
RESEARCH ARTICLE

Modeling the Ebola zoonotic dynamics:

Interplay between enviroclimatic factors

and bat ecology

Javier Buceta1,2*, Kaylynn Johnson1

1 Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, 18015, United

States of America, 2 Bioengineering Program, Lehigh University, Bethlehem, PA, 18015, United States of

America

* jab614@lehigh.edu

Abstract

Understanding Ebola necessarily requires the characterization of the ecology of its main

enzootic reservoir, i.e. bats, and its interplay with seasonal and enviroclimatic factors. Here

we present a SIR compartmental model where we implement a bidirectional coupling

between the available resources and the dynamics of the bat population in order to under-

stand their migration patterns. Our compartmental modeling approach and simulations

include transport terms to account for bats mobility and spatiotemporal climate variability.

We hypothesize that environmental pressure is the main driving force for bats’ migration

and our results reveal the appearance of sustained migratory waves of Ebola virus infected

bats coupled to resources availability. Ultimately, our study can be relevant to predict hot

spots of Ebola outbreaks in space and time and suggest conservation policies to mitigate

the risk of spillovers.

Introduction

Zoonoses constitute 75% of emerging infectious diseases and pose a significant threat to public

health [1, 2]. In particular, the 2014 Ebola epidemic in West Africa has been the largest regis-

tered ever: as of December 2016 around 28,000 probable human cases with *75% mortality

rates in laboratory confirmed patients [3]. In addition, Ebola virus (EV) decimates the great

ape population, thus posing a conservation hazard, it represents a major threat worldwide

through the importation of infections and its possible misuse as biological weapon [4], and,

altogether, has dramatic economic [5], and humanitarian [6] consequences. Therefore, despite

the promising advances to find a vaccine [7, 8], understanding the factors and mechanisms

underlying Ebola outbreaks and spillovers and developing predictive tools to prevent them are

of major interest.

The 2014 EV strain in West Africa has been identified as Zaire’s [9]. Notably, this strain

originates thousand of miles away, in Central Africa. The source of the outbreak cannot be

ascribed to the mobility of infected humans from Central Africa [10] but to a single zoonotic

transmission event in Guinea: a human-bat contact [11].
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Evidence supports the idea that bats are the main EV reservoir regardless of the large diver-

sity of EV hosts [12]. First, EV has been detected in tree-roosting bats [13, 14]. Second, inocu-

lation of the virus has revealed that bats can survive EV infection [15–17]. Third, novel

filovirus have been only found in bats [18]. Fourth, there is a demonstrated connection of

Ebola outbreaks with direct exposure to bats [19]. Finally, as for the expansion of the EV zoo-

notic niche, satellite telemetry has shown that bats are able to migrate thousands of kilometers

annually [20]. Consequently, understanding the Ebola problem requires, on one hand, the

characterization of the ecology of its main enzootic reservoir, i.e. bats, and, on the other hand,

its interplay with seasonal and enviroclimatic factors [21–26] that drive and shape the bat

migration patterns.

During the past years the Ebola modeling efforts have been intense [27–33]. However, these

have traditionally focused on human epidemiology (the effect). Here, by focusing on the ecol-

ogy and its interplay with the environmental conditions (the cause), we aim at shifting the cur-

rent paradigm. In particular, we explore the feedback between environmental pressure and the

dynamics of the EV enzootic niche. Our results show that a bidirectional interplay—i.e., how

resources condition the population dynamics and, simultaneously, how the existing popula-

tion conditions the available resources—may contribute to the expansion of the Ebola zoonotic

niche.

The paper is organized as follows. In the Methods section we introduce and characterize

theoretically an Ebola zoonotic compartmental model that accounts for the dynamics of the

bat population. In the Results section we show by means of numerical simulations how

resources variability and seasonality drives bat migration and EV spreading. Finally, the impli-

cations and the main conclusions of our research are detailed in the Discussion section.

Methods

Ebola zoonotic compartmental model

Here we propose a SIR (Susceptible-Infected-Recovered) compartmental zoonotic model for

bats. Fig 1 summarizes our modeling approach. Notice that on top of susceptible, BS, infected,

BI, states we also consider a recovered (from infection) state, BR. Our hypothesis is based on

data about the dynamics of filovirus infection on bats: most of the infected individuals are

older juveniles [23] and bats can survive infection [15–17]. A reasonable conjecture to explain

the demography of infection is by invoking recovery. During the recovery phase we assume

that bats cannot get infected and/or transmit the disease (see Discussion).

In our model we consider the following processes to account for the dynamics of the bat

population and the EV infection: birth (rate bK), death (rate c), competition for resources (K),

EV transmission (rate e), recovery from infection (rate d), and retrieval to the susceptible

state from a recovery state (rate f). We notice that the obtained analytical results are valid in

case d = f = 0, that is, when the recovery state is suppressed. As detailed below, we also explore

the mobility of bats by means of diffusive terms, DK. In addition, we consider an equation for

the dynamics of resources, K (see Fig 1). By overlooking the mobility terms for the time being,

our model for the time evolution of the density of bats in different states reads,

@BS

@t
¼ bKðBS þ lBI þ BRÞ � cBS � jbK � cj

BSB
K
� eBSBI þ fBR ð1Þ

@BI

@t
¼ ð1 � lÞbKBI � cBI � jbK � cj

BIB
K
þ eBSBI � dBI ð2Þ
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@BR

@t
¼ � cBR � jbK � cj

BRB
K
þ dBI � fBR ð3Þ

@K
@t
¼ � gBþ rðK0 � KÞ ð4Þ

where B = BS + BI + BR stands for the total population of bats. Bats mobility is considered in

our modeling approach by including in the r.h.s. of Eqs (1)–(3) terms of the form +DKr
2 BZ,

wherer2 ¼ @2

@x2 þ
@2

@y2 and Z stands for S, I, or R. That is, we consider the simplest form of non-

directed mobility, i.e. diffusion. Other forms of transport are certainly possible, e.g. convective

terms, but those require additional hypotheses about the causes driving bats migration.

According to the experimental data, EV infection does not modify bats’ physiology. Thus,

we assume that the birth and death rates (or the mobility coefficient) do not depend on the

state of infection. Yet, as detailed below, we assume that the birth rate and the mobility coeffi-

cient depend on the available resources, K. Such functional dependence (see details below)

effectively summarizes the effect of the environmental pressure in our model. The parameter

λ 2 [0, 1] reflects the lack of information about the possibility that bats are born either EV

free, λ = 1, or infected, λ = 0. The demographic data about Marburg filovirus infection [23]

indicates that most of the infected individuals are older juveniles and not newborns. Conse-

quently, the former possibility, λ = 1, seems to be the more plausible. Note that the absolute

value, |bK − c|, in the equations is required to make the Verhulstian quadratic competition

Fig 1. Schematic representation of the compartmental model for the zoonotic dynamics of Ebola virus.

Our model considers three possible states for the bats, B, population: susceptible (BS), infected (BI), and

recovered (BR). The bats population conditions the available resources represented effectively by means of the

carrying capacity K and, likewise, those resources conditions the size of the bats population. The available

resources depends on a “bare” carrying capacity, K0, that is function of climatic and other environmental

factors.

https://doi.org/10.1371/journal.pone.0179559.g001

Modeling the Ebola zoonotic dynamics

PLOS ONE | https://doi.org/10.1371/journal.pone.0179559 June 12, 2017 3 / 14

https://doi.org/10.1371/journal.pone.0179559.g001
https://doi.org/10.1371/journal.pone.0179559


term, *B2, always negative regardless the sign of the growth rate, aK = bK − c. As for the equa-

tion for the resources (carrying capacity), γ stands for the rate of depletion of resources by the

bats, and r accounts for the rate at which the resources naturally return to their “bare” value,

K0. The latter corresponds to the value of the carrying capacity in the absence of bats.

Simulation scheme and parameter values

Our numerical simulations use the FTCS scheme [34] in an hexagonal lattice. Each hexagonal

tile represents a surface of 25 km2 (unit length: lc = 5 km) and the temporal time step is tc = 1

day. Our simulations span a surface of 2.5 � 104 km2 and 10 years such that a) the simulated

spatial domain is large enough to justify the spatial variation of resources, and b) several

(annual) seasonality periods are included to avoid transient effects due to initial conditions.

The value of the parameters are summarized in Table 1. We try to implement values as real-

istic as possible. Yet, we must point out that most parameters either have not been measured

and/or their characterization has been made for different bat species under different condi-

tions. In any case, the ultimate objective of this study is not to fit factual data about EV infec-

tion but to propose a mechanism to explain the interplay between environmental conditions,

EV infection and the bat migratory dynamics.

Results

The interplay between resources and the zoonotic population buffers EV

infection

In order to analyze the role played by the interplay between resources and the bat population

we analyze first the difussionless case, DK = 0. By adding Eqs (1)–(3) the equations for the total

bat population, B, and the resources reduce to,

@B
@t
¼ aKB � jaK j

B2

K
ð5Þ

@K
@t
¼ � gBþ rðK0 � KÞ ð6Þ

That is, a logistic growth equation combined with a relaxational dynamics for the resources.

Table 1. Parameter values used in numerical simulations.

Parameter Units Value

Birth rate [35] b1 t� 1
c 365−1

Birth rate b2 t� 1
c 0

Death rate [35] c t� 1
c (15 � 365)−1

Recovery rate [23] d t� 1
c (2 � 365)−1

Infection rate [16, 23, 36, 37] e l2c=ðbat � tcÞ 2.5 � 10
−6

Retrieval rate f t� 1
c (2 � 365)−1

Env. relaxational rate r t� 1
c 365−1

Bats consumption rate γ t� 1
c 365−1

Diffusion rate [20, 38] D l2c=tc 25

Bare carrying capacity [39, 40] hK0i bats=l2c 3 � 103

Env. pressure carrying capacity K* bats=l2c 2 � 103

Seasonal variation coeff. Γ − 25%

Seasonal temporal frequency ω t� 1
c 2π/365

https://doi.org/10.1371/journal.pone.0179559.t001
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We estimate the onset of infection using two different, complementary, approaches. On

one hand, we compute the basic reproduction number, R0 using the next generation method

[41–45]. Eqs (1)–(4) has a single, non-trivial (aK > 0), infection-free stationary solution:

fKst;Bst
S ;B

st
I ;B

st
Rg ¼ fmK0; mK0; 0; 0g, where m ¼ 1

1þg=r. Thus, the equation that describes the

dynamics of infection if all bats are infection-free reads [41],

@BI

@t
¼ ðF � VÞBI ð7Þ

V ¼ d þ lbK � aK ð8Þ

F ¼ emK0 � aK ð9Þ

The first term on the l.h.s. of Eq (7) collects the transmissions terms and the second one the

transitions terms such that [41],

R0 ¼
F
V
¼

emK0 � aK

d þ lbK � aK
ð10Þ

The above expression is valid if aK = b1 − c> 0 otherwise, if aK = b2 − c< 0 then the stationary

state reads fKst;Bst
S ;B

st
I ;B

st
Rg ¼ fK0; 0; 0; 0g and consequently R0 ¼ 0. The infection spreads in

the population if R0 > 1 and dies out if R0 < 1. The condition that sets the boundary that sep-

arates these behavior is given by R0 ¼ 1 that reduces to e ¼ ec ¼
dþlb1

mK0
. If e> ec then R0 > 1.

Alternatively, the threshold condition for the propagation of the infection can be obtained

by means of the Jacobian method [41], i.e. a linear stability analysis [46]. Eqs (5) and (6) has

two possible stationary states (attractors): {Kst, Bst}: {μK0, μK0} and {K0, 0}. By estimating the

characteristic polynomial of the Jacobian and implementing the Routh–Hurwitz stability con-

ditions (negative eigenvalues), we conclude that the former attractor is stable is aK > 0 whereas

{K0, 0} is stable if aK < 0. Thus, if the growth rate is positive, bK = b1 > c, the carrying capacity

relaxes to a value μK0 < K0 that determines the maximum density of bats that can be main-

tained by the resources when taking into account consumption. On the other hand, if the

growth rate is negative, bK = b2 < c, the bat population is extinguished and the resources relax

to their bare value, K0.

The aforementioned attractors can be split into a higher dimensional phase space in terms

of the different states. Thus, Eqs (1)–(4) have three attractors, fKst;Bst
S ;B

st
I ;B

st
Rg, with physical

meaning: {K0, 0, 0, 0}, that is stable (Jacobian method) if aK = a2 = b2 − c< 0, {μK0, μK0, 0, 0},

that is stable if aK = a1 = b1 − c> 0 and e < ec ¼
dþlb1

mK0
and mK0; mK0

ec
e ;

mK0ðb1þf Þ
ðb1þdþf Þ 1 �

ec
e

� �
;

n

mK0d
ðb1þdþf Þ 1 �

ec
e

� �
g that is stable if aK = a1 > 0 and e> ec.

Thus, the stability analysis reveals that the EV infection develops as long as there is a posi-

tive growth rate and the infection rate is larger than a critical value, ec. This is the same condi-

tion we obtained in terms of the basic reproduction number using the next generation

method. As expected the larger the the recovery rate, d, diminishes the possibility of an Ebola

outbreak. Also, if bats are born infected, λ = 0, or the resources, K0, decrease it favors Ebola

infection. As mentioned above, the case λ = 0 seems unplausible according to the demography

of infected cases in bats and we assume hereafter that λ = 1, i.e. bats are EV born-free. As for

the role played by the interplay between resources and bats, notice that 0� μ� 1; if either bats

do not condition the amount of available resources, γ = 0, or the resources are quickly replen-

ished, γ� r, then μ’ 1. Therefore, notably, the consumption of resources by the bats effec-

tively buffers EV infection. Note also that, if either bats consume rapidly the resources, γ� r
or the replenishment rate vanishes, r = 0, then μ’ 0 and the bat population, as well as the

resources become extinct.
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The environmental pressure modulates EV infection

We explore the effects of the environmental pressure in the dynamics of the bats population

assuming that if the available resources are below a certain value, K�, then the survival of the

population is challenged. Thus, we assume that if K> K� then bK = b1 > c (aK > K� > 0) and if

K< K� then bK = b2 < c (aK < K� < 0). According to the discussion above, in the former case

the attractor corresponds to {μK0, μK0} while in the latter the attractor corresponds to {K0, 0}.

Since the (stationary) amount of resources is bounded in the interval (μK0, K0), we assume that

K� belongs to that interval. As shown in Fig 2, this mechanism compels bats and resources to

chase attractors with an evanescent stability. This in turn induces an oscillatory behavior and a

new stable attractor develops. We notice that if K� =2 (μK0, K0) then the environmental pressure

does not play any role since the induced attractor is unstable and either {μK0, μK0} or {K0, 0}

are stable depending on the sign of the growth rate aK.

As for the location of the new attractor, we notice that bK ¼ lim n!1b1 þ b2 � b1ð Þ K�
n

K�nþKn.

By using this functional form of bK instead of Heaviside step functions we avoid the difficulties

derived by its non-continuous behavior. Hence, by solving Eqs (5) and (6) using this definition

we found that,

fKst;Bstg ¼ fK�
c � b2

b1 � c

� �
1

n
;

m K0 � K�
c � b2

b1 � c

� �
1

n

0

B
@

1

C
A

1 � m
g

ð11Þ

Thus, in the limit n!1, we obtain fKst;Bstg ¼ fK�; mðK0 � K�Þ
1� m
g. A stability analysis (Jacobian

method) reveals that the chasing dynamics of the evanescent attractors is relaxational (the real

part of the eigenvalues is negative). Consequently, the induced oscillations are not sustained

but damped, i.e. a focus-like behavior, and the system eventually relaxes to this fixed point

that is located in the pathway connecting the evanescent attractors. The same procedure can

be implemented in the case of Eqs (1) and (4) and we obtain that EV-infected bats appear

as long as e > e�c ¼
ð1� mÞðcþdÞ
mðK0 � K�Þ . In that case the stationary attractor reads: fKst;Bst

S ;B
st
I ;B

st
Rg ¼

fK�; mðK0 � K�Þ
1� m

e�c
e ;

mðcþf ÞðK0 � K�Þ
ð1� mÞðcþdþf Þ 1 �

e�c
e

� �
;

mdðK0 � K�Þ
ð1� mÞðcþdþf Þ 1 �

e�c
e

� �
g. Otherwise, if e < e�c , the stationary

state is fKst;Bst
S ;B

st
I ;B

st
Rg ¼ fK

�;
mðK0 � K�Þ

1� m
; 0; 0g. In terms of population fractions the different

states read: fS ¼
e�c
e , fI ¼

1

1þ2
1 �

e�c
e

� �
, and fR ¼

2

1þ2
1 �

e�c
e

� �
where 2 ¼ d

cþf . We can combine

states S and R as healthy, H, such that: fH ¼
e�cþ2e
eð1þ2Þ.

Interestingly, the results indicate that if K� 2 (μK0, K0) then the environmental pressure can

possibly either promote EV infection, if e�c < ec, or hinder the EV infection, if e�c > ec. The con-

ditions e�c ≶ ec reduce to (1 + κ) / (1 + μκ)≶ K0/K� where k ¼ cþd
a1

. Fig 3 shows, as a function of

the dimensionless parameters κ, μ, and K0/K�, the regions for which the environmental pres-

sure plays different roles.

We can further analyze the infection dynamics by calculating the basic reproduction num-

ber. In that case, the transmission and transition terms read,

V ¼ cþ d ð12Þ

F ¼
mðK0 � K�Þ

1 � m
e �
jb1 þ b2 � 2cj

2K�

� �

ð13Þ
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Hence,

R0 ¼
e
ec
�

b1 þ b2 � 2cj j

2K�ec
ð14Þ

In our simulations, see Table 1, R0 � 1:23. As for the onset for infection, i.e. the condition

Fig 2. Functional relation of the growth rate, aK, (top), as a function of the resources, K. If the resources

are below a critical value, K*, the growth rate is negative. If K > K* then aK > 0. This leads to oscillations as

shown in the B vs. K phase-space portrait (middle): in the blue region bats try to reach the blue attractor

(circle) and in the yellow region the bats try to reach the yellow attractor (square). The chasing dynamics

between these attractors with changing stability leads to an oscillatory behavior. Damped oscillations

eventually relaxes to the induced attractor (diamond). We hypothesize that as response to the environmental

pressure that conditions survival the bats migrate (bottom).

https://doi.org/10.1371/journal.pone.0179559.g002
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R0 > 1, it reduces to, e> ec + |b1 + b2 − 2c|/(2K�). Thus the threshold for infection progaga-

tion, as estimated by the basic reproductive number, is more restrictive than the condition

found using the stability analysis (see Discussion).

Seasonality and climate variability: Sustained migration waves

As for the spatiotemporal dynamics of our model, if the initial condition is space-dependent

then mobility (diffusion) leads to transient migratory waves. Yet, if no further considerations

are taken into account, every location reaches the same stationary state and mobility, eventu-

ally, does not play any role in the dynamics of infection. However, temperature, precipitation

and other environmental indicators display periodicity and, in addition, environmental factors

are also affected by the geographical location. As shown below these features, in combination

with mobility terms, produced sustained migration waves. In our modeling approach we

Fig 3. The combined effects of the environmental pressure and the feedback between the amount of

resources and the population of bats on the modulation of the EV infection threshold can be summarized

in a region plot as a function of the dimensionless parameters κ, μ, and K0/K*. In the red region the

environmental pressure advances the infection, in the purple region the environmental pressure postpones the

infection, finally, in the yellow region the infection threshold is unaffected. The green dot indicated the condition for

our numerical simulations (see Table 1): κ = 17/28, μ = 1/2, and K0/K* = 3/2.

https://doi.org/10.1371/journal.pone.0179559.g003
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implement the seasonality and climate variability by considering the following, simple, spatio-

temporal dependence of the bare carrying capacity, K0,

K0 r; tð Þ ¼ hK0i 1þ Gcos ot þ F rð Þð Þð Þ ð15Þ

where hK0i stands for an average carrying capacity, 0< Γ< 1 the fractional variation that we

assume constant, ω the seasonality temporal frequency, and F(r) is a phase that accounts for

the spatial variability: different regions are subjected to the same periodic behavior of the

resources but asynchronously. Here, we will consider the case of two well differentiated

regions such that F(r) = πδr,r0, where r0 indicates all points that belong to one of the regions

(see Fig 4).

Under these conditions, if DK 6¼ 0, traveling waves of migrating bats develop. As for DK, we

hypothesize that bats migration must be coupled to environmental pressure: we argue that bats

Fig 4. Form left to right, the top panels show the spatiotemporal oscillations of total bats (B), resources (K), infected bats (BI), recovered

bats (BR), and susceptible bats (BS). The stripes of each top panel depict snapshots (density plots) of different time points during a period, T, of the

stationary oscillations. In all cases the different time points as indicated in the first panel (B): t0, t0 þ
T
4
, t0 þ

T
2
, t0 þ

3T
4
, and t0 + T. The second top panel

(K) indicates the two spatial regions considered in our simulations (see Eq 15). Within each region a specific location is highlighted by a circle. Those

indicate the locations for which the time series for the fractions
BI
B ,

BR
B , and

BS
B have been plotted: the dark (light) color time series correspond to the dark

(light) circles in region 1 (2). The left bottom panel shows the stationary oscillations of the total bats during a period in the B vs. K phase space at any

given location.

https://doi.org/10.1371/journal.pone.0179559.g004
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migrate if the lack of resources threatens their survival. In our model we implement this

response to the environmental pressure by means of an non-homogeneous diffusion coeffi-

cient: DK = D 6¼ 0 if K< K� and DK = 0 otherwise (see Fig 2).

Fig 4 shows the oscillatory behavior of bats population as a function of space and time and

reveals their migratory dynamics chasing resources. With the parameters used in our simula-

tions the percentage of EV infected bats oscillates between *16% and *19% depending on

the season; the season when the amount of resources is minimal/maximal having the largest

fraction of EV infected/healthy bats.

Discussion

From the point of view of the required framework to study the outbreaks and spillovers associ-

ated to zoonotic diseases, one possible approach is to use models able to deal with the complex

behavior arising from the interactions of individual units (human, animal,. . .). Moreover, in

the particular case of Ebola, understanding the various levels of complexity of the problem ulti-

mately requires anthropological and ecological considerations. Thus, the high mobility of

humans in Africa through porous borders, cultural practices, socioeconomic conditions, or

the high diversity of Ebola zoonotic carriers have been recognized as important elements [47].

Rule-Agent based models can provide such detailed level of description and establish predic-

tive correlations among relevant factors. However, to identify fundamental mechanisms is dif-

ficult within such framework. Another option is to use a reductionist modeling approach, less

precise from the viewpoint of the predictive character, but able to pinpoint precisely underly-

ing mechanisms. Herein we have chosen this second alternative by using a compartmental

model to address a specific question: how do the interplay between seasonality, climate vari-

ability, and environmental pressure drive the migration patterns of bats and the Ebola infec-

tion dynamics in their population?

Our model first assumes a bidirectional coupling between the available resources, effectively

described by means of a carrying capacity variable, and different states of the bats population

such that they reshape their respective equilibrium values. Environmental pressure is taken

into account by hypothesizing a threshold below which the survival of the population is chal-

lenged. We have shown that environmental pressure induces new equilibrium states and an

oscillatory behavior. Moreover, our results reveal that the environmental pressure modulates

the population dynamics and, given an infection rate, can either promote or hinder the infec-

tion levels depending on the balance of three factors: the ratio between the rate of resources

consumption by bats and the replenishing rate, the value of the carrying capacity threshold set-

ting environmental pressure with respect to the “bare” resources, and a dimensionless parame-

ter that accounts for the growth rate of the bat population and their ability to recover from

infection. Finally, when seasonality and variability are considered as factors regulating the

available resources and we assume conditional migration as a response mechanism to the pop-

ulation survival, we have shown that sustained waves of migratory bats develop. The migratory

waves are correlated with the dynamics of the resources and our model suggests that infection

is more probable when resources are low. The reason for this behavior is an increased competi-

tion for resources during those periods.

As a matter of discussion, here we have considered a minimal approach in terms of the pos-

sible states of infection: susceptible, infected and recovered. We have included a recovered

state based on serological data of bats infected with Marburg filovirus [23]and physiological

studies about Ebola infected bats [15]–[17]. We argue that if the death rate of bats is no

changed because of the infection and adults are not the population sector with the largest num-

ber of infection cases then a recovery state can explain these observations. We acknowledge

Modeling the Ebola zoonotic dynamics

PLOS ONE | https://doi.org/10.1371/journal.pone.0179559 June 12, 2017 10 / 14

https://doi.org/10.1371/journal.pone.0179559


that this hypothesis could be eventually rebutted or that other serological states are possible

(e.g. inmune, exposed). We notice that by presenting a more complex model with additional

infection states we would rely on un-tested hypotheses and also on the estimation of additional

parameters that are unknown at this point. Also, it is worth noting that some of the main con-

clusions of our study do not depend on this: the dynamics that set the basic interplay between

the bat population and the environment, as given by Eqs (5) and (6), is independent of having

a recovery state. In addition, the expressions that determine the concentration of different

states or the phase diagram plot (Fig 3) are valid even in the case that the recovery rate is zero.

Our results also reveal an interesting effect in regards of the reproduction number due to

the environmental pressure. In the absence of the environmental pressure, the condition

found for the onset of infection is the same regardless whether it is obtained either using the

Jacobian approach (stability analysis of the stationary infection-free solution) or through the

next generation method (basic reproduction number). However, when the birth rate is a func-

tion of the available resources (environmental pressure) then the threshold obtained depends

on the approach. This issue has been pointed out in other studies [41, 48]: while a linear stabil-

ity analysis (Jacobian method) reveals the stability condition of the disease-free state it does

not necessarily provides a value of R0 that is biologically meaningful. Likewise, the threshold

condition found using the basic reproduction number does not necessarily imply an asymp-

totic stability condition of the disease-free state.

A number of studies have shown that in the context of population dynamics and infectious

diseases the diffusion may play a critical role and leads to the emergence of patterns [49–51].

The underlying mechanism is based on the Turing instability that relies on the existence of dis-

tinct diffusion scales for different species [52]. In the case of the Ebola infection in bats, data

does not suggest that their physiology is altered due to the infection and, consequently, we

have not consider different migratory capabilities depending on their infection status. As a

result, the emergence of spatial patterns of infection can be discarded in our model and diffu-

sion plays merely an homogenizing role that spreads EV infection when the environmental

pressure forces migration. However, we notice that possible extensions of our model might

consider a multiple species approach given that the zoonotic niche of Ebola is larger than

originally expected [12]. In that case, the migratory capabilities would be certainly different

depending on the host and this would open the possibility of finding a pattern emergent

behavior.

Our study can be relevant to predict hot spots of Ebola outbreaks in space and time and

may also suggest conservation policies to mitigate the risk of spillovers. This depends, ulti-

mately, on the possibility of calibrating our model with the right, realistic, parameters and

points out the importance of quantitative ecology and climatology approaches. As for possible

extensions of this study, our results suggest the importance that the role played by stochasticity

in climate and seasonality since large fluctuation events, while having low probability, may

lead to a significant increase in the infected population of bats and therefore of an Ebola out-

break. Work to explore these factor is in progress.
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