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Running out of time: the decline of
channel activity and nucleotide activation
in adenosine triphosphate-sensitive
K-channels

Peter Proks, Michael C. Puljung, Natascia Vedovato, Gregor Sachse,
Rachel Mulvaney and Frances M. Ashcroft

Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK

KATP channels act as key regulators of electrical excitability by coupling

metabolic cues—mainly intracellular adenine nucleotide concentrations—to

cellular potassium ion efflux. However, their study has been hindered by

their rapid loss of activity in excised membrane patches (rundown), and

by a second phenomenon, the decline of activation by Mg-nucleotides

(DAMN). Degradation of PI(4,5)P2 and other phosphoinositides is the

strongest candidate for the molecular cause of rundown. Broad evidence

indicates that most other determinants of rundown (e.g. phosphorylation,

intracellular calcium, channel mutations that affect rundown) also act by influ-

encing KATP channel regulation by phosphoinositides. Unfortunately,

experimental conditions that reproducibly prevent rundown have remained

elusive, necessitating post hoc data compensation. Rundown is clearly distinct

from DAMN. While the former is associated with pore-forming Kir6.2 sub-

units, DAMN is generally a slower process involving the regulatory

sulfonylurea receptor (SUR) subunits. We speculate that it arises when SUR

subunits enter non-physiological conformational states associated with the

loss of SUR nucleotide-binding domain dimerization following prolonged

exposure to nucleotide-free conditions. This review presents new information

on both rundown and DAMN, summarizes our current understanding of

these processes and considers their physiological roles.

This article is part of the themed issue ‘Evolution brings Ca2þ and ATP

together to control life and death’.
1. Introduction
KATP channels couple the metabolism of the cell to its electrical activity and

thereby play important physiological roles in multiple tissues [1,2]. In pancrea-

tic b-cells, for example, they couple the blood glucose concentration to insulin

secretion, in neurones they regulate transmitter release, and in the cardiovascu-

lar system they contribute to vascular tone and the response to cardiac ischemic

stress. The channel is an octameric complex of 4 pore-forming Kir6.2 subunits

and 4 regulatory sulfonylurea receptor (SUR) subunits. Both subunits partici-

pate in metabolic regulation of channel activity: ATP binding to Kir6.2 closes

the channel, whereas MgADP binding (or MgATP binding and hydrolysis)

to SUR enhances channel activity [3–6].

An infuriating characteristic of KATP channels (at least from the perspective

of the experimenter) is that their activity declines, seemingly inexorably, follow-

ing patch excision into nucleotide-free solution. This property is known as

rundown and is shared with all Kir channels and many other ion channels.

It reflects the loss of one or more important physiological regulators, crucial

for KATP channel function, upon patch excision. Exactly what causes KATP

channel rundown, and how it can be prevented has been the topic of many
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Figure 1. Rundown and decline of MgADP activation of KATP currents. (a) Representative recordings of macroscopic Kir6.2/SUR1 and Kir6.2-I296L/SUR1 currents at
260 mV in excised patches from Xenopus oocytes. For clarity of comparison, the currents are normalized to their maximal value after patch excision (IMAX).
The dotted line indicates the zero current level and patch excision is marked with an arrow. The methods and solutions used are as described in [6]. (b) Repre-
sentative recording of macroscopic Kir6.2-G334D/SUR1 current at 260 mV in an excised patch from Xenopus oocytes. Repetitive applications of 100 mM MgADP to
the cytosolic side of the membrane are denoted by the bars. The dotted line presents the zero current level. The methods and solutions used are as described in [6].
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investigations. The prevailing view is that it represents the

loss of regulation by the membrane phospholipid phospha-

tidylinositol bisphosphate (PIP2), but other explanations

have been also posited. Furthermore, no means of preventing

rundown that is robust and translates from one laboratory to

another has been identified. Indeed, even in the same labora-

tory, the speed and extent of rundown may vary from patch

to patch or between cell preparations.

Figure 1a illustrates the phenomenon. When the KATP

channel is heterologously expressed in Xenopus oocytes no

channel activity is observed prior to patch excision because

the channels are almost fully blocked by the resting ATP con-

centration in the oocyte. Immediately following patch

excision into nucleotide-free solution, channel activity

increases as ATP is washed away from the intracellular sur-

face of the membrane, reaching a peak within a couple of

seconds. Subsequently channel activity runs down quasi-

exponentially finally stabilizing at a level around 20% of

maximal in this patch. Rundown is observed for all types

of KATP channel including native b-cell and cardiac [7,8]

channels, and recombinant Kir6.2/SUR1 and recombinant

Kir6.2/SUR2 channels expressed in a variety of cell types

[5,9,10].

Rundown is a problem for the researcher because measure-

ments of channel ATP and MgADP/MgATP sensitivity are

most easily performed in excised membrane patches. As a con-

sequence, they are susceptible to errors induced by rundown

and measures must be taken to reduce rundown or correct for

it. Likewise, a second phenomenon—the decline of activation

by Mg-nucleotides (DAMN)—that manifests in excised patches

will influence studies of Mg-nucleotide activation (figure 1b).

Here, we review what is known about rundown and how it

may be prevented. We consider how it may affect the outcome

and interpretation of experiments, and review the extent to

which its effects can be corrected. We demonstrate that run-

down is distinct from the loss of Mg-nucleotide activation

observed in excised patches, and we suggest a mechanistic
explanation for the latter. We briefly also discuss how

understanding rundown (and DAMN) provides important

mechanistic insights into KATP function/regulation.
2. How does rundown affect the single-channel
kinetics?

To assess the effect of rundown on KATP channel gating it is

necessary to measure the single-channel kinetics both before

and after rundown. As rundown is rapid and begins immedi-

ately on patch excision, the former is not possible in the

excised patch. Ideally, therefore, the channel kinetics should

be compared prior to patch excision and following rundown

in the excised patch. However, this cannot be achieved

for wild-type channels, which are strongly blocked in

the cell-attached configuration by ATP present in the cell.

We therefore used channels containing the Kir6.2-G334D

mutation, which are almost completely insensitive to ATP

inhibition [6,11], which activity is almost identical before and

after patch excision (figure 1b), and which rundown with a

time course identical to that of the wild-type channel [6].

Figure 2 shows that channel activity is characterized by long

bursts of openings with both intra- and inter-burst closings.

Prior to rundown there is a single burst state, a single open

state and a single closed state within the burst (both with high

occupancy), and two long interburst closed states that are

entered infrequently. After rundown, occupancy of the intra-

burst open and closed states is substantially reduced. The

mean open time is reduced by 20%, indicating rundown desta-

bilizes the open state of the channel. The frequency, duration and

apparent number of the inter-burst closed states also increases,

implying rundown stabilizes the long closed states of the chan-

nel. The burst distribution now contains two additional short

components (giving a total of three). Since SUR is known to

increase burst duration [12], this may indicate that rundown

destabilizes the interaction of SUR1 with Kir6.2.
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Figure 2. Effect of rundown on single-channel KATP channel properties. (a) Representative 1 min recording of single Kir6.2-G334D/SUR1 channels at 260 mV in the
cell-attached configuration (a, Po ¼ 0.83) and after 5-min after patch excision (b, Po ¼ 0.22). (b) Distributions of channel open times (i), closed times (ii) and burst
duration (iii) before ( pale grey bars) and after (dark grey bars) rundown. The distributions were fitted with probability density functions that gave the following
values for the individual components. Before rundown: mean open time, 2.7 ms; three apparent closed states with mean values of 0.3 ms (98.5%), 2 ms (0.8%) and
12 ms (0.7%); and a single burst state with a mean duration of 120 ms. After rundown: mean open time 2.2 ms; five apparent closed states with mean values
0.3 ms (88.9%), 3 ms (3.3%), 19 ms (4.3%), 82 ms (3.1%) and 650 ms (0.4%); and three apparent burst states with mean durations of 23 ms (66%), 5 ms (20.5%)
and 0.5 ms (13.5%). Vertical lines indicate the mean values for open times, short closed times and the major burst duration component, and illustrate that
rundown has no effect on the intraburst closed times, but reduces the mean open time and burst duration. The methods and solutions used are as described
in [6].
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3. Is sulfonylurea receptor involved in rundown?
Neither SUR1 nor Kir6.2 is correctly trafficked to the mem-

brane in the absence of their partner subunit, owing to the

presence of ER retention tags in both subunits [13]. However,

deletion of the last 26–36 amino acids of Kir6.2 (Kir6.2DC)

removes the retention tag enabling Kir6.2 to express at the

plasma membrane in the absence of SUR [4,13]. Thus

Kir6.2DC channels can be used to assess the effects of run-

down on Kir6.2 alone. KATP channels composed of both

Kir6.2 and SUR subunits, or Kir6.2DC alone, had similar

rundown properties to wild-type channels [4,9]. Thus run-

down is intrinsic to Kir6.2. The extent to which SUR

influences rundown, if at all, has not been quantified. How-

ever, no clear, robust differences in rundown have been

reported in the presence of either SUR1 or SUR2.
4. What causes rundown?
Mechanisms that have been proposed for rundown include

loss of regulation by membrane phospholipids such as phos-

phatidylinositol 4,5-bisphosphate (PI(4,5)P2, here abbreviated

as PIP2), dephosphorylation or proteolysis of the channel,

and loss of interaction with cytoskeletal proteins. It is likely

that several of these mechanisms operate in concert, with

their relative contributions varying with the prevailing con-

ditions. Here, we briefly summarise, in turn, what is known

of each of these mechanisms.

(a) Loss of phosphoinositide regulation
Anionic phospholipids (e.g. PIP2) activate all inward rectifier Kþ

(Kir) channels and degradation of phospholipids by endogen-

ous lipid phosphatases or phospholipases is a well-accepted

mechanism for Kir current rundown in excised membrane
patches. The rate of Kir current rundown varies and is inversely

correlated to the PIP-binding affinity of the channel being

studied, with rundown being faster for channels that bind

PIPs less strongly [14–16].

Sensitivity of KATP channels to phosphoinositide turnover

was first demonstrated in giant membrane patches from

cardiac myocytes, where native Kir6.2/SUR2A channels are

abundant [17]. These channels run down rapidly in excised

patches exposed to nucleotide-free solutions, but following

exposure to intracellular MgATP their activity is (at least

partially) restored, as seen by comparing the current in control

solution before and after ATP application. This increase in

channel activity was mimicked by intracellular application of

PIP2, and reversed by exposure to phospholipase C (PLCb)

or Ca2þ (which presumably activates endogenous PLCs).

Further, MgATP activation was prevented by prior application

of a phosphoinositol-(PI)-specific PLC, suggesting that MgATP

works through endogenous PI kinases. Thus, these data argue

that rundown is due to loss of channel regulation by PIP2, and

that regeneration of PIP2 restores channel activity. Similar

activation by PIP2 has been demonstrated for native KATP

channels in other tissues and for recombinant KATP channels

[18–21]. Importantly, like rundown, phosphoinositides inter-

act with Kir6.2, as evidenced by their ability to activate

Kir6.2DC in the absence of SUR [10,20,21]. This suggests a

conservation of mechanism across the Kir family.

Kir6.2-containing channels have a relatively broad speci-

ficity for phosphoinositides. In addition to PI(4,5)P2, they are

activated by PI(4)P (PIP), albeit at higher concentrations

[18,22]. In agreement with the finding that PIP does not acti-

vate the channel as strongly as PIP2, inhibition of PI(5)K

(which phosphorylates PIP to PIP2) decreases the ability of

MgATP to refresh Kir6.2/SUR2A channels expressed in HEK

cells [23]. Activation of enzymes that degrade phospholipids

[17,18,21], or application of polyvalent cations that chelate
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Figure 3. PIP2- and ATP-binding sites of Kir6.2. Left. Structural model of Kir6.2 based on the X-ray structure of Kir2.2 [25]. The PI(4,5)P2 molecule is positioned as in
Kir2.2. A single subunit is shown in pink and the remaining three are blue. The membrane is shown in grey. The ATP is positioned based on the model by Antcliff
et al. [26]. Right. A different view of the binding sites showing key PIP2-binding residues (R176 and R177, [18]), and the slide helix.
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phosphoinositides to the intracellular membrane surface

[18,20], leads to channel inhibition. Interestingly, activation

of the voltage-sensitive lipid phosphatase CiVSP, which inhi-

bits many other inward rectifier channels does not reduce

KATP currents [22]. This is probably because CiVSP hydrolyses

PIP2 to PIP, which still activates Kir6.2-containing channels.

As described above, rundown of KATP channels is associ-

ated with a decrease in the duration of the open and burst

states and an increase in the frequency and duration of the

inter-burst closed states. It is also accompanied by a very

fast increase in sensitivity to ATP inhibition [10]; this effect

is not always evident, however, presumably because of its

rapidity. Activation by phosphoinositides has the reverse

effect on the channel kinetics [19]. Phosphoinositides also

antagonize the ability of ATP to inhibit KATP channels,

whether native or recombinant [19–21]. They also reduce

the ATP sensitivity of Kir6.2DC without dramatically

affecting Po [21].

Some studies suggest that PIP2 affects ATP sensitivity by

two mechanisms: an indirect effect resulting from the change

in channel kinetics and a direct effect on ATP binding. In

single Kir6.2DC channels, the magnitude of the change

in ATP sensitivity produced by PIP2 is difficult to explain

based on the reported increase in open probability alone

[19]. However, this does not necessarily imply there are

two separate binding sites for PIP2, as both effects could

theoretically be accommodated by PIP2 interaction with a

single site [24]. This question might be explored by analysis

of the atomic structure of the channel in complex with PIP2.

However, no high-resolution structure for the KATP channel

has yet been reported. The atomic structure of the related

Kir channel Kir2.2 in the presence and absence of short-

chain PIP2 firmly establishes a conserved set of amino acids

that form a PIP2-binding site and suggests a mechanism

whereby lipid binding stabilizes the open state of the channel

[25]. Figure 3 illustrates the proposed PIP2-binding site in

Kir6.2, based on this structure. Mutations in residues that

line the site (e.g. R176A, R177A) affect the phosphoinositide

sensitivity of Kir6.2/SUR1, accelerate rundown and reduce
the ability of PIP2 to attenuate ATP inhibition [14,18,21].

The putative PIP2 site is also close to the putative ATP-

binding site [26] (figure 3). Several studies have suggested

that PIP2 can displace ATP from its binding site, and vice
versa [20,24,27,28], but as the sites appear to be structu-

rally distinct this must be via an allosteric interaction or

electrostatic repulsion.

In summary, there is considerable evidence in support

of the idea that rundown is owing to loss of phosphoinosi-

tide regulation. It should be recognized that this does not

necessarily mean PIP2 will dissociate from the channel, as

dephosphorylation to PIP or PI in situ will also lower Po. It

is also worth noting that rundown is associated with a

decrease in Po, so any agonist (or mutation) that increases

Po will mask rundown. However, because rundown owing

to phosphoinositide degradation is a common theme

throughout the Kir family, it remains a strong candidate for

the cause of KATP channel rundown. It should also be

appreciated that channel regulation by PIP2 will help set

the level of channel activity in the intact cell, and that ago-

nists or antagonists that alter the membrane concentration

of PIP2 will also affect KATP channel function [21,29].

Kir6.2-containing channels can also be activated by

long-chain acyl-CoA esters which, like PIP2, reduce channel

inhibition by ATP and slow rundown [15,30,31]. As long-

chain acyl-CoAs act as competitive antagonists of PIP2, it is

presumed that they interact with the same binding site [32].

To what extent channel activity in the cell is influenced by

endogenous acyl-CoAs and how much their loss contributes

to rundown remains unclear.
(b) Gating mutations
A large number of mutations in both Kir6.2 and SUR1 have

been shown to affect KATP channel kinetics [2]. ‘Gating’

mutations that result in a near-maximal open probability

(e.g. I296L) also dramatically slow rundown (figure 1a).

Within Kir6.2, they mainly reside in regions that are thought

to move when the channel opens and closes [2], whereas in
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SUR1, they principally lie in TMD0 or the CL3 linker, regions

that are well established to modulate the Po of Kir6.2 [33,34].

It has been proposed that gating mutations exert their

effect on the channel kinetics by strengthening the interaction

of PIPs with Kir6.2 [35]. The ability of these mutations to slow

rundown would then result from a greatly reduced off-rate

for PIP binding to Kir6.2, which would attenuate PIP dis-

sociation and prolong channel activity. The ability of TMD0

to enhance Po (and slow rundown) has also been proposed

to be mediated via enhanced PIP2 interaction with Kir6.2

[36]. Without binding data these ideas cannot be confirmed.

However, most gating mutations in Kir6.2 lie well outside

the proposed PIP2 binding site(s) on Kir6.2 and no PIP2

binding site has (yet) been identified in SUR1. Thus any

effect of gating mutations on PIP2 binding must be allosteric.

Alternatively, gating mutations may cause modifications in

channel structure that lead to conformational states similar

to those that are produced by PIP binding. This would also

be expected to slow rundown.

Mutations at positions that are thought to be involved in

inter-subunit interactions within Kir6.2 (e.g. E229, E227)

cause rapid inactivation of KATP channels in excised patches

[37,38]. It is not entirely clear whether this rapid inactivation

is simply accelerated rundown or a different phenomenon.

It has been argued that the inactivation seen for R314A and

E229A is not identical to normal rundown as it occurs in

the presence of EDTA, which in these experiments abolished

rundown [37]. Rather, it was suggested inactivation arises

from the loss of stabilizing interactions between an intra-

subunit ion pair that, in the wild-type channel, facilitates

the ability of other positively charged residues to interact

with membrane phosphoinositides.
(c) Dephosphorylation
Ohno-Shosaku et al. [7] first showed that application of

MgATP to the inner membrane surface of an excised patch

not only caused inhibition of b-cell KATP channel activity

but also resulted in a marked increase in channel activity

when ATP was subsequently removed. They attributed this

‘reactivation’ or ‘refreshment’ of channel activity to phos-

phorylation because ATP in the absence of Mg2þ, and the

poorly hydrolysable ATP-analogues AMP-PNP, AMP-PCP

and ATPgS were ineffective. Refreshment is also observed

for Kir6.2DC expressed in the absence of SUR, indicating

that it is intrinsic to Kir6.2 [4].

While phosphorylation is clearly involved in refreshment,

the key question is what gets phosphorylated—the channel

itself, a regulatory protein or membrane lipids such as

PIP2? Regulation of the KATP channel via phosphorylation

of Kir6.2 has been reported for both protein kinase A and

protein kinase C [39,40]. The former enhanced the channel

open probability and the latter led to internalization of the

channel. Effects on rundown were not reported in these

studies. However, refreshment was not prevented by a

range of protein kinase inhibitors, including inhibitors of

PKA and PKC, making it unlikely protein phosphoryla-

tion is involved [41]. By contrast, the lipid kinase inhibitor

wortmannin, which inhibits PI 3-kinase and (at higher

concentrations) PI-4 kinase, abolished MgATP-dependent

recovery of KATP channels inactivated by Ca2þ [41]. ATP

failed to increase Kir6.2/SUR2A channel activity following

degradation of PI by a specific PLC, but activation could be
restored by exogenous application of PI, implying that

phosphorylation of PI-based lipids was responsible [17].

This supports the idea that refreshment is due to PIP2

generation by lipid kinases.
(d) Effects of cations
Exposure of native and recombinant cardiac KATP channels to

intracellular solutions containing elevated Ca2þ (.100 mM)

induces very rapid rundown that is reversed by MgATP

[17,41,42]. Reactivation was blocked by the lipid kinase inhibi-

tor wortmannin [41]. Nevertheless, the loss of channel activity

provoked by Ca2þ could be reversed by PIP2 even after wort-

mannin treatment. Taken together, these experiments support

the idea that Ca2þ causes rapid KATP channel closure by activat-

ing Ca2þ-dependent lipid phospholipases (e.g. phospholipase

C), leading to loss of membrane PIP2 and PIP; and that

MgATP-dependent reactivation of channel activity is due to

the rephosphorylation of regulatory phospholipids.

Whether lipid phospholipases/phosphatases are activated

by the Ca2þ concentration in normal intracellular solutions is

unclear, but as Ca2þ is normally buffered to very low levels

with EGTA in electrophysiology studies and rundown still

occurs, this seems unlikely. However, in some cases, the rate

of rundown was indeed enhanced by the removal of EGTA

from the intracellular solution [19]. It seems possible there

may be a continual turnover of PIP2 in the membrane, with

intrinsic phosphatase activity being balanced in the cellular

environment by simultaneous kinase activity. In the absence

of MgATP, this will lead to a steady decline in PIP2

concentration and KATP channel rundown.

It is also possible that Mg2þ, or other divalent cations,

accelerate rundown, because addition of 1 mM EDTA to the

bath solution markedly slowed rundown of native b-cell

KATP channels [43] and Kir6.2/SUR1 channels expressed in

Cosm6 cells [37]. However, in our experience, while EDTA

can be effective in preventing rundown of KATP channels

expressed in mammalian cell lines this is not always the

case for those expressed in Xenopus oocytes.

Exposure to low intracellular pH also causes an irreversible

loss of KATP channel activity [44]. However, this process appears

distinct from normal rundown, as it is not evident until

the pH drops below 6.4, which is far less than the pH of

intracellular solutions usually employed. Nevertheless, it is

possible that low pH induces the same conformational state as

rundown (or loss of PIP2).
(e) Proteolysis
Patch excision has also been proposed to activate Ca- and/or

Mg-dependent proteases that are normally inhibited in the

intact cell. However, proteolysis seems unlikely to be the

cause of normal rundown for several reasons. First, in general,

rundown cannot be prevented by buffering the intracellular

concentration of divalent cations to very low levels with

EGTA, and EDTA (while effective in some cases [37,43], it is

not always a panacea). Second, proteolysis by trypsin or

papain actually prevents rundown of b-cell [45] or cardiac

[46] KATP channels, rather than inducing it. This is probably

because trypsinization irreversibly increases the channel open

probability (Po) to approximately 0.8 [44,45], and channels

with high Po exhibit reduced rundown (see above). Proteoly-

sis also removed MgADP activation and glibenclamide
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block [45,47,48], which is not observed when channels run

down normally.

( f ) Loss of cytoskeletal interactions
Patch excision is not only associated with a change in

the composition of the intracellular solution but also involves

severance of cytoskeletal connections. Actin filament-

depolymerizing agents (e.g. cytochalasin D and DNase1)

accelerated rundown of native cardiac KATP channels [49].

Conversely, the actin filament stabilizer phalloidin inhibited

both spontaneous and Ca2þ-induced rundown. Interestingly,

F-actin together with MgATP was able to restore rundown

channels, even when MgATP alone could not.

Rundown is also observed in the open-cell-attached con-

dition, in which the patch membrane is not disrupted and

the channel presumably remains attached to the cytoskeleton

[8,50]. Nevertheless, rundown is slower than in the excised

patch: for example, the current decreases less than 10% in

6 min [8,50]. It is possible that perfusion with intracellular

solution leads to activation of lipid phosphatases or inacti-

vation of PIP2 regeneration. Finally, one should not forget

that PIP2 influences actin cytoskeleton remodelling and mem-

brane targeting of A-kinase anchoring proteins [16], and thus

potentially might influence KATP channel activity via such

secondary interactions.
5. The molecular basis of rundown: a synthesis
and a hypothesis

Evidence summarized here supports the idea that the loss of

PIP2 is the dominant factor responsible for rundown of KATP

channel activity. Variability in endogenous PIP2 levels, and

in the activity of endogenous phosphatases probably underlies

differences in the rate of rundown between different cells and

laboratories. While rundown of most Kir channels simply

reflects dephosphorylation of PIP2, this is not the case for the

KATP channel, which is also activated, but to a lesser extent,

by PIP. PIP is approximately fivefold less potent at activating

the KATP current than PIP2 [18]. As channel rundown often

stabilizes at around 20% of the initial current magnitude, we

speculate that this may represent channels with bound PIP.

The secondary slow decline in channel activity from this

pseudo steady-state level may reflect dephosphorylation of

PIP to PI, which does not support KATP channel activity [18].

This idea may explain the biphasic time course of rundown

(fast then slow) seen in many cells.
6. How can one prevent rundown or mitigate
its effects?

In order to study KATP channel gating, it would be helpful to

be able stabilize channel activity at some steady state, prefer-

ably one that approximates that in the intact cell. Numerous

techniques have been proposed to slow rundown significantly,

either in the literature or anecdotally. These include low-Mg2þ

intracellular solution [43]; a cocktail designed to inhibit lipid

phosphatases consisting of 5 mM F2, 10 mM pyrophosphate

and 0.1 mM vanadate (FVPP solution [14]; gluconate rather

than chloride as the main intracellular anion [51]; 1 mM

EDTA [37], EGTA [18] and PIP2 itself [20,21]).
Unfortunately, in our hands, we have found nothing that

routinely prevents rundown, and conversations with many

other investigators suggest that this is also their experience.

While some manipulations may appear to do so in certain

cells or cell types, at random times of the year, or for certain

combinations of recombinant KATP channel subunits, this is

not always the case—and what is found in one laboratory

does not necessarily translate to another.

It might be argued that rundown could be stabilized simply

by adding a fixed concentration of PIP2 to the bath solution to

produce a stable level of channel activity. However, this is

very difficult to achieve because PIP2 continues to incorpo-

rate into the membrane following its addition, as it is highly

hydrophobic. This explains why the effects of PIP2 application

increase over time, as the lipid accumulates in the patch

membrane [20,21]. A non-hydrolysable water-soluble analogue

is needed. One possibility might be diC8-PI(4,5)P2, a water-

soluble PIP2 analogue [15]; however, this is extremely expensive

and thus cannot be used routinely for experiments. Further-

more, what level of channel activity corresponds to that in the

cell is contentious, making it difficult to know how much

diC8-PI(4,5)P2 should be used.

An alternative might be to use a gating mutation. How-

ever, this has the usual drawbacks of using a mutant

channel: i.e. it is not known what other effects the mutation

may have. Furthermore, because channels with gating

mutations still rundown, albeit to a much lesser extent,

their properties may also change with time in excised

patches. Furthermore, most gating mutations that suppress

rundown also strongly impair ATP inhibition. More pro-

mising might be KATP channels composed of tandem

SUR1-Kir6.2 or Kir6.2-Kir6.2 subunits, which can produce

channels with little rundown and relatively small shifts in

ATP sensitivity (e.g. [52]). Nevertheless, these channels

still have a high Po, which might not be optimal for

some studies: e.g. if the aim of the experiment is to study

channel activation.

This means that it is necessary to correct for rundown in

most experiments, as it cannot be prevented. The traditional

way to do so when constructing an ATP concentration–

response curve is to bracket each ATP concentration with

nucleotide-free solution, then to take the mean of the current

in the control solutions on either side of the test ATP solution

and then express the latter as a fraction of the former. How-

ever, this raises the question of whether value taken for the

control current should be the peak current, the current at

the end of control solution application, or the mean of the

current averaged across the total application time. In practice,

we find that it does not matter, as the dose–response is the

same. But this should always be tested. In addition, a single

test ATP concentration may be applied at intervals to check

that the ATP sensitivity remains unchanged throughout the

course of the experiment.
7. Oh DAMN
In addition to the decline in NPo following patch excision (run-

down), the ability of MgADP to stimulate channel activity

through its interactions with the SUR subunit of the KATP

channel also declines with time. This phenomenon has been

termed the decline of activation by Mg-nucleotides—DAMN

[6]. It is a process distinct from channel rundown, as evidenced



SUR1
–MgADP

ATP

–ATP+ATP

ADP
Mg2+

Pi
+MgADP

K+

Kir6.2

activated

activated

SAV1866
2 nucleotides bound

PgP
no nucleotides bound

TM287/288
no nucleotides bound

TM287/288
1 nucleotide bound

MgADP activation
rundown

(a)

(b)

Figure 4. A structural model for DAMN. (a) Model of the SUR reaction cycle. A single SUR subunit is shown. (b) X-ray structures of SAV1866 [54], TM287/288 [55,56]
and PgP [57] with/without bound nucleotide (red), as indicated. NBD1 bright green, NBD2, pale green, TMs cyan. Left, NBD dimer. Right, TMs plus NBDs.
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by the fact that channel activity can remain long after the

ability of MgADP to enhance the channel open probability is

lost. The time course of DAMN is very variable but it is normally

complete within 30 min of patch excision and usually sooner

[6,53]. Interestingly, the number of functional channels (N)

appears to decline faster than the Po [6].

What might underlie DAMN? Clearly one possibility is

that SUR becomes functionally disconnected from Kir6.2.

However, full dissociation cannot occur as the ability of

SUR to enhance the ATP sensitivity of Kir6.2 does not

change, and inhibition by sulfonylureas remains (at least

partially) intact. It seems that DAMN is specific for

Mg-nucleotide activation.
We therefore speculate that DAMN results from the

inability of the NBDs to dimerise, as illustrated in figure 4a.

It is well established that the nucleotide-binding domains

(NBDs) of ABC proteins associate to form two nucleotide-

binding sites (NBS), each composed of the WA motif and

WB motif of one NBD and the signature sequence of the

other NBD, with nucleotides sandwiched at the interface

[54,58]. There is also evidence that, like some other ABC

proteins [55], SUR1 has two asymmetric NBSs. Known as

the degenerate site, NBS1 binds ATP with high affinity but

does not hydrolyse it [59]. Conversely, NBS2 is a consensus

ATP-binding site that binds and hydrolyses MgATP. It is

believed that ATP binding to NBS1, and MgADP binding at
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NBS2, of SUR1 leads to channel activation [60]. When nucleo-

tides are removed, MgADP will dissociate from NBS2,

leading to channel deactivation. Loss of nucleotide at NBS2

facilitates the subsequent unbinding of ATP from NBS1 [61].

We hypothesize that, initially, the conformation of the

NBDs in the apo state is not very different from the states in

which nucleotide is bound at one or both NBSs. As the

NBDs remain close together, it is possible for nucleotide

rebinding (and stimulation of channel activity) to take place

if the intracellular membrane surface is once again exposed

to Mg-nucleotides. After some time in nucleotide-free solution,

however, we postulate that the lack of bound nucleotides

results in complete dissociation of the NBDs. As a conse-

quence, nucleotide binding and NBD dimerization is

impaired. This state corresponds to the DAMN rundown state.

The states we postulate correspond to conformational

states identified in ABC proteins in crystallographic studies

(figure 4b). In Sav1866, where two nucleotides are bound,

the NBDs are locked together and the transmembrane

domains are in the outward configuration [54]. The hetero-

dimeric ABC protein TM287/288 was crystallized in both

the apo state and with nucleotide bound at NBS1: there

was little difference in these two structures, the NBDs being

close together and the TMs in the inward-facing confor-

mation [55,56]. Finally, PgP was crystallized in apo state,

but in this case the NBDs were wide apart and the TMs in

the inward-facing conformation [57].

This would suggest that SUR cycles between an active

state, in which MgATP is bound to NBS1, MgADP is

bound to NBS2 and the TMs are in the outward-facing direc-

tion, and an inactive state in which the TMs are in the

inward-facing direction. In all cases, the NBDs remain close

together, with changes in structure between the apo and

MgATP-bound states being relatively small, and a larger con-

formational change taking place when nucleotide is present

at both NBSs. By contrast, the NBDs lie far apart in the run-

down state. However, this state will not usually be accessed

in the cell, where nucleotides are always present.
Although only a single SUR is depicted in figure 4,

the KATP channel comprises four SUR subunits. Nucleotide

binding to a single SUR does not cause channel

activation—binding to at least three and probably all four

subunits is required [62,63]. This suggests that Mg-nucleotide

activation may fail if even a single SUR adopts the rundown

configuration.
8. Concluding remarks
While rundown of KATP activity may at times be considered a

nuisance, its study has also highlighted important mechan-

isms by which KATP is regulated under physiological

conditions. For example, rundown due to PIP2 degradation

clearly demonstrates the important role of anionic phospho-

lipids in the maintenance of channel activity in the intact

cell. It may even contribute to the resting ATP sensitivity of

the channel. Changes in membrane phospholipids as a conse-

quence of receptor-mediated modulation may also regulate

KATP channels in vivo. Similarly, while the decline in Mg-

nucleotide activation over time (DAMN) can be problematic

for the experimenter, it suggests a new view for how the

NBDs of SUR move during the gating cycle; an idea that is

supported by the different structures of related ABC proteins.

Therefore, while it is necessary to identify and compensate

for the effects of channel rundown of DAMN in experiments

on KATP channels, the underlying processes themselves

have provided valuable mechanistic and physiological

insights into the regulation of this most fascinating and

complex ion channel.
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