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Psychoactive substance use is a nearly universal human behavior, but a significant
minority of people who use addictive substances will go on to develop an addictive
disorder. Similarly, though ∼90% of people experience traumatic events in their
lifetime, only ∼10% ever develop post-traumatic stress disorder (PTSD). Substance
use disorders (SUD) and PTSD are highly comorbid, occurring in the same individual
far more often than would be predicted by chance given the respective prevalence of
each disorder. Some possible reasons that have been proposed for the relationship
between PTSD and SUD are self-medication of anxiety with drugs or alcohol, increased
exposure to traumatic events due to activities involved in acquiring illegal substances,
or addictive substances altering the brain’s stress response systems to make users
more vulnerable to PTSD. Yet another possibility is that some people have an intrinsic
vulnerability that predisposes them to both PTSD and SUD. In this review, we integrate
clinical and animal data to explore these possible etiological links between SUD and
PTSD, with an emphasis on interactions between dopaminergic, adrenocorticotropic,
GABAergic, and glutamatergic neurobehavioral mechanisms that underlie different
emotional learning styles.

Keywords: comorbidity, self-medication, sensitization, individual differences, dual-diagnosis

INTRODUCTION

Most people will experience a traumatic event in their lifetime. It is normal to exhibit fear
during a traumatic situation and to have strong reactions afterward, such as flashbacks and
nightmares. Perceived threats induce stereotyped reactions in the mind and body that are
meant to cause individuals to respond appropriately and protect themselves from harmful
situations. Even though these fear reactions during and after the traumatic experience are
not unusual, it is vital that they subside with time. Out of the nearly 90% of adults in the
United States that experience a traumatic event, about 10% cannot recover naturally from
the trauma and continue to feel in danger and exhibit high levels of stress even when they
are not in a dangerous situation (Kilpatrick et al., 2013). This persistent fear is characteristic
of post-traumatic stress disorder (PTSD), a debilitating neuropsychiatric illness that causes
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individuals to continually suffer from emotional distress even
years after experiencing the trauma. While PTSD and substance
use disorders (SUD) are phenomenologically distinct in many
obvious ways, this review will highlight similar neuropsychiatric
processes that can lead to the pathologically intense emotional
andmotivational reactions that characterize both these disorders.

PTSD most commonly presents in people who have
experienced natural disasters, terrorist attacks, war, violent and
sexual assaults, and other life-threatening incidents (Kessler
et al., 1995; Creamer et al., 2001). Both women and men can
develop PTSD, but it is twice as common in women (Dell’Osso
et al., 2011). The first studies on PTSD came mostly from male
war veterans (especially Vietnam), but with time researchers
started noticing that women who experienced sexual assault
showed very similar symptoms to male veterans (Kardiner,
1941; Figley, 1978; American Psychiatric Association, 1980;
Herman, 1997). This led to increased interest in studying PTSD
in both males and females, and to expanding the categories
of traumatic experiences considered capable of causing PTSD
(Lasiuk and Hegadoren, 2006). As it is currently defined, patients
with PTSD must fit several criteria. The person should have
experienced a traumatic event (Criterion A) and must be
experiencing symptoms in each of four different clusters. The
first cluster (Criterion B) is experiencing intrusive memories
or re-experiencing the traumatic event, including nightmares,
flashbacks, and both psychological and physiological reactions
to reminders of the event. The second set of symptoms
(Criterion C) are of avoidance, which includes avoiding the
thoughts and feelings associated with the event as well as the
people tied to it. The third group of symptoms (Criterion
D) is negative alterations in mood and cognition, which
encompass memory problems exclusive to the event, negative
thoughts and sense of blame for one’s self and others, reduced
interest in engaging in activities, and detachment and isolation
from other people. The last set of symptoms (Criterion E)
are increased arousal, described as irritability and anger,
hypervigilance, difficulty sleeping and, in general, feeling ‘‘on
edge’’(American Psychiatric Association, 2013).

Epidemiological evidence suggests a close relationship
between PTSD and SUD. As many as 50–75% of combat
veterans with PTSD also have drug or alcohol use disorders
(Kulka et al., 1990), and structured interviews detect PTSD
in up to 42.5% of patients in inpatient substance abuse
programs (Cottler et al., 1992). As devastating as PTSD can
be, its clinical course often seems to be worsened by its
relationship with SUD. Studies have consistently shown that
the co-occurrence of PTSD and SUD makes each individual
condition more severe and difficult to treat (Saladin et al.,
1995; Ouimette et al., 1996, 1998; Clark et al., 2001). Patients
with comorbid PTSD and SUD have poorer mental health
functioning, poorer treatment adherence and response, more
inpatient hospitalizations, worse physical health, and more
interpersonal problems (Brown et al., 1995; Stevens et al., 2003;
Ouimette et al., 2006; Norman et al., 2007; Driessen et al.,
2008). Patients tend to believe their own PTSD and SUD are
functionally related and prefer concurrent, integrated treatment
(Brown et al., 1998). Clinicians view these dual-diagnosis patients

as particularly challenging, in part because they feel uncertain
how best to prioritize and integrate treatment of the two
disorders (Najavits, 2002; Back et al., 2009).

In this review article, data from both clinical populations and
animal models are presented to highlight the high prevalence
of PTSD and SUD comorbidity and propose possible etiological
factors that might explain their co-occurrence. Many possible
explanations have been proposed for the relationship between
PTSD and SUD, and several of these will be considered in
turn (Figure 1). First, evidence is presented suggesting that the
negative consequences of seeking and using addictive drugs may
increase exposure to traumatic events, thereby raising the risk of
developing PTSD. An analogous idea is then explored that PTSD
may increase exposure to addictive drugs through attempts to
self-medicate psychiatric symptoms with drugs or alcohol. Next,
some overlapping mechanisms of trauma and abuse substances
that alter neural and endocrine signals and increase vulnerability
to both PTSD and SUD are highlighted. Finally, the focus
of the review turns toward intrinsic vulnerability factors that
may predispose certain individuals to both PTSD and SUD,
including both genetic factors and early life events. The potential
role of different emotional learning styles in predisposing
some individuals to develop neuropsychiatric disorders is also
explored. It is important to point out that these different
explanations are not mutually exclusive, and there is evidence to
support each of them. Most cases of comorbid PTSD and SUD
are likely due to a combination of several of these processes acting
simultaneously on the same individual.

SUBSTANCE USE AS A RISK FACTOR FOR
TRAUMA EXPOSURE

The first possibility to consider is that SUD in effect causes PTSD
by exposing the individual to traumatic stressors resulting from
the pursuit and use of addictive substances. One commonality
between SUD and PTSD is their incontrovertible dependence
on instigating environmental factors. Just as the development of
SUD requires exposure to addictive substances, PTSD requires
exposure to traumatic events (American Psychiatric Association,
2013). Patients with SUD necessarily are involved in risky
substance use, and this kind of use can substantially increase the
chances of encountering a wide range of traumatic experiences.
Overdose deaths are common in this population, and high rates
of rape, physical assaults, and other forms of interpersonal
violence have been documented as well (Clark et al., 2001;
Johnson et al., 2003, 2006; Kingston and Raghavan, 2009; Lee
et al., 2018). One study found that almost a third of traumas
resulting in PTSD among SUD patients occurred as a direct
result of the use or procurement of illicit substances (Brady et al.,
1998). Data from the St. Louis Catchment Area study indicated
that users of cocaine and opioids were more than three times
as likely as the general population to report a history of trauma,
most commonly interpersonal violence (Cottler et al., 1992). An
earlier cross-sectional population study of 3,132 adults suggested
a more complex relationship between substance use and trauma,
with a history of sexual assault emerging as a risk factor for the
development of SUD, and then the SUD, in turn, was a risk factor
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FIGURE 1 | Possible etiologies for comorbid post-traumatic stress disorder (PTSD) and substance use disorders (SUD). Different categories of explanations are
depicted as being distinct from one another conceptually but overlapping at the level of the individual patient.

for subsequent assaults (Burnam et al., 1988). As we will see,
however, this is but one of several possible connections between
PTSD and SUD.

SUBSTANCE ABUSE AS
SELF-MEDICATION FOR PTSD
SYMPTOMS

Perhaps the most widely accepted explanation for the
relationship between PTSD and SUD is the self-medication
hypothesis which essentially posits that high rates of SUD are
the result of patients using addictive substances to self-medicate
their PTSD symptoms (Khantzian, 1985, 1997). For example, a
longitudinal study in 1996 on 61 Vietnam veterans investigated
the course of illness for both PTSD and SUD symptoms and
reported the effects of abused substances on the symptoms of
PTSD. They found that most patients developed symptoms like
re-experiencing, hyperarousal, and avoidance within 2 years
of exposure to combat, with a smaller percentage developing
them during the combat tour, and others not meeting full PTSD
criteria until 10 years after the combat. Interestingly, they found
that the course of alcohol and substance abuse followed the
same pattern as the PTSD symptoms. In comparison to 2 years
before the war, there was a significant increase at every time
point evaluated after the war for the use of alcohol, heroin,
cocaine, and marijuana that lasted up to 24 years after the
trauma. Overall, these findings suggest that the onset and
increase of symptoms for PTSD are closely paralleled by those
for alcohol and substance abuse. Additionally, most patients

reported that the use of alcohol, marijuana, benzodiazepines,
and heroin reduced their PTSD symptoms, supporting the
hypothesis that patients are using these substances in order to
self-medicate (Bremner et al., 1996). Similar studies in both
military and civilian populations have identified PTSD as a
prospective risk factor for SUD, and have found that PTSD
patients self-report using addictive substances in response to
emotional distress (Shipherd et al., 2005; Ullman et al., 2005;
Reed et al., 2007; Waldrop et al., 2007; Haller and Chassin, 2014;
McDevitt-Murphy et al., 2015).

One important clinical implication of the self-medication
hypothesis is that, because PTSD symptoms are the primary
drivers of substance use in these patients, effective treatment
for comorbid PTSD and SUD should focus primarily on the
PTSD symptoms. A ‘‘sequential treatment’’ strategy resulting
first in significant improvement of PTSD symptoms should
subsequently reduce the need for self-medication and lead to
an improvement in SUD outcomes that would otherwise be
difficult to achieve. Several clinical trials have attempted to
identify effective strategies for the treatment of comorbid PTSD
and SUD, but as noted in a recent Cochrane review, these
experiments have generally been plagued by high attrition rates
and suboptimal study designs (Roberts et al., 2015). Exposure
therapy is a highly effective treatment for PTSD involving
exposure to trauma-related stimuli that is continued until the
fear/anxiety response subsides (Foa et al., 2005, 2008; Wood
et al., 2009; Cusack et al., 2016). While several studies have
found exposure therapy to improve PTSD outcomes in patients
with comorbid PTSD and SUD, none has reported significant
improvements in SUD outcomes relative to controls (Simpson
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et al., 2017). Few studies have focused on the effects of
SUD-specific treatments on PTSD symptoms in this population.
One Australian randomized controlled trial tested the efficacy
of the Flinders Program of SUD-focused care management,
which includes individualized delivery of self-management skills,
medication adherence strategies, motivational enhancement,
problem-solving, and health-care system navigation, for a sample
of 77 Vietnam veterans with alcohol use disorder, almost all
of whom also had comorbid PTSD. The group that received
the Flinders Program intervention showed greater improvement
in SUD outcomes than controls, but there were no group
differences in PTSD outcomes (Battersby et al., 2013). The
preponderance of evidence suggests that integrated treatments
designed to address both SUD and PTSD simultaneously may
be associated with better outcomes than sequential treatment
(McGovern et al., 2011, 2015; Boden et al., 2012). Though the
potential clinical utility of this information is clear, it does little
to shed light on the etiological links between SUD and PTSD.

Patients with PTSD often cite their psychiatric symptoms as
the reason they use addictive drugs. However, a strong argument
can be made that if a patient truly is primarily using substances as
part of a conscious strategy to reduce his or her PTSD symptoms,
that person does not really have an SUD. SUDs fundamentally
involve a loss of control over substance use such that conscious
plans, strategies, and explanations for substance use no longer
match up with the behavior [National Institute on Alcohol
Abuse and Alcoholism (NIAAA) (2019); National Institute on
Drug Abuse (NIDA) (2019)]. This does not negate the potential
importance of self-medication in the etiology of comorbid PTSD
and SUD; what starts out as self-treatment of PTSD symptoms
can expose individuals to high levels of substance use, thereby
greatly increasing their risk of developing a SUD. However, as
the addictive process takes hold the substance use will gradually
begin to take on a life of its own and may, therefore, be expected
to continue even after the instigating psychiatric symptoms are
under good control.

A somewhat different version of the self-medication
hypothesis was proposed by Volpicelli et al. (1999). The
model went beyond the initial concept that during times of
stress, alcohol is used to reduce anxiety levels. Based on the
observation that rats tend to increase their alcohol preference
days after the stress and not during the days of stress exposure
(Volpicelli et al., 1990), they hypothesize that the increase in
alcohol consumption seen after a traumatic experience—like
that observed on PTSD patients—is more related to post-trauma
changes to the stress response system rather than the exposure to
the stress itself. Thus, in order to understand this relationship, it
is necessary to examine biochemical processes and changes that
take place both during and after a traumatic event. The model
proposes that during the traumatic event, as part of the ‘‘fight or
flight’’ response, there is an increase in the level of endorphins
in the brain (Kavushansky et al., 2013). Neuroimaging studies
have suggested that, in addition to their well-known role in
ameliorating physical pain, endorphins also serve to reduce
distressing emotional responses (Liberzon et al., 2002; Zubieta
et al., 2003). After trauma, the endorphin system habituates with
a reduction in available opioid receptors (Liberzon et al., 2007;

Pietrzak et al., 2014), producing a period of withdrawal and
symptoms of emotional distress that may contribute to PTSD.
Since alcohol can increase endorphin levels, PTSD patients will
find that alcohol makes up for that lack of endorphin signaling
and compensates for the endorphin withdrawal, leading to the
use of alcohol as a way to self-medicate and avoid emotional
distress (Volpicelli et al., 1999).

A similar hypothesis centers on the dysregulation of both
the glutamatergic and GABAergic systems of PTSD patients, as
revealed primarily by proton magnetic resonance spectroscopy
studies. Glutamatergic abnormalities such as increases in
glutamate in the temporal cortex and reductions in the anterior
cingulate are thought to occur due to stress and trauma-
induced overflow of glutamate that results in excitotoxicity and
inflammatory processes, contributing to long-term problems
with regulating stress responses in the central nervous system
(Meyerhoff et al., 2014). In conjunction with the glutamate
abnormalities seen in PTSD patients, there appears to be a
reduction of cortical GABA levels in the parieto-occipital region
(Meyerhoff et al., 2014; Rosso et al., 2014). Reduced GABA levels
in this region correlate with the severity of PTSD symptoms,
particularly insomnia (Meyerhoff et al., 2014). Interestingly, in
a study of PTSD patients with alcohol use disorder, it was found
that cortical glutamate and GABA levels in the parieto-occipital
and temporal cortices were normalized when compared to PTSD
patients without alcohol abuse disorder. GABA and glutamate
levels in these regions were no longer correlated with PTSD
symptom severity or sleep quality in the comorbid population,
though the correlation was significant among PTSD patients
without an alcohol use disorder (Pennington et al., 2014). These
findings suggest that self-medication with alcohol among PTSD
patients may help to stabilize glutamate and GABA levels, which
could result at least initially in improved PTSD symptoms.
However, the comorbid population also showed significant
abnormalities suggesting structural and functional damage to the
anterior cingulate cortex, all of which strongly correlated with
increased PTSD symptom severity that would ultimately lead to
worse outcomes in this group (Pennington et al., 2014).

OVERLAPPING EFFECTS OF TRAUMA
AND DRUGS ON NEURONAL AND
ENDOCRINE SUBSTRATES

As the previously described model indicates, some hypotheses
invoke shared neural mechanisms to explain the frequent
co-occurrence of PTSD and SUD, as opposed to just increased
exposure to trauma and/or drugs of abuse. As will be reviewed
in this section, several studies have found evidence of similarly
dysregulated brain circuitry in both disorders, particularly in
circuits involved in reward and cognitive processes. Therefore, it
is possible that at the neural level both disorders can promote and
potentiate one another by pushing the relevant circuitry toward
a pathological state that favors both PTSD and SUD symptoms.
Many of these mechanisms have been espoused as unidirectional,
meaning either that PTSD predisposes toward SUD or vice versa,
but in almost all cases the reverse causality would logically follow
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since both disorders are proposed to act on the same biological
systems. This section will highlight some examples of biological
systems thought to be affected similarly by both PTSD and SUD.

The first such example is the dopaminergic system, and
more specifically dopaminergic projections from the ventral
tegmental area in the midbrain to the striatum and prefrontal
cortex. These are the mesolimbic and mesocortical systems
respectively, and both are highly involved in regulating
behavioral responses to rewarding stimuli (Schultz, 2002; Olsen,
2011). Not only is the mesolimbic system involved in mediating
responses to natural rewards (e.g., eating, sexual behavior, and
exercising), but it has also been proposed as the final common
pathway for the rewarding properties of substances of abuse
(Pierce and Kumaresan, 2006). These include psychostimulants
(e.g., cocaine and amphetamine), ethanol, opiates, cannabinoids,
and nicotine with all exerting pharmacological and physiological
effects primarily by increasing dopamine transmission in the
mesolimbic system either directly or indirectly (Pierce and
Kumaresan, 2006). This reward-induced dopaminergic activity
promotes motivated behaviors and links those behaviors to cues
associated with the reward (Wyvell and Berridge, 2000; Sotak
et al., 2005; Hamid et al., 2016).

Aversive and stressful experiences affect the dopaminergic
reward pathway in ways that largely mimic the effects of
addictive drugs. Both human and animal studies have shown
that acute exposure to stress causes increased dopamine release
in the nucleus accumbens (Abercrombie et al., 1989; Rougé-
Pont et al., 1993; Kalivas and Duffy, 1995; Pruessner et al.,
2004; Scott et al., 2006; Wood et al., 2007). Though the
mechanisms are not entirely clear, animal studies have shown
that this effect is at least partially mediated by activation of
the hypothalamic-pituitary-adrenal (HPA) axis, components of
which promote dopamine release (Piazza et al., 1996; Rougé-
Pont et al., 1998). Stress enhances the effects of drug-related cues
on the dopaminergic system, leading to increased cue-induced
craving and reinstatement of drug self-administration (Liu and
Weiss, 2002; Buffalari and See, 2009; Fox et al., 2014; Moran-
Santa Maria et al., 2014). Clinical studies have also found that
acute stress is strongly associated with an increased acute risk for
relapse to drug use (Khantzian, 1985; Sinha, 2001).

Chronic exposure to alcohol and other drugs of abuse causes
long-term changes in reward processing that are thought to
promote a continued escalation of substance use. Even though
positive hedonic feelings occur shortly after the drug intake,
negative hedonic responses follow—especially after repeated
exposures—due to alterations in the brain reward system and
stress-related structures such as the extended amygdala, resulting
in a withdrawal syndrome including dysphoria, irritability,
anxiety, and other negative emotional states (Zhang and
Schulteis, 2008; Leventhal et al., 2013; Su et al., 2017; Fleming
et al., 2019). Some hypothesize that over time the desire to
avoid the negative feelings associated with withdrawal becomes
the primary motivational factor for compulsive drug-seeking
behavior (Solomon and Corbit, 1974; Koob and Volkow, 2010).
A key tenet of this opponent-process theory is that circuitry
involved in producing the reinforcing effects of drugs of
abuse eventually undergoes tolerance, resulting in long-term

reductions in dopaminergic activity, an increased reward
threshold, and a decreased desire to pursue natural rewarding
stimuli (Volkow et al., 1997, 2007, 2014; Martinez et al., 2007). In
what amounts to a more intricate version of the self-medication
hypothesis, the experienced drug user is described as engaging
in ever-increasing levels of drug use in an effort to overcome a
chronic and deepening reward deficit.

A similar reward deficit is thought to be a central feature of
PTSD, in which case it would be classified as a depressive-like
anhedonia syndrome as described in Criterion D. It has been
shown that PTSD patients are less likely to expend effort
to gain access to a rewarding stimulus (Elman et al., 2005),
and they report less reward expectancy and satisfaction if
a reward is delivered (Hopper et al., 2008). Some of the
underlying brain mechanisms are thought to include reduced
activation of mesolimbic structures like the nucleus accumbens
in response to positive gains as well as other regions crucial
for reward processing including the medial prefrontal cortex
(Sailer et al., 2008). PTSD patients have also been found to have
an increased density of dopamine transporters in the striatum,
which is thought to be a sign of greater dopamine turnover
and perhaps reduced dopaminergic tone as dopamine is cleared
more efficiently from the synapses (Hoexter et al., 2012). This
is similar to the decreased striatal D2 receptor density observed
during abstinence in patients with SUD that is thought tomediate
withdrawal-related drug craving (Volkow et al., 1993, 2001).
Thus, it is possible that alterations in reward circuits produced by
PTSD and SUD complement and reinforce one another, resulting
in anhedonic states that perpetuate both disorders.

In addition to the above-described anhedonia and overall
decrease in dopaminergic activity, chronic drug use is also
characterized by a sensitized, hyperdopaminergic response to
drug-related cues, with associated increases in motor activity and
motivated behaviors including drug self-administration (Kalivas
and Stewart, 1991; Robinson and Berridge, 1993; Vezina, 2004).
Though most of the original evidence for sensitization was
derived from animal research (Robinson and Becker, 1986),
behavioral and dopaminergic sensitization to drug cues has now
been reported in several human studies as well (Boileau et al.,
2006; O’Daly et al., 2011; Booij et al., 2016). This dopaminergic
incentive-sensitization effect has often been portrayed as being
in conflict with opponent-process, but incentive-sensitization
can also be seen as a necessary complement to a theory that is
attempting to explain both a general loss of interest in motivated
behaviors and a simultaneous increase in one specific type of
motivated behavior, namely substance use. The sensitization
effect appears very specific to drug-related cues, because evidence
of tolerance, rather than sensitization, is generally observed when
such cues are absent (Leyton and Vezina, 2013). Sensitization is
thought to occur because drugs of abuse directly or indirectly
increase dopaminergic transmission in the nucleus accumbens
(Hyman et al., 2006). Glutamatergic synapses that are involved in
linking drug-related stimuli to drug-taking behavioral responses
are active at the time of this dopamine release and are therefore
strengthened every time the drug is used due to activation of
relatively low-affinity dopamine type 1 receptors. In contrast,
synapses representing non-drug related stimuli and actions are

Frontiers in Behavioral Neuroscience | www.frontiersin.org 5 January 2020 | Volume 14 | Article 6

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


María-Ríos and Morrow Post-traumatic Stress and Substance Use

preferentially active in the presence of lower concentrations of
dopamine that are more likely to activate high-affinity dopamine
type 2 receptors, which will progressively weaken the synaptic
strength in those circuits (Grace et al., 2007; Surmeier et al.,
2007; Lovinger, 2010). Over time, the drug user’s thoughts and
behaviors become increasingly funneled toward the drug and
its related stimuli, at the expense of all other non-drug rewards
regardless of how motivating they may have been in the past
(Leyton and Vezina, 2014; Berridge and Robinson, 2016).

Repeated or prolonged exposure to stress can also recapitulate
some of the core pathophysiology of SUD. Sensitization of
the dopaminergic response to stress has been extensively
documented with repeated stress exposure (Jordan et al., 1994;
Tidey and Miczek, 1996; Naef et al., 2013), and the behavioral
and neurochemical effects of repeated stress cross-sensitize with
those of repeated drug exposure (Prasad et al., 1995; Piazza
and Le Moal, 1996; Booij et al., 2016). Sensitization of the
stress response has been documented in PTSD patients and is
thought to be a core feature of the disorder (Dykman et al.,
1997; Yehuda, 1997; Elzinga and Bremner, 2002). For example,
when subjected to cognitive stress, male veterans suffering from
PTSD have increased stress responses and adrenocorticotrophic
hormone (ACTH) levels compared to controls, which reflects
their higher distress level (de Kloet et al., 2012). It has also been
reported that patients who are less responsive to PTSD therapy
have salivary cortisol responses to trauma-related imagery that
actually strengthens over the course of treatment rather than
decreasing or remaining constant (Rauch et al., 2017). Animal
studies suggest that, especially with repeated re-exposure to
trauma-related cues, these conditioned stress responses can
become progressively stronger and expand to other central
neurochemical systems such as norepinephrine (Anisman and
Sklar, 1979; Jedema et al., 2008; Chen et al., 2012) and serotonin
(Adell et al., 1988; Zhang et al., 2014; Hasegawa et al., 2018).

Heightened stress responses lead to increased activity of
norepinephrine neurons within the locus coeruleus due to
stimulation by corticotropin-releasing factor (Curtis et al., 1997;
Reyes et al., 2008). Activity in these norepinephrine neurons
triggers a range of aversive and anxiety-like emotional responses
(McCall et al., 2015; Hirschberg et al., 2017). Hyperactive
norepinephrine signaling is thought to be a core feature of
the pathophysiology of PTSD (Bremner et al., 1997; Yehuda
et al., 1998; Geracioti et al., 2001; Pietrzak et al., 2013; Steuwe
et al., 2014). It may also be involved in SUD, as human
and animal studies have found elevations in both central and
peripheral noradrenergic activity during all phases of substance
use including acute intoxication, chronic use, withdrawal, and
relapse (Hawley et al., 1981; Kovács et al., 2002; Patkar et al.,
2003; Lanteri et al., 2008; Fitzgerald, 2013). This might suggest
that blockade of excessive noradrenergic activity would be
helpful for both SUD and PTSD. Indeed, the alpha-1 adrenergic
antagonist prazosin has well-established efficacy for reducing
PTSD nightmares (Raskind et al., 2003, 2007, 2013; Germain
et al., 2012) and prazosin reduced drug self-administration in
several animal studies (Walker et al., 2008; Greenwell et al.,
2009; Rasmussen et al., 2009; Forget et al., 2010; Lê et al., 2011;
Froehlich et al., 2015). Clinical trials of alpha-1 antagonists

have also shown promise for the treatment of alcohol use
disorder (Simpson et al., 2018; Wilcox et al., 2018). Despite these
promising results for each individual disorder, so far prazosin
has not been shown to improve outcomes for patients with
comorbid PTSD and SUD (Petrakis et al., 2016; Verplaetse et al.,
2019). Other noradrenergic agents have been tested with more
mixed results for PTSD and SUD, but overall manipulation of the
noradrenergic system remains a promising avenue for treatment
of this difficult comorbidity.

The relationship between the serotonergic system and
comorbid SUD and PTSD is less clear than for the other
monoamines. The main evidence for serotonin playing an
important role in the pathophysiology of PTSD comes from
clinical responses to manipulations of the serotonergic system.
Currently, selective serotonin reuptake inhibitors (SSRIs) are
the only medications with an FDA approval for the treatment
of PTSD (Brady et al., 2000; Davidson et al., 2001; Marshall
et al., 2001). Acute reduction of serotoninergic activity using
tryptophan depletion exacerbates PTSD symptoms (Corchs et al.,
2015). However, administration of the serotonin agonist meta-
chlorophenyl-piperamine also causes an acute exacerbation of
PTSD symptoms (Southwick et al., 1995), and SSRIs have
limited to no efficacy for many PTSD patients (Hertzberg et al.,
2000; Zohar et al., 2002). There is some indirect evidence of
serotonergic involvement in the development of SUD as well. As
with dopamine and norepinephrine, animal studies have shown
that most drugs of abuse acutely increase serotonin in both
cortical and subcortical areas (Tao and Auerbach, 1995; Selim
and Bradberry, 1996; Teneud et al., 1996; Singer et al., 2004; Pum
et al., 2007), though cannabis is a notable exception that actually
decreases serotonergic activity (Sano et al., 2008). The effects of
chronic drug use on serotonin are also fairly consistent across
classes, with chronic cocaine, alcohol and morphine causing
long-term decreases (Parsons et al., 1995; McBride et al., 2004;
Goeldner et al., 2011), but no clear effect of either chronic
amphetamine or nicotine (Touiki et al., 2008; Barr et al., 2013).
Selective serotonin reuptake inhibitors are generally not effective
for SUDs (Kranzler et al., 1995; Lima et al., 2003; Hughes et al.,
2014), though some studies indicate that antidepressants for
alcohol use disorder may improve outcomes for some patients
and worsen outcomes for others depending on family history and
pattern of alcohol use (Pettinati et al., 2000; Chick et al., 2004;
Kranzler et al., 2012). Clinical trials of SSRIs for comorbid SUD
and PTSD have thus far not been promising (Brady et al., 2005;
Petrakis et al., 2012).

PERSONALITY/BEHAVIORAL TRAITS

Because of the often complex interactions between relevant
genetic and environmental factors, it can be difficult to recognize
individual factors that affect vulnerability to PTSD and SUD.
Behavioral endophenotypes are more closely related to the
abnormalities that characterize these disorders and have the
potential to integrate many different underlying genetic and
environmental factors, in effect providing a valuable summary of
data that might otherwise be prohibitively difficult or impossible
to get (Gottesman and Gould, 2003). One such endophenotype
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that has been consistently associated with both PTSD and SUD
is impulsivity (Weiss et al., 2013; James et al., 2014; Walker et al.,
2018; Grubbs and Chapman, 2019). Impulsivity is a multifaceted
concept in research but can be broadly defined as a tendency
to engage in risky, premature, or situationally inappropriate
actions that are characterized by a lack of planning or forethought
(Robbins et al., 2012; Jentsch et al., 2014; Dalley and Robbins,
2017). As has been found in patients with PTSD and SUD,
impulsivity is associated with lower dopaminergic activity in the
NAc at baseline and in response to neutral cues, but exaggerated
striatal responses to more salient cues (Forbes et al., 2009; Hahn
et al., 2009; Lee et al., 2009; Colzato et al., 2010; O’Sullivan et al.,
2011; Reeves et al., 2012). Impulsivity is also thought to result
from impaired prefrontal cortical control over motivationally
relevant signals from the NAc and other subcortical structures
(Rolls et al., 1994; Aron et al., 2004; Schmaal et al., 2012; Davis
et al., 2013). This same pattern of prefrontal hypoactivity that is
insufficient to restrain subcortical impulses has been identified in
functional neuroanatomical studies as a key etiologic factor for
both SUD and PTSD in preclinical studies (Peters et al., 2009;
Goode and Maren, 2019).

Another related behavioral trait is ‘‘cue reactivity,’’ or
a tendency towards exaggerated neuronal, emotional and
motivational responses to stimuli that have been associated with
emotionally salient events. The relevance of cue reactivity to
PTSD is clear because excessive fear responses triggered by
trauma cues is a core diagnostic feature of PTSD, and the
intensity of trauma cue reactions correlates well with PTSD
symptom severity (Shin et al., 2004; Rabellino et al., 2016;
Rauch et al., 2017). Cue reactivity to drug-related stimuli also
predicts relapse in patients with SUD (Rohsenow et al., 1990;
Carter and Tiffany, 1999; Janes et al., 2010). Reactions to
drug- and trauma-cues seem to intensify and reinforce one
another among patients with PTSD and SUD. For example, one
study measured visual, physiological, and behavioral responses
of patients with comorbid PTSD and cocaine use disorder to
cues associated with both their trauma and preferred drug.
Compared to those of patients with a single diagnosis of cocaine
use disorder and age- and gender-matched controls, patients
with dual-diagnosis had excessive cue-reactivity to both the
trauma- and drug-related visual cues (Sokhadze et al., 2008).
Trauma cues elicit higher levels of distress and negative emotion
in patients with comorbid PTSD and SUD when they are
accompanied by drug-related imagery (Coffey et al., 2002).
Patients with comorbid PTSD and SUD also show more intense
drug cue reactivity, including increased cravings to use drugs,
when exposed to personalized trauma cues (Coffey et al., 2010;
Tull et al., 2011; Read et al., 2017). Both PTSD and SUD
patients have a tendency to act impulsively in response to
emotionally charged stimuli, a trait that is known as ‘‘emotional
urgency’’ (Whiteside and Lynam, 2001; Cyders and Smith,
2008), and this tendency correlates with symptom severity
and functional impairment (Ehring and Quack, 2010; Smith
and Cyders, 2016). These findings suggest that symptoms of
emotional urgency, impulsivity and cue reactivity are interrelated
and may cross-sensitize in PTSD and SUD, thereby exacerbating
the severity of both illnesses.

In addition to its role in the pathophysiology of PTSD and
SUD, cue reactivity may also be a pre-existing behavioral trait
that predisposes individuals to develop these disorders. This
possibility has mainly been explored in preclinical studies by
comparing animals that exhibit individual variation in their
reactivity to conditioned cues. An example of this is ‘‘sign-
trackers’’ (STs) and ‘‘goal-trackers’’ (GTs) which can be identified
using a Pavlovian conditioned approach procedure. When a food
reward is paired with a localizable cue such as a retractable lever,
STs approach and are attracted to the cue itself, whereas GTs
direct their attention away from the cue and towards the location
of impending reward delivery (Flagel et al., 2009; Tomie and
Morrow, 2018). Sign-tracking is thought to indicate vulnerability
to SUD because STs show increased psychomotor sensitization
to cocaine (Flagel et al., 2008), have higher preference for cocaine
over food (Tunstall and Kearns, 2015) and show increased
cue-induced reinstatement of nicotine (Versaggi et al., 2016)
and cocaine (Saunders and Robinson, 2011). In addition, it
has been shown that STs, identified by the high levels of
incentive salience they attribute to reward-related cues, also
show elevated fear responses to a tone that has been paired
to a foot-shock (Morrow et al., 2011). This indicates that the
sign-tracking trait may represent a more general tendency to
attribute excessive motivational salience to cues paired with
biologically relevant events, regardless of emotional valence.
Sign-tracking may therefore also be a risk factor for PTSD, as
suggested by evidence that repeated exposure of STs to aversive
stimuli results in a fear response that increases over time, instead
of decreasing or remaining stable as is the case for GTs (Morrow
et al., 2015). Sign-tracking has not yet been studied in human
PTSD patients, but as described in the previous paragraph the
related trait of cue-reactivity is elevated in subjects with PTSD.

It is important to note that the exaggerated emotional
and motivational cue reactivity of STs is specifically tied to
discrete, localizable cues. There are no differences between STs
and GTs in learning instrumental tasks, so general associative
learning and memory processes appear to be intact in both
phenotypes (Ahrens et al., 2016; Fitzpatrick et al., 2019).
However, STs show lower levels of contextual fear than GTs,
as well as decreased context-induced reinstatement of drug
self-administration (Morrow et al., 2011; Saunders et al., 2014).
Thus, STs tend to react strongly to conditioned cues regardless
of the circumstances under which they are encountered, whereas
GTs use contextual cues tomodulate their conditioned emotional
responses (Pitchers et al., 2017). Patients with PTSD show
exactly these kinds of deficits; their learned fear responses are
insensitive to contextual shifts, safety signals, or other indicators
of whether the present circumstances are ‘‘safe’’ or ‘‘unsafe’’
(Maren et al., 2013; Garfinkel et al., 2014; Liberzon and Abelson,
2016). For example, extinction learning is impaired in PTSD
patients such that they show relatively high levels of fear in
‘‘safe’’ contexts (Milad et al., 2009; Wicking et al., 2016), but
in renewal tests, PTSD patients also fail to show increased fear
in the ‘‘unsafe’’ context (Garfinkel et al., 2014). Again this does
not appear to be due to a general learning deficit, as PTSD
patients do not differ from controls in explicitly or ‘‘cognitively’’
differentiating ‘‘safe’’ and ‘‘unsafe’’ contexts (Steiger et al., 2015).
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Rather, the difficulty appears to be specifically in using contextual
information to modulate the conditioned emotional response to
cues. According to this conceptualization, the problem with fear
in PTSD is not that the fear response is too strong. After all,
intense fear in life-threatening situations is perfectly normal. It is
the expression of fear in inappropriate circumstances that makes
these reactions pathological. Drug use is also a normal human
behavior, as evidenced by lifetime use estimates in the United
States of 48% for illicit drugs, 63% for tobacco products, and
80% for alcohol (Substance Abuse and Mental Health Services
Administration, 2018). However over the course of addiction
substance use occurs in increasingly inappropriate contexts, such
that it comes to interfere with work, relationships, and other
important responsibilities. Though there is substantial evidence
that physiological and behavioral consequences of drug use can
be highly context-dependent (Crombag et al., 2001; Badiani,
2013), there is also evidence of decreased contextual modulation
of responses to drug cues among SUD patients as compared
to subjects who used drugs but do not have SUD (Garland
et al., 2018). Thus, a failure to use contextual information
in order to appropriately modify conditioned responses to
emotionally salient cues may be a common feature of both PTSD
and SUD.

SHARED GENETIC FACTORS

The high rates of comorbidity between neuropsychiatric
disorders have suggested that many of them might share
common genetic risk factors. It has been proposed that genetic
overlap may help to explain the frequent co-occurrence of
externalizing disorders like SUD with internalizing disorders
such as PTSD, generalized anxiety disorder, andmajor depressive
disorder (Kendler et al., 2003). Twin studies have provided
some evidence for genetic commonalities between PTSD and
SUD (Xian et al., 2000; McLeod et al., 2001; Koenen et al.,
2003; Wolf et al., 2010). For example, in the year 2000, Xian
et al. (2000), conducted a study on 3,304 male-male twin pairs
from the Vietnam Era Twin Registry (VETR) to examine the
genetic overlap of PTSD with alcohol dependence (AD) and
drug dependence (DD). According to their study, the risk for
PTSD was due to 15.3% common genetics with AD and DD,
while risk for AD was accounted for by 55.7% common genetics
with PTSD and DD (Xian et al., 2000). Similarly to that found
in males, a study of 3,768 female-female twin pairs found that
trauma exposure and PTSD had a significant genetic correlation
with AD accounting for 28% of its genetic variance (Sartor et al.,
2011). Interestingly, another study with twins registered in the
VETR focused on how anxiety and mood disorders loaded on
externalizing and internalizing factors. They showed that PTSD
was unique in the sense that it loaded on both externalizing
and internalizing factors while none of the other anxiety/mood
disorders loaded on externalizing factors (Wolf et al., 2010). They
concluded that the high comorbidity between these internalizing
and externalizing disorders can be attributed to genetic factors
that predispose to both types of disorders.

Several studies have also focused on specific genetic variants.
Of particular interest has been the D2 dopamine receptor

(D2DR) TaqI A1 allele which has been previously implicated in
alcohol (Neiswanger et al., 1995; Lawford et al., 1997; Dahlgren
et al., 2011) and DD (Noble et al., 1993; Comings et al., 1996;
Lawford et al., 2000; Li et al., 2019). A study of military veterans
found that this polymorphism was more frequent in PTSD
patients, but only in those who were also harmful drinkers.
PTSD patients that were not harmful drinkers did not differ
in their A1 allele frequency when compared to controls with a
low-risk level of alcohol consumption. In addition, they found
that PTSD patients with the A1 allele drank more than twice
the amount of alcohol compared to PTSD patients lacking
the allele (Young, 2002). In humans, the D2DR A1 allele has
been previously linked to reduced density of D2 receptors
in the striatum (Noble et al., 1993; Pohjalainen et al., 1998;
Jönsson et al., 1999), which is thought to contribute to a
hypodopaminergic state and the reward deficiency syndrome
associated with SUD and PTSD (Blum et al., 2000, 2012; Elman
et al., 2005, 2018; Hopper et al., 2008). In preclinical models,
reduced baseline levels of striatal D2 receptors has served as a
predictor of an increased rate of cocaine self-administration in
both rats (Dalley et al., 2007) and non-human primates (Nader
et al., 2006). Interestingly, in rats, this reduced D2 receptor
levels in the nucleus accumbens are correlated with a trait
of impulsivity as measured by the five-choice serial reaction
time task (Dalley et al., 2007). As described in the previous
section, impulsivity is thought to be a behavioral endophenotype
associated with increased vulnerability to both SUD and PTSD.
Selectively bred alcohol-preferring P rats also show reduced
D2 receptor levels in the nucleus accumbens (McBride et al.,
1993), and upregulation of the D2 receptor in this region
decreases both ethanol preference and intake in these rats
(Thanos et al., 2001). Similarly, in rats that have been trained
to self-administer cocaine, treatment with a D2R vector to
increase expression in the nucleus accumbens attenuated the
amount of cocaine infusions and lever presses for cocaine,
an effect that lasted 6 days (Thanos et al., 2008). In mice,
exposure to chronic mild stress induces increased ethanol intake
and preference in heterozygous Drd2+/− mice compared to
wild-type (Delis et al., 2013). Drd2+/− mice exposed to chronic
mild stress also show increased immobility during the forced
swim test, but this is reversed by ethanol intake, supporting
the link between SUD and stress regulation (Delis et al., 2013).
In preclinical models of PTSD-like symptoms, modulation of
the D2 receptor has proven promising in attenuating negative
symptoms. For example, in rats subjected to a single prolonged
stress (SPS) procedure that mimics psychological trauma,
administration of the D2 partial agonist aripiprazole corrects
the context- and cue-induced extinction retrieval impairment
produced by SPS (Lin et al., 2019). In a similar manner,
the D2/D3 agonist rotigotine reduced exaggerated conditioned
auditory fear responses and also reduced immobility in the
forced swim test in mice that had been subjected to SPS
(Malikowska-Racia et al., 2019).

Another gene of interest is the 5-HTTLPR polymorphism
of the serotonin transporter, which has been associated with
stress reactivity (Gunthert et al., 2007; Gotlib et al., 2008;
Miller et al., 2013; Alexander et al., 2014). A study of
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environmental and genetic factors in children found that the
early use of alcohol could be predicted by an interaction between
history of maltreatment and the 5-HTTLPR polymorphism
(Kaufman et al., 2007). Another study conducted in adults
found that reported experiences of childhood adversity and
adult traumatic events predicted PTSD. Again, the 5-HTTLPR
polymorphism did not predict PTSD alone, but it did increase
risk when combined with childhood and adult traumas (Xie
et al., 2009, 2012). This polymorphism is thought to reduce
expression levels of the serotonin transporter by impairing
the transcriptional efficiency of the gene promoter (Lesch
et al., 1996). Thus, translational value has been the SERT
knockout and knockdown rodent models. Studies have shown
that these mice do not differ in their baseline levels of stress
hormones, but in response to a physical stressor, SERT+/−
and SERT−/− mice show exaggerated responses of plasma
ACTH levels (Murphy et al., 2001) as well as increased plasma
epinephrine in SERT−/− (Tjurmina et al., 2002) suggesting
alterations in the HPA axis stress-induced response. In addition,
exposure to a predator odor induces long-lasting anxiogenic
effects in SERT−/− mice as measured by increased anxiety-like
behaviors in the plus maze and light/dark box test when
compared to wild-type, which may be relevant as a model of
increased vulnerability to PTSD (Adamec et al., 2006). SERT−/−
mice also show enhanced cocaine-conditioned place preference
when compared to wild-type mice (Sora et al., 1998), and
SERT−/− rats also show enhanced cocaine-conditioned place
preference in addition to an increased psychomotor response
to cocaine and intravenous self-administration (Homberg et al.,
2008). Altogether, both clinical and preclinical data suggest that
alterations in the expression of the serotonin transporter can
affect both stress responsivity and the rewarding properties of
addictive substances which can influence vulnerability to both
SUD and PTSD.

EARLY LIFE STRESS

The impact of early life stress (ELS) on predisposition to
neuropsychiatric disorders has been widely studied, particularly
with regard to SUD and PTSD (Bremner et al., 1993; Heim
and Nemeroff, 2002; Enoch, 2011; Rodrigues et al., 2011;
Syed and Nemeroff, 2017; Walters and Kosten, 2019). The
HPA-axis plays a central role in mediating stress responses
and restoring basal states following a stressor (Habib et al.,
2001; Smith and Vale, 2006; Lightman and Conway-Campbell,
2010). Early life stressors, which include neglect as well as
physical, emotional, and sexual abuse (Bernstein et al., 1994),
can have long-lasting effects on the HPA-axis and manifest as
maladaptive behaviors later in adulthood due to both cognitive
and emotional impairments. The developing brain is particularly
sensitive to external influences, which can alter gene expression,
neurochemical balance, neuronal maturation, and synaptic
function both basally and in response to stress (Weinstock, 2005,
2008; Glover et al., 2010; van Bodegom et al., 2017; Matthews and
McGowan, 2019).

As previously described, disruptions of the stress response
due to dysregulation of the HPA-axis as well as altered reward

processing due to imbalances in mesolimbic activity can increase
susceptibility to both SUD (Piazza et al., 1996; Volkow et al.,
1997, 2014; Rougé-Pont et al., 1998; Martinez et al., 2007) and
PTSD (Yehuda, 1997; Sailer et al., 2008). In rats, ELS is associated
with anxiety-like behaviors such as impaired fear extinction
(Judo et al., 2010; Bingham et al., 2013; Wilson et al., 2013),
and enhanced psychomotor responses to alcohol (Kawakami
et al., 2007), opiates (Kalinichev et al., 2002), amphetamine
(Henry et al., 1995; Kehoe et al., 1996; Brake et al., 2004),
and cocaine (Kehoe and Boylan, 1992; Brake et al., 2004;
Thomas et al., 2009; Anier et al., 2014) as well as enhanced
acquisition of cocaine (Kosten et al., 2000; Flagel et al., 2003),
methamphetamine (Lewis et al., 2013), and alcohol (Gondré-
Lewis et al., 2016) self-administration. In addition, human data
shows that maltreated children report alcohol use seven times
higher than that of control children as well as an earlier age of
drinking initiation, which are predictors of future AD (Kaufman
et al., 2007). Furthermore, later in adulthood, the level of
substance use positively correlates with both PTSD symptoms
and the level of sexual, physical, and emotional childhood trauma
(Khoury et al., 2010).

In rats, many studies have shown that pre- and neo-natal
stress (e.g., restraint, hypoxia, foot-shocks, etc. to the mother
or maternal separation, social deprivation, etc. to the pups)
can alter both basal and stressed-induced CRH, ACTH, and
corticosterone levels through activation of the HPA-axis, changes
which persist into adulthood. As is also the case with the human
literature, there has been variability in the results of animal
studies due to influences of sex, developmental stage during the
stress exposure, the nature of the stressor and its duration, and
the age at testing (Weinstock, 2008; van Bodegom et al., 2017).
Nonetheless, most studies have been consistent with showing
some type of alteration in HPA reactivity. These changes are
accompanied by adaptations in the limbic and cortical system,
such as increases in the expression of CRHR1 in regions like
the PVN (Bravo et al., 2011; Fan et al., 2013; Wang et al.,
2013), the amygdala (Bravo et al., 2011; Brunton et al., 2011),
the hippocampus (O’Malley et al., 2011), and the prefrontal
cortex (Vázquez et al., 2003; O’Malley et al., 2011), which is
thought to be crucial for initiation of the stress response (Bale
and Vale, 2004; Henckens et al., 2016). In addition, decreased
expression of the glucocorticoid receptor in the hippocampus
(Henry et al., 1994; Levitt et al., 1996; Green et al., 2011; Bingham
et al., 2013) and prefrontal cortex (Green et al., 2011; Bingham
et al., 2013) is thought to disrupt the ability of the system
to respond appropriately to feedback loops and control stress
responses (Jacobson and Sapolsky, 1991; de Kloet et al., 1993;
Herman and Cullinan, 1997; Mizoguchi et al., 2003; Herman
et al., 2012). ELS results in exaggerated responses to psychological
stressors as seen in adult animals exposed to pre- and post-natal
stress (Engelmann et al., 1996; Vallée et al., 1997; Tazumi et al.,
2005; Brunton and Russell, 2010). As previously described, PTSD
patients show dysregulation of the HPA-axis (de Kloet et al.,
2006; Dunlop and Wong, 2019). Although basal levels of cortisol
seem to be decreased inmany studies (Mason et al., 1986; Yehuda
et al., 1990; Yehuda and Seckl, 2011), the stress response to
trauma-related cues is exaggerated and perpetuated due to the
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inability of the system to restore homeostasis (Yehuda, 1997;
Elzinga and Bremner, 2002). Importantly for the relationship
between ELS, PTSD and SUD, the interaction between the stress
and dopaminergic systems seems to be carefully coordinated,
suggesting reciprocal modulation between the two systems
(Härfstrand et al., 1986; Piazza and Le Moal, 1996; Piazza et al.,
1996; Marinelli and Piazza, 2002; Rougé-Pont et al., 1998). In the
mesolimbic circuit, particularly within the VTA-NAc projection,
ELS causes long-term changes in dopaminergic activity. Both
animal and human studies have reported an increase in stress-
induced dopamine release during adulthood (Hall et al., 1999;
Brake et al., 2004; Pruessner et al., 2004; Yorgason et al., 2013),
and animal studies have shown long-lasting changes in dopamine
receptors including decreased NAc D2R expression in prenatally
stressed rats treated with nicotine (Said et al., 2015) as well as in
rats subjected to maternal separation (Majcher-Ma ślanka et al.,
2017). As previously mentioned, decreased density of the D2R
in the NAc is thought to be an important contributor to drug
craving (Volkow et al., 1993, 2001).

Another target of ELS is the hippocampus, which expresses a
high density of glucocorticoid receptors (Jacobson and Sapolsky,
1991; Maras and Baram, 2012). ELS can impair hippocampal
development by degrading its structure and function. The
impairments in learning and memory associated with ELS are
thought to be mainly mediated by significant reductions in
hippocampal volume and synaptic activity. ELS causes decreased
neurogenesis and cell proliferation, reductions in spine density,
dendritic atrophy, and disruption of synaptic pruning (Lemaire
et al., 2000; Andersen and Teicher, 2004; Brunson et al.,
2005; Ivy et al., 2010; Oomen et al., 2010; Hulshof et al.,
2011). These changes can directly impact synaptic plasticity
in the form of impaired long-term potentiation and facilitated
long-term depression (Brunson et al., 2005; Yang et al., 2006;
Ivy et al., 2010). For example, in rats subjected to contextual
fear conditioning, ELS causes synaptic inhibition between the
hippocampus and the medial prefrontal cortex in response to the
extinction trials, and this is accompanied by persistent freezing
due to impaired extinction retrieval of the fear memory (Judo
et al., 2010), a feature of PTSD in humans (Maren et al., 2013;
Garfinkel et al., 2014). Decreased hippocampal volume as a result
of ELS has been reported in both animal and human models
(Uno et al., 1994; Andersen and Teicher, 2004; Humphreys et al.,
2019) and this is consistent with significant hippocampal volume
reductions in combat- and childhood-related PTSD (Bremner
et al., 1995, 1997; Karl et al., 2006;Wang et al., 2010) that worsens
over the duration of the disorder (Felmingham et al., 2009; Chao
et al., 2014). These findings are not confined to PTSD; reduced
hippocampal function has also been identified as a feature of AD
(Agartz et al., 1999; Beresford et al., 2006), cannabis dependence
(Chye et al., 2019), and methamphetamine psychosis (Orikabe
et al., 2011).

The prefrontal cortex is another important player in the
inhibition of stress responses and regulation of cognitive and
emotional processing (Diorio et al., 1993; Ochsner and Gross,
2005; Herman et al., 2012). ELS has been linked to reduced
prefrontal cortical volume and function in adulthood, most likely
due to the permanent impact these neurophysiological changes

can have on the region while it is still undergoing development
(Chocyk et al., 2013). The prefrontal cortex normally regulates
subcortical processing of both appetitive and aversive cues. Both
decreased volume and hypoactivity of the prefrontal cortex have
been linked to anxiety and addiction disorders. In rats, postnatal
stress causes a volumetric reduction of the prefrontal cortex
(Sarabdjitsingh et al., 2017) and this is consistent with human
data showing that childhood emotional maltreatment reduces
the volume of the medial prefrontal cortex (van Harmelen
et al., 2010) and results in hypoactivity within this region in
adulthood (van Harmelen et al., 2014). Patients with PTSD
also show hypoactivity of the ventromedial prefrontal cortex
(Hayes et al., 2012) and significant thinning (Geuze et al.,
2008) that correlates with the severity of their PTSD symptoms
(Wrocklage et al., 2017). Reduced prefrontal cortical volumes
have also been observed in SUD patients (Liu et al., 1998;
Fein et al., 2002; Schlaepfer et al., 2006; Tanabe et al., 2009;
Becker et al., 2015), along with a range of deficits in executive
control indicating functional impairment of the prefrontal cortex
(Goldstein et al., 2004; Goldstein and Volkow, 2011; Ramey
and Regier, 2019). In addition, ELS has been shown to blunt
the increase in prefrontal D2R expression that normally occurs
during adolescence (Brenhouse et al., 2013). This may suggest a
link between ELS and subsequent SUD risk since rats exposed
to a long access self-administration paradigm show a decrease
in D2R mRNA and protein expression in the orbital prefrontal
cortex in conjunction with impaired sustained attention (Briand
et al., 2008).

Similar to the glutamatergic synaptic overflow reported in
PTSD patients and reduced cortical levels of GABA, ELS by
maternal separation in mice leads to increased basal levels
of glutamate release in the somatosensory cortex as well
as increased glutamate release after a nociceptive stressor.
Maternally separated mice seem to show an inability to
restore glutamatergic homeostasis which may, in turn, affect
glucocorticoid secretion in response to stressors (Toya et al.,
2014). In addition, in the hippocampus, maternal separation
in rats seems to also affect the glutamatergic/GABAergic,
excitatory/inhibitory ratio by affecting the expression of proteins
responsible for the cycling of these neurotransmitters. This
includes upregulation of EAAT1 and EAAT2, which is in
accordance with a homeostatic response to increased synaptic
glutamatergic levels, as well as downregulation of VGAT and
GAD63 which may suggest reduced GABA levels (Martisova
et al., 2012). These alterations are thought to be mainly mediated
by stress-induced corticosterone release, as chronic treatment
with corticosterone recapitulated most of the effects seen in
maternally separated rats (Martisova et al., 2012).

Overall, these data suggest that exposure to ELS induces
long-lasting effects in the HPA-axis and stress response system
that in turn influence the activity of key neurotransmitters
like dopamine, glutamate and GABA, and impair proper
development and function of structures like the hippocampus
and prefrontal cortex. As was described, many of the features that
characterize ELS overlap with those previously linked with PTSD
and SUD and may help explain why ELS is such a powerful risk
factor for developing these disorders in adulthood.
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CONCLUSION

Based on the data from patients and animal models, many
neurobiological and biochemical factors could be implicated in
the development of PTSD and SUD comorbidity. So far, the
exact neurobiological underpinnings for this comorbidity remain
unknown. There are some putative explanations, e.g., self-
medication, that do not require any direct neurobiological
relationship between PTSD and SUD. However, based on
multiple overlapping psychological and physiological effects
of trauma and abuse substances, there are likely several
neurobiological mechanisms whereby the development of one
disorder can impact the development of the other. Much of the
evidence reviewed in this article suggest that chronic exposure
to either stress or drugs of abuse can push the mesolimbic
motivational system into a state that is poised to react to salient
stimuli with a surge of emotional and motivational activity
that may be difficult to restrain and result in a multitude
pathological behaviors such as those seen in both PTSD and
SUD. The study of individual differences in vulnerability to

develop these disorders may provide further insight into the
surprising prevalence of comorbid PTSD and SUD, especially
since both disorders represent a relatively uncommon reaction to
the nearly ubiquitous experiences of trauma and substance use. A
better understanding of the neurobiology and basic psychological
processes that can predispose toward both PTSD and SUD
would assist in the rational design of more effective treatment
strategies aimed specifically at patients vulnerable to comorbid
psychiatric disorders.
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