinking 
assays, using siRNA duplexes containing 5-iodouracil at position 20 of 
the guide strand (g*) or the passenger strand (p*) (Fig. 4e). The guide 
and passenger strands were crosslinked to R2D2 and Dicer-2, respec-
tively (Fig. 4f), as in a previous study3, consistent with our structural 
finding that the stable and unstable ends of the bound siRNA duplex 
are located in the vicinities of R2D2 (CTD) and Dicer-2 (PAZ), respec-
tively. Whereas the K98A mutation did not affect the crosslinking with 
the siRNA duplexes, the W205A mutation and the CTD α2 deletion 
abolished the crosslinking of g* to R2D2, but not that of p* to Dicer-2 
(Fig. 4f), confirming that the siRNA stable end is located near W205. 
Notably, the CTD α2 deletion increased the crosslinking of g* to Dicer-2 
(Fig. 4f). These results indicated that more siRNA duplexes bind to the 
CTD α2 deletion mutant in the opposite orientation, thereby highlight-
ing the contribution of the CTD α2 to the asymmetrical siRNA binding. 
An siRNA duplex with a 1-nt 3′-overhang was similarly crosslinked to 
R2D2 (Extended Data Fig. 10c), consistent with the observation that U21 
of the siRNA is disordered and not recognized by R2D2 in the present 

structure (Extended Data Fig. 10b). A blunt-end siRNA duplex was also 
crosslinked to R2D2 (Extended Data Fig. 10c). Consistently, the terminal 
base pair of a modelled blunt-end siRNA stacks with W205 and K208 of 
R2D2 (Extended Data Fig. 10d). These results indicated that R2D2 rec-
ognizes the double-helical conformation, rather than the 3′-overhang 
structure, of an siRNA duplex in the strand-selection process.

Together, our structural and functional data revealed that R2D2 
prefers to bind the double-helical conformation at the end of an siRNA 
duplex in a sequence-independent manner. Consequently, the more 
thermodynamically stable end (with greater double-helical character) 
of the siRNA duplex is preferentially anchored by R2D2 in equilibrium, 
leading to the asymmetric recognition of the siRNA duplex by the 
Dicer-2–R2D2 heterodimer.

Discussion
We determined the high-resolution structure of the Dicer-2–R2D2 heter-
odimer bound to two RNA duplexes, which represent a dsRNA substrate 
in the pre-dicing, initial recognition state and an siRNA product in the 
pre-loading, strand-selection state. The structure provided mechanistic 
insights into dsRNA substrate recognition and siRNA thermodynamic 
asymmetry sensing by Dicer-2–R2D2. On the basis of the present struc-
ture, along with previous functional data, we propose a model of siRNA 
production and siRNA loading by the Dicer-2–R2D2 heterodimer (Fig. 5 
and Supplementary Video 2). The helicase domain of Dicer-2 recognizes 
a long dsRNA substrate and then undergoes a conformational change. 
The dsRNA substrate passes through the helicase domain, and the 5′ 
end of the dsRNA is anchored by the 5′-pocket in the platform–PAZ 
domain. The dsRNA substrate is cleaved in the RNase III active site, 
yielding 21-nt siRNA duplexes. The produced siRNA duplex is released 
from the active site, and then recaptured by R2D2. While the thermo-
dynamically stable end of the siRNA duplex is recognized by R2D2, 
the 5′-phosphate of the siRNA guide strand is exposed to the solvent. 
Notably, Ago2 uses the MID domain to recognize the 5′-phosphate of 
the siRNA guide strand39,40, and the Hsc70–Hsp90 chaperone machinery 
facilitates the docking of Ago2 on the Dicer-2–R2D2–siRNA complex 
in a manner dependent on the recognition of the 5′-phosphate of the 
siRNA guide strand21. These observations suggest that Ago2 adopts 
an open conformation by the action of the Hsc70–Hsp90 chaperone 
machinery, and captures the 5′-phosphate of the guide strand in the 
siRNA duplex bound to Dicer-2–R2D2. In this way, the Dicer-2–R2D2 het-
erodimer senses the siRNA thermodynamic asymmetry and facilitates 
siRNA loading into Ago2 in a fixed orientation, thereby determining 
which strand of the siRNA duplex is used by Ago2 as the guide strand 
for target silencing. Future research should focus on the structural 
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elucidation of the Dicer-2–R2D2–siRNA–Ago2 quaternary complex 
for a complete understanding of the RNA-induced silencing complex 
(RISC) assembly mechanism.
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Methods

Expression and purification of the Dicer-2–R2D2 heterodimer
Dicer-2 and R2D2 were co-expressed in Sf9 insect cells using the 
Bac-to-Bac system (Invitrogen). The gene encoding Dicer-2 (residues 
1–1722) was cloned into a modified pFastBac vector (Invitrogen), in 
which the N-terminal 6×His tag was replaced with an 8×His–GFP tag. 
Dicer-2 was also cloned into the modified pFastBac vector, in which the 
N-terminal 6×His tag and the following TEV protease cleavage site were 
replaced with an 8×His tag, to improve the yield of the purified protein. 
The gene encoding R2D2 (residues 1–311) was cloned into a modified 
pFastBac vector, in which the N-terminal 6×His tag was replaced with 
a 3×Flag tag. The sequences of the DNA oligonucleotides used for the 
vector construction are listed in Supplementary Table 2.

For the preparation of the Dicer-2–R2D2 heterodimer, Sf9 cells at a 
cell density of 3.0 × 106 cells per ml in Sf900 II medium (Thermo Fisher 
Scientific) were co-infected with the baculoviruses expressing 8×His–
GFP-tagged Dicer-2 and 3×Flag-tagged R2D2 and incubated for 72 h at 
27 °C. The cells were then collected and disrupted in lysis buffer (30 mM 
Hepes-KOH, pH 7.4, 100 mM potassium acetate, 2 mM magnesium 
acetate, 0.5% NP-40, and 5% glycerol). The lysate was centrifuged at 
40,000g for 30 min, and the supernatant was incubated with anti-Flag 
M2 affinity resin (Sigma-Aldrich) for 1 h. The resin was washed with 
wash buffer (30 mM Hepes-KOH, pH 7.4, 800 mM NaCl, 2 mM magne-
sium acetate, 1% Triton-X 100, and 5% glycerol), and the protein was 
then eluted with elution buffer (30 mM Hepes-KOH, pH 7.4, 300 mM 
NaCl, 2 mM MgCl2, 0.1 mg ml−1 3×Flag peptide, 20 mM imidazole, and 
5% glycerol). The eluted protein was incubated with Ni-NTA Agarose 
resin (Qiagen), and the protein was eluted with elution buffer (30 mM 
Hepes-KOH, pH 7.4, 300 mM NaCl, 2 mM MgCl2, 300 mM imidazole 
and 5% glycerol). The eluted protein was treated with TEV protease and 
dialysed against dialysis buffer (30 mM Hepes-KOH, pH 7.4, 300 mM 
NaCl, 2 mM MgCl2, 40 mM imidazole and 5% glycerol). The protein 
sample was passed through a Ni-NTA Agarose column, to remove the 
8×His–GFP and TEV protease. The Dicer-2–R2D2 protein was further 
purified on a Superdex 200 10/300 Increase column (GE Healthcare), 
equilibrated in 30 mM Hepes-KOH, pH 7.4, 100 mM KCl, 2 mM MgCl2, 
1 mM DTT and 0.02% glycerol.

For the preparation of the Dicer-2–R2D2–siRNA complex, Sf9 cells 
were co-infected with the baculoviruses expressing 8×His-tagged 
Dicer-2 and 3×Flag-tagged R2D2, and the Dicer-2–R2D2 protein was puri-
fied using anti-Flag M2 affinity resin and Ni-NTA Agarose, as described 
above. The Dicer-2–R2D2 protein was further purified by chromatogra-
phy on a HiLoad Superdex 200 16/600 column (GE Healthcare), equili-
brated with 30 mM Hepes-KOH, pH 7.4, 100 mM potassium acetate, 
2 mM magnesium acetate, 1 mM DTT, and 0.02% glycerol. The purified 
Dicer-2–R2D2 and the let-7 siRNA duplex (Ajinomoto Bio-Pharma) were 
mixed at a 1:2 ratio at room temperature, and the Dicer-2–R2D2–siRNA 
complex was purified by chromatography on a Superdex 200 10/300 
Increase column, equilibrated in 30 mM Hepes-KOH, pH 7.4, 100 mM 
potassium acetate, 2 mM magnesium acetate, 1 mM DTT and 0.02% 
glycerol.

Cryo-EM sample preparation
The Dicer-2–R2D2 complex was concentrated to A280 = 0.6, using a 
Vivaspin centrifugal filter device (100 kDa MW cut-off, Sartorius). The 
sample (3 μl) was applied to a freshly glow-discharged Cu 300 mesh R1/1 
grid (Quantifoil), in a Vitrobot Mark IV (FEI) at 4 °C, with a waiting time 
of 30 s and a blotting time of 4 s under 100% humidity conditions. The 
Dicer-2–R2D2–siRNA complex was concentrated to A280 = 0.9, using 
the Vivaspin centrifugal filter device. The sample (3 μl) was applied 
to a freshly glow-discharged Au 300 mesh R1/1 grid (Quantifoil), in a 
Vitrobot Mark IV at 4 °C, with a waiting time of 30 s and a blotting time 
of 4 s under 100% humidity conditions. The grids were plunge-frozen 
in liquid ethane cooled at liquid nitrogen temperature.

Cryo-EM data collection and processing
Cryo-EM data were collected using a Titan Krios G3i microscope 
(Thermo Fisher Scientific), running at 300 kV and equipped with a 
Gatan Quantum-LS Energy Filter (GIF) and a Gatan K3 Summit direct 
electron detector in the electron counting mode.

Micrographs for Dicer-2–R2D2 were recorded at a nominal magnifi-
cation of ×105,000, corresponding to a calibrated pixel size of 0.83 Å 
at the electron exposure of 15.8 e− per pixel per s for 2.30 s, resulting 
in an accumulated exposure of 53 e− Å−2. The data were automatically 
collected by the image shift method using the SerialEM software41, with 
a defocus range of −1.6 to −0.8 μm, and 2,745 movies were obtained 
and processed using RELION-3.1. From the 2,745 motion-corrected and 
dose-weighted micrographs, 1,688,210 particles were initially picked, 
and extracted at a pixel size of 3.66 Å. These particles were subjected 
to several rounds of 2D and 3D classifications. The selected 324,630 
particles were re-extracted at a pixel size of 1.25 Å, and then subjected 
to 3D refinement, per-particle defocus refinement, beam-tilt refine-
ment, Bayesian polishing42 and 3D classification with the mask focus-
ing on Dicer-2 CRBD and R2D2. The selected 144,979 particles were 
subjected to 3D refinement, and subsequent postprocessing of the 
map improved its global resolution to 3.3 Å, according to the Fourier 
shell correlation (FSC) = 0.143 criterion43. The local resolution was 
estimated by RELION-3.1.

Micrographs for Dicer-2–R2D2–siRNA were recorded at a nominal 
magnification of ×105,000, corresponding to a calibrated pixel size of 
0.83 Å at the electron exposure of 15 e− per pixel per s for 2.30 s, resulting 
in an accumulated exposure of 48 e− Å−2. The data were automatically 
collected by the image shift method using the SerialEM software, with a 
defocus range of −1.6 to −0.8 μm. In total, 3,663 movies were obtained, 
and the beam-induced motion correction, dose-weighting and CTF 
estimation were conducted similarly to those for Dicer-2–R2D2. From 
the 3,663 motion-corrected and dose-weighted micrographs, 2,181,396 
particles were initially picked, and extracted at a pixel size of 4.15 Å. 
These particles were subjected to several rounds of 2D and 3D clas-
sifications. The selected 179,826 particles were then re-extracted at 
a pixel size of 0.99 Å, and subjected to 3D refinement, per-particle 
defocus refinement, beam-tilt refinement and Bayesian polishing. 
The particles were again subjected to 3D refinement, and subsequent 
postprocessing of the map improved its global resolution to 3.3 Å, 
according to the FSC = 0.143 criterion.

Model building and validation
The initial model of Dicer-2–R2D2 was built using Buccaneer44, and the 
model was then manually built using COOT45. The model of the Dicer-2–
R2D2–siRNA complex was built based on the Dicer-2–R2D2 model. 
The density maps were improved with the DeepEMhancer program46.  
The models were refined using Servalcat Refmac5 (ref. 47), with external 
restraints prepared by ProSMART48 and LIBG49. The structures were 
validated using MolProbity50 from the PHENIX package. In the Dicer-2–
R2D2 complex, residues 1–7, 90–94, 254–272, 346–353, 426–435, 539–
553, 693–700, 955–968, 1052–1063, 1120–1129, 1146–1169, 1414–1421, 
1564–1605, 1674–168, and 1721–1722 of Dicer-2, residues 1–2, 70–89, 
164–187, 212–214 and 310 of R2D2 are not included in the final model, 
since these regions are not well resolved in the density map. In the 
Dicer-2–R2D2–siRNA complex, residues 1–7, 255–271, 345–351, 427–435, 
539–553, 606–610, 693–700, 837–840, 955–968, 1042–1082, 1120–1129, 
1146–1170, 1414–1421, 1564–1605 and 1673–1681 of Dicer-2, residues 
1–94, 164–187 and 211–215 of R2D2, nucleotides g6–g21 and p1–p14 of 
the dsRNA, and nucleotides g21 and p21 of the siRNA are not included 
in the final model. The curves representing model versus full, half1 and 
half2 were calculated using Servalcat47. In brief, the final models were 
‘shaken’ by introducing random shifts to the atomic coordinates with a 
root mean squared deviation of 0.3 Å, and were refined against the first 
half map. The statistics of the 3D reconstruction and model refinement 
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are summarized in Supplementary Table 1. The cryo-EM density maps 
were calculated with UCSF ChimeraX51, and the molecular graphics 
were prepared with CueMol (http://www.cuemol.org).

Pull-down experiments
The Dicer-2–R2D2 heterodimer (wild-type or mutant 8×His–Dicer-2 
and 3×Flag–R2D2) was co-expressed in Sf9 cells (ATCC, catalogue no. 
CRL-1711), using the Bac-to-Bac system. The cells were collected by 
centrifugation, and then solubilized in lysis buffer (30 mM Hepes-KOH, 
pH 7.4, 100 mM potassium acetate, 2 mM magnesium acetate, 0.5% 
NP-40, and 5% glycerol). The lysate was centrifuged at 10,000g for 
15 min, and then half of the supernatant was incubated with anti-Flag 
M2 affinity magnetic beads for 1 h. The beads were washed with wash 
buffer (30 mM Hepes-KOH, pH 7.4, 800 mM NaCl, 2 mM magnesium 
acetate, 1% Triton-X 100, and 5% glycerol), and then with lysis buffer 
without NP-40. The beads were treated with SDS–PAGE sample buffer. 
The lysate and the bound proteins were analysed by 5–20% SDS–PAGE. 
Western blotting was performed at 20 V (constant voltage) for 30 min, 
using an Immobilon-P Transfer Membrane (Merck), an EzFastBlot HMW 
(ATTO), and a Trans-Blot Turbo Transfer System (Bio-Rad). After the 
transfer, the membranes were incubated on a tilting shaker with block-
ing buffer (TBST containing 1% skim milk) for 10 min, primary antibod-
ies: anti-Flag antibody (1:2,000) and anti-Dicer-2 antibody (1:1,000) for 
60 min, and horseradish peroxidase-conjugated secondary antibodies: 
goat anti-rabbit IgG (H+L) antibody (1:4,000) and goat anti-mouse IgG 
(H+L) antibody (1:4,000) for 30 min. The chemiluminescence was then 
detected using Luminata Forte Western HRP substrate (Merck) and 
an Amersham Imager 600 (GE Healthcare). R2D2 and Dicer-2 were 
detected with an anti-Flag-antibody (Sigma) and an anti-Dicer-2 anti-
body (Abcam), respectively.

Photocrosslinking experiments
For photocrosslinking experiments, siRNA-1 and siRNA-4 were 
5′-radiolabelled using T4 polynucleotide kinase, and then annealed 
with a 1.5-fold excess of siRNA-2 or siRNA-3 and siRNA-2 (1-nt overhang) 
or siRNA-5 (0-nt overhang), respectively (Supplementary Table 2). 
The 5-iodouracil-containing siRNA duplex (20 nM) and Dicer-2–R2D2 
(40 nM) were incubated for 30 min. The samples (7 μl per well) were 
transferred to a Terasaki plate (Greiner BIO-ONE), and then exposed 
to > 300 nm UV radiation for 60 s, using a UV crosslinker (SP-11 Spot 
Cure, Ushio) with a uniform radiation lens (USHIO) and a long-path 
filter (300 nm, ASAHI SPECTRA), at 15 cm from the light. Aliquots of 
the reaction mixture were transferred into a new tube and mixed with 
SDS–PAGE sample buffer. The samples were analysed by 5–20% SDS–
PAGE, and crosslinked proteins were detected by phosphorimaging.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The structural models and density maps have been deposited in the 
Protein Data Bank under the accession codes 7V6B (Dicer-2–R2D2) 
and 7V6C (Dicer-2–R2D2–siRNA). The raw images have been deposited 
in the Electron Microscopy Public Image Archive under the accession 
codes EMD-31741 (Dicer-2–R2D2) and EMD-31742 (Dicer-2–R2D2–
siRNA).
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Extended Data Fig. 2 | Domain interfaces. (a) DPL–CH–RIIIa interface.  
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(a), human Dicer (PDB: 5ZAL) (b), and DCL3 (PDB: 7VG3) (c). (d–f) 5′- and 3′-pockets of Dicer-2 (d), human Dicer (PDB: 5ZAL) (e), and DCL3 (PDB: 7VG3) (f) (stereo view).
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Extended Data Fig. 8 | Structural comparison between Dicer-2, DCL1, and 
DCL3. (a) Structure of the DCL3–dsRNA complex (PDB: 7VG3). The 
amino-terminal helicase domain is disordered in the structure. (b) Model of the 
Dicer-2–dsRNA complex. The DCL3–dsRNA structure was superimposed onto 
the Dicer-2 structure, based on their RNase III domains, and DCL3 was then 
omitted. Predicted steric clashes are indicated by dashed circles. (c) Structure 
of the DCL1–dsRNA (pri-miRNA) complex (PDB: 7ELD). The carboxy-terminal 

RBDb domain is disordered in the structure. (d) Model of the Dicer-2–dsRNA 
complex. The Dicer-2 structure was predicted by AlphaFold2, and the dsRNA 
and CRBD were modeled based on the DCL3–dsRNA structure. Unstructured 
regions in the RIIIb and CL domains are omitted for clarity. In the model, the 
helicase domain interacts with the DUF283 domain and recognizes the dsRNA 
substrate, as in the DCL1–dsRNA structure.
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Extended Data Fig. 9 | See next page for caption.



Article
Extended Data Fig. 9 | Structural comparison between Dicer-2 and 
human Dicer. (a) Structure of the human Dicer–TRBP heterodimer bound to a 
pre-miRNA (pre-let-7) (PDB: 5ZAL). TRBP is shown as a surface model. RBD1 and 
RBD2 of TRBP are disordered in the structure and indicated by dashed circles. 
The human Dicer–TRBP–pre-let-7 structure represents the pre-miRNA 
substrate recognition state, in which the 2-nt 3′-overhanging end and the 
terminal loop of pre-let-7 are anchored by the Platform-PAZ domain and the 
interface between human Dicer Hel2i and TRBP CTD, respectively.  
(b) Structure of the Dicer-2–R2D2 heterodimer. R2D2 is shown as a surface 
model. RBD1 of R2D2 is disordered in the structure and indicated by a dashed 
circle. (c) Possible steric clash between R2D2 and a pre-miRNA. Dicer-2 initially 
recognizes a long dsRNA substrate using only the helicase domain, whereas 
human Dicer recognizes a pre-miRNA substrate using both the PAZ and 
helicase domains. Based on the hypothesis that, like human Dicer, Dicer-2 

recognizes a pre-miRNA using both the PAZ and helicase domains, we modeled 
a pre-miRNA onto the Dicer-2–R2D2 structure, as follows. The human Dicer–
TRBP–pre-miRNA (pre-let-7) structure was superimposed onto the Dicer-2–
R2D2 structure based on their PAZ domains, and human Dicer and TRBP were 
then omitted. While Dicer-2 and human Dicer commonly associate with their 
partner proteins via their Hel2i–CTD interfaces, conformational differences 
are present in RBD1 and RBD2 of the partner proteins. RBD2 of R2D2 is ordered 
and interacts with the central linker and CRBD in the Dicer-2–R2D2 structure 
(RBD1 is disordered). In contrast, RBD1 and RBD2 of TRBP are disordered and 
may loosely interact with the pre-miRNA in the human Dicer–TRBP–pre-miRNA 
structure. A structural comparison of Dicer-2–R2D2 with human Dicer–TRBP–
pre-miRNA suggested that R2D2 could sterically clash with a modeled pre-
miRNA, explaining why R2D2 inhibits promiscuous pre-miRNA processing by 
Dicer-2.
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2. 1-nt overhang siRNA duplex
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3. blunt-end siRNA duplex
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Extended Data Fig. 10 | Recognition of the siRNA duplex by the Dicer-2–
R2D2 heterodimer. (a) Asymmetric recognition of the siRNA duplex by the 
Dicer-2–R2D2 heterodimer. (b) Recognition of the 1-nt 3′-overhang (G20) of the 
siRNA duplex by R2D2. U21 is disordered in the structure, and a possible 
location of U21 is indicated by a dashed circle. (c) Photocrosslinking 
experiments. Dicer-2 and R2D2 were incubated with 5′-radiolabeled siRNA 

containing 5-iodouracil at position 20 and a 0–2-nt 3′-overhang at the stable 
end. The reaction mixture was analysed by SDS-PAGE, and crosslinked proteins 
were detected using phosphorimaging (n = 3 independent experiments).  
(d) Possible interaction between R2D2 and a blunt-end siRNA. A modeled 
nucleotide complementary to G20 in the guide strand is indicated by an 
asterisk.
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