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ABSTRACT
Preeclampsia (PE) is an important topic in obstetrics. In this study, we used weighted gene co-expression 
network analysis (WGCNA) to screen the key modules related to immune cell infiltration and to identify 
the hub genes for the molecular subtyping of PE. We first downloaded a set of PE transcriptional data 
(GSE75010; 157 samples: 80 PE and 77 non-PE) from the GEO database. We then analyzed the PE 
samples and non-PE samples for immune cell infiltration and screened cells with differences in such 
infiltration. Next, we downloaded the immune-related genes from an immune-related database to 
screen the expression profile of the immune-related genes. Then, we obtained a candidate gene set by 
screening the immune-related genes differentially expressed between the two groups. We used 
WGCNA to construct a weighted co-expression network for these candidate genes, mined co- 
expression modules, and then calculated the correlation between each module and immune cells 
with differential infiltration. We screened the modules related to infiltrating immune cells, identified the 
key modules’ hub genes, and determined the key module genes that interacted with each other. Finally, 
we obtained the hub genes related to the infiltrating immune cells. We classified the preeclampsia 
patients by unsupervised cluster molecular typing, determined the difference of immune cell infiltration 
among the different PE subtypes, and calculated the expression of hub genes in these different 
subtypes. In conclusion, we found 41 hub genes that may be closely related to the molecular typing 
of PE.                        
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Introduction

Preeclampsia (PE) is a pregnancy-specific hyperten-
sive disease, in which individuals with normal blood 

pressure before pregnancy develop hypertension, 
urinary protein, and other features after 20 weeks of 
pregnancy [1]. PE affects 3% to 5% of women 
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worldwide and is a major cause of maternal death [2]; 
it can lead to iatrogenic preterm birth and fetal growth 
restriction. PE also causes about 15% of preterm 
births worldwide [2]. The basic pathophysiological 
changes in PE are endothelial damage, systemic arter-
iospasm, and then a decrease of systemic perfusion 
and multiple organ damage, which seriously threaten 
the health of the mother and baby [3,4]. However, at 
present, its etiology and pathogenesis have not been 
fully elucidated, so this remains an important research 
topic in obstetrics. Many studies have suggested that 
the mechanism behind PE may be related to the 
interaction of multiple genetic factors and environ-
mental factors. For instance, PE could occur in preg-
nant women suffering from basic diseases, such as 
hypertension, or having other high-risk factors, such 
as multiparity and older age [5,6].

Although the exact cause of PE remains unclear, 
its clinical manifestations are thought to be the 
result of endometrial dysfunction caused by pla-
cental dysfunction, characterized by inadequate 
uterine spiral artery transformation. This placental 
defect is most likely associated with partial break-
down of the mother’s immune tolerance [7]. At 
the maternal–fetal interface, which consists of 
decidual stromal cells, decidual immune cells, 
and trophoblast cells [8], the villi from the fetal 
trophoblasts are in close contact with the maternal 
vascular system, so healthy mothers need to 
develop immune tolerance to avoid immune 
attacks on fetal tissue and retain the ability to 
locally defend against pathogens [9,10]. At the 
same time, the extra trophoblast cells invade the 
decidua, reach the myometrium, participate in 
remodeling of the maternal spiral arteries, and 
convert some of the maternal uterine spiral artery 
endothelial cells into extra trophoblast cells [8].

Many studies using bioinformatics for screening 
to identify PE-related genes have been performed. 
Many important genes and pathways related to PE, 
including TLRs [11], the MAPK family [11], and 
inflammation and complement-related pathways 
[12,13], have been identified by determining the 
methylation levels of placental genes [11] and 
genes encoding serum proteins [13], urinary pro-
teins [12], or PE family members [14] in patients 
with PE. However, the above research focused on 
the screening of biomarkers for diagnosing PE. 
Recently, immune cell infiltration has been used 

as an important feature to study the tumor 
immune microenvironment, to screen genes diag-
nostic for various tumors, and to help predict the 
appropriate treatment and prognosis of patients 
[15]. Meanwhile, in other non-tumor inflamma-
tory diseases such as ulcerative colitis [16], appli-
cations for measuring immune cell infiltration 
have also been developed. In view of the impor-
tance of immune cell infiltration in the etiology of 
PE, a method considering immune cell infiltration 
should be useful for screening hub genes, which 
could play an important role in finding molecular 
markers of PE subtypes and for further optimizing 
therapy for this condition.

The aim of this study was to screen the key mod-
ules related to PE immune infiltration based on 
WGCNA and identify the hub genes for PE mole-
cular subtyping. The differential expression of hub 
genes among different PE subtypes suggests that 
these genes are potential markers for PE subtyping.

Materials and methods

Downloading and preprocessing of data

First, we downloaded a set of PE chip data, 
GSE75010, from the GEO database (https://www. 
ncbi.nlm.nih.gov/gds), as shown in Table 1. We 
preprocessed the data as follows: The downloaded 
dataset was log2-transformed quantile-normalized 
signal intensity, the probes were first mapped to 
the gene, the null probes were removed, and mul-
tiple probes were mapped to the same gene.

From Immport [17] (https://www.immport.org/), 
TITIIDB [18] (http://cis.hku.hk/TISIDB/), and 
INNATEDB [19] (http://www.innatedb.com), we 
obtained 2496 immune-related genes, which we 
then cross-linked with GSE75010 microarray data. 
Finally, we obtained the expression profiles of 922 
immune-related genes.

Analysis of immune cell infiltration

We obtained the R language source code and its given 
feature immune gene expression set from 
CIBERSORT [20] (https://cibersort.stanford.edu/ 
index.php), namely, LM22.txt. We determined the 
immune cell infiltration of GSE75010 preeclampsia 
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samples and normal samples and categorized different 
subtypes of preeclampsia as classified by hub genes.

Screening and enrichment of differentially 
expressed genes (DEGs)

We used the limma package in R to analyze the 
differences of immune-related gene expression pro-
files between PE and non-PE in the downloaded 
microarray data. Upon applying a Benjamini–Hochbe 
rg false discovery rate (FDR)-corrected P value [21] of 
<0.05 as the threshold, we obtained 428 differentially 
expressed immune-related genes, of which 181 were 
upregulated in PE and 247 were downregulated. We 
then determined the associations of these genes with 
functions and pathways using Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) using the R package clusterProfiler.

Weight co-expression network analysis

We used the R package WGCNA software to con-
struct a weighted co-expression network of candidate 
differentially expressed immune-related genes. We 
found that the log(k) of the node with degree K had 
a negative correlation with the log[P(k)] of the prob-
ability of occurrence of the node, and the correlation 
coefficient was greater than 0.8, which was consistent 
with the scale-free network of the co-expression net-
work. To ensure that the network was scale-free, we 
selected the optimal soft threshold of 5. In the next 
step, we transformed the expression matrix into an 
adjacency matrix, which we then converted into 
a topological matrix. Based on topological overlap 
matrix (TOM) [22], we clustered the genes using 
average linkage and Pearson’s correlation. We con-
structed a hierarchical clustering tree using dynamic 
hybrid cutting, setting the minimum number of genes 
per gene network module to 30. After determining 
gene modules by the dynamic shear method, we cal-
culated the eigengenes of each module at one time, 
then clustered the modules, merged the nearby mod-
ules into new modules, set height equal to 0.25, and 
obtained five modules in total.

Then, we calculated Pearson’s correlation between 
the five modules and the clinical traits of differentially 
infiltrated immune cells. We found that the blue and 
brown modules were most associated with immune 
cell infiltration. We then calculated Pearson’s 

correlation coefficient in the most relevant blue and 
brown modules between immune genes and the mod-
ules and clinical features, respectively.

Screening of hub genes

First, we selected the genes with a gene signifi-
cance coefficient greater than 0.5 and a module 
membership coefficient greater than 0.5 as candi-
date hub genes. Then, we constructed a PPI net-
work of the blue and brown modules and selected 
a connectivity threshold of 0.1, which led to the 
recognition of a total of 120 nodes. Finally, we 
obtained 41 critical hub genes that overlapped 
between the 49 hub genes and 120 nodes.

Hub gene-mediated molecular typing of 
preeclampsia

We also performed disease classification of the PE 
samples by using the identified hub genes and deter-
mined the optimal K value (number of classes) by 
searching for the best SSE. We classified PE into 
different subclasses by unsupervised clustering 
K-means combined with TSEN dimension reduc-
tion. We examined the expression patterns of these 
hub genes in the different subclasses and analyzed 
the significantly differentially expressed genes in the 
different subclasses (Kruskal–Wallis, P < 0.05). 
These differentially expressed genes are potential 
marker genes of PE subclasses.

Statistics and data visualization

All of the analyses were performed using 
R (V. 4.0.2) statistical software. The differentially 
expressed genes were calculated using the 
R package limma. The enriched functions asso-
ciated with the differentially expressed genes were 
determined using the R package clusterProfiler 
[23]. The co-expression network was constructed 
using the R package WGCNA. Computation of 
Spearman’s correlation and the bi-directional 
detection were carried out using the function cor. 
test. t-Distributed stochastic neighbor embedding 
(T-sne) was performed through the R package 
Rtsne.
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Results

In this study, we analyzed microarray datasets 
from the GEO database. We used Cell-type 
Identification by Estimating Relative Subsets of 
RNA Transcripts (CIBERSORT) to analyze dif-
ferentially infiltrating immune cells in PE. We 
also analyzed the biological processes and signal 
transduction pathways related to the DEGs, and 

evaluated the ability of gene signatures to predict 
the PE subclass. Here, we screened 41 critical 
hub genes by comparing the immune cell infil-
tration and classified the samples into five sub-
classes according to the hub genes. We found 
that most of the genes were expressed at a low 
level in cluster 1 and a high level in cluster 2, 
suggesting that these genes are potential markers 
in different PE subtypes.

Figure 1. A. The immune cell infiltration in PE and normal samples. B. The difference of immune cell infiltration between PE and 
normal samples (Wilcoxon’s test, p < 0.05).
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Differences in immune cell infiltration 
between preeclampsia and normal subjects

Using the CIBERSORT LM22.txt file as the feature 
gene set, we analyzed the immune cell infiltration 
in PE and normal samples. The results showed 
that the infiltration of PE samples was significantly 
different from that of normal samples (p < 0.05) 
regarding B cells naive, plasma cells, T cells CD8, 
T cells regulatory (Tregs), Macrophages M0, 
Macrophages M2, mast cells resting, eosinophils, 
and neutrophils (Figure 1).

Screening and functional enrichment of 
differentially expressed immune-related 
genes

Setting p < 0.05 as a threshold, we obtained 428 
differentially expressed immune-related genes, 
of which 181 were upregulated in PE and 247 
were downregulated (Figure 2; Supplementary 
Table 1).

For the 428 differentially expressed immune- 
related genes, we performed GO and KEGG 
enrichment analyses, and found that these genes 

were particularly associated with immune-related 
functions, such as inflammatory response, cyto-
kine production, cytokine–cytokine receptor inter-
action, and biological functions related to the 
MAPK immune signaling pathway (Figure 3).

Construction of co-expression networks 
based on differentially expressed 
immune-related genes

We used the R package WGCNA software to con-
struct a weighted co-expression network of candi-
date differentially expressed immune-related gene 
sets. We found that the log(k) of the node with 
degree K had a negative correlation with the log[p 
(k)] of the probability of occurrence of the node, 
and the correlation coefficient was greater than 
0.85, which is consistent with the scale-free net-
work of the co-expression network. To ensure that 
the network was scale-free, we selected the optimal 
soft threshold of 5 (Figure 4a,B).

The next step was to transform the expression 
matrix into an adjacency matrix, which we then 
converted into a topological matrix. Based on 
TOM, we used the average-linkage hierarchical 

Figure 2. A. The differentially expressed immune-related genes (volcano plot). B. The 25 most differentially expressed upregulated 
and downregulated immune-related genes were selected to compare their expression differences.

Table 1. GEO database data of preeclampsia mRNA expression profile.
Dataset ID Platform Preeclampsia Normal

GSE75010 GPL6244 80 77
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clustering method to cluster genes according to the 
criteria of the hybrid dynamic shear tree and set 
each gene network module to at least 30 genes. 
After determining gene modules by the dynamic 
shear method, we calculated the eigengenes of 
each module at one time, and then clustered the 
modules, merged the nearby modules into new 
modules, and set height equal to 0.25. This led to 
five modules being obtained (Figure 4c). We 
counted the number of genes in each module, as 
shown in Table 2, where 428 genes were distrib-
uted among the five modules (Table 2).

Screening key modules related to 
differentially infiltrating immune cells

We selected the differentially infiltrating immune 
cells shown in Figure 1 as sample traits and calcu-
lated Pearson’s correlation coefficient between 
module eigengenes (ME) and sample traits for 
each module (the higher the representative mod-
ule’s Pearson’s correlation coefficient, the more 
important it is). Each row of Figure 5 shows the 
feature vector genes of each module, and each 
column shows the sample information of different 

Figure 3. Functional enrichment results of differentially expressed immune-related genes.
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immune cells. From red to blue, the correlation 
between eigengenes and sample characteristics 
decreases. The numbers in each box represent the 
correlation coefficient between the gene module 
and the corresponding feature, and the values in 
parentheses represent the p values. In this figure, it 
can be seen that the blue and brown modules are 
most closely related to the phenotype of differen-
tially infiltrating immune cells.

Identifying key module hub genes

We identified a total of 182 immune-related genes 
from the most relevant blue and brown modules. 
Next, we calculated the correlation between these 
182 immune-related genes and the modules and 
their phenotypes (resting mast cells). We selected 
the genes with a gene significance coefficient greater 
than 0.5 and a module membership coefficient 
greater than 0.5 as the key genes to identify 49 

Figure 4. A, B. Analysis of network topology for various soft-thresholding powers. C. Gene dendrogram and module colors.

Table 2. Gene statistics corresponding to each module.
Module No. of Genes

blue 120
brown 62
gray 34
turquoise 157
yellow 55
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potential hub genes, of which 40 were blue and 9 
were brown (Figure 6a, B). We then constructed 
a PPI interaction network (Cytoscape 3.6.0 http:// 
www.cytoscape.org/) based on blue and brown mod-
ules (Supplementary Table 2) with a connectivity 
threshold of 0.1 to identify 120 node nodes (Figure 
6c, Supplementary Tables 3 and 4). The 49 candidate 
hub genes were then surveyed to determine those 
overlapping with 120 module genes to obtain 41 final 
hub genes. In this way, we cross-referenced 41 hub 
immune-related genes, including 33 in blue and 8 in 
brown (Figure 6d, Supplementary Table 5).

Analysis of correlation between hub genes 
and clinical features

From the clinical features downloaded from GEO, we 
analyzed the correlation of these 41 hub genes with 
the clinical features of advanced-age pregnancy, 
maternal hyperproteinuria, maternal hypertension, 
maternal abortion, HELLP syndrome, and intrauter-
ine growth retardation (IUGR). The results showed 
that LANCL1 and PROS1 may be associated with 
advanced-age pregnancy; LST1 and VAV1 may be 
associated with maternal hyperproteinuria; BMP5 
may be associated with maternal history of 

hypertension; FCER1G, IFI16, MKNK1, and Pik3cg 
may be associated with maternal history of abortion; 
bMP5, Cysltr1, FGF7, IRAK1BP1, and LST1 may be 
associated with HELLP syndrome (hemolysis, ele-
vated liver enzymes, and low thrombocytopenia); 
and c3AR1, CD200R1, CD28, CYBB, FCER1G, 
FGF10, IFI16, IL12RB2, Kitlg, LGR5, NCKAP1L, 
PIK3CG, Rarb, TLR7, and VAV1 may be associated 
with IUGR (Figure 7; Supplement Figure 1).

Unsupervised cluster molecular typing of 
disease samples based on hub genes

Based on the analysis results of the WGCNA co- 
expression modules, we further analyzed 41 hub 
genes identified by blue and brown modules and 
subjected them to unsupervised clustering. We 
selected PE samples (N = 80) to extract the expres-
sion profile data of these 41 hub genes. We classified 
all PE samples by the K-means unsupervised cluster-
ing method. First, we selected the optimal K value by 
searching for the inflexion of the sum of squares due 
to error (SSE, means the sum of squares of the 
distances from all points to the center of the cluster). 
As shown in Figure 8a, the curve declines slowly 
between K = 4 and 5, so we chose K = 5. Figure 8b 

Figure 5. Module–trait relationships.
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Figure 6. A, B. The genes and modules of the blue and brown modules and the correlation of different immune cell characteristics. 
C. The interaction network of the blue and brown modules. In the figure, blue represents the genes of the blue module, brown 
represents the genes of the brown module, node size represents the degree of the node. D. Venn diagram of the candidate hub 
gene and PPI network graph.

Figure 7. Correlation between hub genes and clinical features.
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shows a consistent cluster of different subtypes of PE 
samples. We used Rtsne to reduce the amount of 
gene expression data, as shown in Figure 8c; all PE 
samples can be clearly divided into five categories, 
combined with co-expression of key genes in all PE 
(Figure 8d), although there were no taxonomic dif-
ferences based solely on the expression of individual 
genes, the combination of all co-expressed key genes 
also showed a high degree of agreement with Figure 
8c. Therefore, we can infer that the 41 co-expressed 
genes are of great significance to the typing of PE.

Difference of immune cell infiltration in 
different PE subtypes

Using LM22.txt obtained from the official CIBERSORT 
website, we analyzed cluster 1 and cluster 2 for immune 
cell infiltration. The results in Figure 9 show that there 
were significant differences between the cluster 1 and 
cluster 2 subtypes (p < 0.05) in four types of immune 
cell, namely, dendritic cells resting, macrophages M2, 
NK cells resting, and NK cells activated, revealing that 
the 41 hub genes that we identified could help in the 
typing of preeclampsia patients.

Figure 8. A. Use of SSSE to find the best inflexion. B. The cluster of PE subtypes. C. Based on Tsne to show PE subtypes. D. The 
expression of 41 hub genes in PE subtypes [log2(EXP + 1) scale].
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The difference of hub gene expression in the 
different PE subtypes

To explore the expression of these genes in the 
different PE subclasses, we calculated the expres-
sion of the hub genes in the different preeclamp-
sia subtypes based on Figure 9, and found that 
most of the genes (21/41) were expressed differ-
entially (Figure 10, Kruskal–Wallis, p < 0.05). 
Except for SPP1, most genes were expressed at 
a low level in cluster 1 and at a high level in 
cluster 2. It is suggested that these genes may 
serve as marker genes in different types of 
preeclampsia.

Discussion

As a hypertensive disorder complicating preg-
nancy, PE is one of the leading causes of maternal 
mortality globally. PE-induced fetal growth restric-
tion, preterm birth, and other common complica-
tions also place huge economic and psychological 
costs on the affected family and society at large. 
Maternal immune tolerance, which plays an 
important role in the pathogenesis of PE, and the 
remodeling of spiral arteries are closely related to 
the infiltration of placental immune cells. Immune 
cell infiltration is a novel bioinformatic approach 
that has been used to investigate the diagnosis and 

Figure 9. A. The immune cell infiltration in cluster 1 and cluster 2. B. The difference of immune cell infiltration between cluster 1 and 
cluster 2 (Wilcoxon’s test, p < 0.05).
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prognosis of a variety of diseases including colon 
[24], gastric [25], and breast cancer [26], as well as 
ulcerative colitis [16]. Although an increasing 
number of studies have actively sought molecular 
markers for the diagnosis and treatment of PE via 
data mining and analysis in GEO or other data-
bases, study of the landscape of immune cell infil-
tration in PE and immunomarker molecular 
typing are yet to be performed.

Here, we obtained the gene expression profiles 
of 7,859 genes by filtering the gene chip data 
downloaded from GEO. We obtained 2496 

immune-related genes from the immune-related 
database and 922 genes with expression profile 
data. We screened a total of 428 differentially 
expressed immune-related genes (181 upregulated 
in PE, 247 downregulated, p.adj < 0.05) using 
LIMMA. We used the R package clusterProfiler 
for enrichment analysis of these differentially 
expressed genes and found that they were linked 
to immune-related functions such as inflammatory 
response, cytokine production, cytokine–cytokine 
receptor interaction, and immune signaling path-
way-related biological functions (MAPK signaling 

Figure 10. Differential expression of hub genes in different PE subclasses (21/41, Kruskal–Wallis, p < 0.05).
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pathway). This is consistent with previous studies 
that reported that the above biological processes 
and pathways play important roles in the develop-
ment of PE. Using proteomic techniques, it has 
been shown that proteins related to lipid metabo-
lism and inflammatory pathways can be used as 
early diagnostic markers of PE [13]. In addition, in 
the literature, it was reported that, upon combin-
ing gene expression data of placental cells cultured 
in vitro with the GEO database, three hub genes 
diagnostic of PE, including MAPK13, were identi-
fied [11]. Reports have also been published on the 
involvement of the MAPK family in PE [27]. In 
a study by Ding et al., a total of 294 PE differen-
tially expressed proteins (DEPs) were identified 
using urinary protein profiles; of these, the most 
differentially expressed proteins were involved in 
the complement pathway [12]. In conclusion, the 
results of functional annotation and pathway 
enrichment analysis confirmed that the immune 
process plays a key role in the pathogenesis of PE.

Using WGCNA to construct a weighted co- 
expression network of these genes, four co- 
expression modules were obtained, among 
which the immune-related genes of the blue 
and brown modules were those most strongly 
related to the infiltrating immune cells; the 
immune-related genes of the blue module num-
bered 120, while those of the brown module 
numbered 62. Further analysis of the genes of 
the most relevant blue and brown modules and 
the genes of the PPI interaction network that 
was constructed yielded 41 hub genes. These 
hub genes included LANCL1 and PROS1, 
which may be associated with advanced-age 
pregnancy; LST1 and VAV1, which may be asso-
ciated with maternal hyperproteinuria; BMP5, 
which may be associated with a maternal history 
of hypertension; FCER1G, IFI16, MKNK1, and 
Pik3cg, which may be associated with a maternal 
history of abortion; BMP5, CYSLTR1, FGF7, 
IRAK1BP1, and LST1, which may be associated 
with HELLP syndrome (hemolysis, elevated liver 
enzymes, and low thrombocytopenia); and 
C3AR1, CD200R1, CD28, CYBB, FCER1G, 
FGF10, IFI16, IL12RB2, KITLG, LGR5, 
NCKAP1L, PIK3CG, RARB, TLR7, and VAV1, 
which may be related to intrauterine growth 
restriction (IUGR).

Among these, BMP5 [28], CD200R1 [29], CD28 
[30], and TLR7 [31] have been shown to be sig-
nificantly differentially expressed in PE. This pro-
vides further confirmation of the robustness of the 
current study. Meanwhile, the TLR family and 
associated pathways, including TLR7, have been 
shown to play important roles not only in PE but 
also in IUGR [32,33]. This is consistent with the 
results obtained in this study. It has also been 
shown that the mice treated with the TLR7/8 ago-
nist CLO97 exhibited pregnancy-dependent hyper-
tenia, endothelial dysfunction, splenomegaly, and 
placental infection similar to the features of PE 
[31]. Moreover, TLR7 and TLR9 levels on the 
vascular wall in mice infected with virus increased 
and ultimately caused placental growth retardation 
and intravascular growth restriction [32]. 
Interferon-inducible protein 16 (IFI16) is an 
innate immune receptor for intracellular double- 
stranded DNA (dsDNA) [34]. Li et al. found that 
its expression was significantly increased in the 
placenta of PE patients, and that activation of the 
IFI16 gene promoted the production of pree-
clampsia-related antigenic factors sFlt-1 and sEng 
in trophoblast cells [35]. Furthermore, studies have 
shown that changes in IFI16 gene expression in 
bovine endometrium lead to decreased embryo 
survival, further leading to miscarriage [36]. The 
above literature suggests that IFI16 not only plays 
a role in PE but also has a close relationship with 
abortion, which is consistent with our results.

In addition, immune cell infiltration was ana-
lyzed in preeclampsia and normal samples by 
CIBERSORT. Nine immune cells, namely, 
B cells naive, plasma cells, T cells CD8, T cells 
regulatory cells (Tregs), macrophages M0, 
macrophages M2, mast cells resting, eosinophils, 
and neutrophils, were screened. We found sig-
nificantly different infiltration between cluster 1 
and cluster 2 of four types of immune cell: 
dendritic resting cells, macrophages M2, NK 
cells resting cells, and NK cells activated cells. 
The literature shows that decidual NK cells pro-
mote trophoblast invasion by secreting chemo-
kines, and decidual macrophages act as antigen- 
presenting phagocytes, secreting cytokines, and 
regulating the immune balance between mother 
and fetus [37]. T cells and dendritic cells (DCs) 
have been considered to be the key cells in 

552 Y. MENG ET AL.



regulating the immune balance [8,38]. This 
further illustrates the importance of immune 
cell infiltration in the pathogenesis and typing 
of PE.

According to the expression of the 41 identified hub 
genes in patients with PE in this study, we classified the 
samples by the K-means unsupervised clustering 
method, leading to the samples being grouped into 
five categories. We found that most of the genes were 
expressed at a low level in cluster 1 and a high level in 
cluster 2, suggesting that these genes are potential mar-
kers in different subtypes of preeclampsia. This parallels 
a study by Liu et al., in which EGR1, LEP, and HBB 
were used as DEGs to identify early-onset and late- 
onset PE [39]. In addition, in a study by Leavey et al., 
PE was classified into five categories based on placental 
gene expression using unsupervised clustering; it is thus 
anticipated that PE can be divided into different sub-
classes in the search for biomarkers for early diagnosis 
and to develop etiological treatment for specific sub-
classes [40]. The establishment of five categories in this 
previous study matches the number of clusters in the 
present work. Although different classification methods 
were used, the fact that PE was also divided into five 
clusters here indicates the feasibility of further subclas-
sifying PE and adopting different treatment methods 
for different subtypes of this condition.

This study also has some shortcomings. First, 
although PE was divided into five clusters according 
to the hub genes, the numbers of samples in clusters 3, 
4, and 5 were too small to be used for infiltration 
analysis. In future work, the sample size should be 
expanded and a more complete database should be 
established, enabling further analysis of the other clus-
ters. Second, although 41 hub genes were identified as 
potential biomarkers for PE immunotyping, no in vivo 
or in vitro studies were carried out, so this should be 
a focus in future work.

Conclusion

Using WGCNA, we divided the genes specifically dif-
ferentially expressed in PE into four modules. We 
selected the two modules with the highest correlation 
with immune cell infiltration for a PPI network and 
obtained 41 hub genes. We classified PE samples into 
five clusters according to the unsupervised clustering of 
hub genes and found that cluster 1 and cluster 2 had 
significant differences in immune cell infiltration and 

hub gene expression. This work suggested that hub 
genes can be used to classify PE into different subtypes.

Article Highlights

We made the immune cell infiltration analysis of Pre- 
eclampsia (PE).
We screened 41 immune-related hub genes for PE.
The 41 hub genes are related to the molecular typing of PE.
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