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Pancreatic islets seeded in a novel 
bioscaffold forms an organoid 
to rescue insulin production and 
reverse hyperglycemia in models of 
type 1 diabetes
Diana M. Elizondo1, Nailah Z. D. Brandy1, Ricardo L. L. da Silva1,2, Tatiana R. de Moura2, 
Jamel Ali3, Dazhi Yang1 & Michael W. Lipscomb1*

Therapeutic approaches to combat type 1 diabetes (T1D) include donor pancreas transplantation, 
exogenous insulin administration and immunosuppressive therapies. However, these clinical 
applications are limited due to insufficient tissue compatible donors, side effects of exogenous insulin 
administration and/or increased onset of opportunistic infections attributable to induced global 
immunosuppression. An alternative approach to alleviate disease states is to utilize insulin-producing 
pancreatic islets seeded in a bioscaffold for implantation into diabetic recipients. The present studies 
now report that a newly developed cationic polymer biomaterial serves as an efficient bioscaffold for 
delivery of donor syngeneic pancreatic islet cells to reverse hyperglycemia in murine streptozotocin 
induced- or non-obese diabetic mouse models of T1D. Intraperitoneal implantation of pancreatic islets 
seeded within the copolymer bioscaffold supports long-term cell viability, response to extracellular 
signaling cues and ability to produce soluble factors into the microenvironment. Elevated insulin 
levels were measured in recipient diabetic mice upon implantation of the islet-seeded biomaterial 
coupled with reduced blood glucose levels, collectively resulting in increased survival and stabilization 
of metabolic indices. Importantly, the implanted islet-seeded biomaterial assembled into a solid 
organoid substructure that reorganized the extracellular matrix compartment and recruited endothelial 
progenitors for neovascularization. This allowed survival of the graft long-term in vivo and access to the 
blood for monitoring glucose levels. These results highlight the novelty, simplicity and effectiveness of 
this biomaterial for tissue regeneration and in vivo restoration of organ functions.

Diabetic hyperglycemia is a condition that results from insufficient insulin production1. For type 1 diabetes 
(T1D), this is due to autoimmune-mediated destruction of the pancreatic islet compartment leading to dereg-
ulation of glucose-responsive insulin production from beta cells2–4. Though subcutaneous exogenous insulin 
delivery is the standard route for regulating glucose levels in diabetics, it is associated with repetitive injection 
pain, lipodystrophy, noncompliance and peripheral hyperinsulinemia. Furthermore, common side effects of reg-
ular insulin injections can lead to hypoglycemia, weight gain, headaches and flu-like symptoms. Therefore, novel 
methods to deliver insulin in minimally invasive yet clinically-effective means are needed.

Approaches to repopulate beta cell mass in diabetic patients through whole organ pancreas transplants and 
intrahepatic islet transplantation using donor-derived tissues have had limited success5,6. Failures are largely due 
to donor graft rejection driven by allogeneic cell mediated-immune responses and hypoxic environmental con-
ditions within the transplant7–12. Therefore, engineering of a microenvironment for the transplanted islets that 
provides both immune tolerance and efficient vascularization within the transplant microenvironment are ideal 
for long-term retention and adequate glucose responsive-insulin production13,14.
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In these studies, building on previous approaches to islet implantation6,15–17, an innovative new class of 
polysaccharide-polyamine copolymers is employed as a bioscaffold system to correct hyperglycemia in both 
streptozocin (STZ)-induced and autoimmune-driven non-obese diabetic (NOD) mice models13,18. Under physi-
ological conditions, the protonated copolymeric scaffold biomaterial efficiently interacts with negatively charged 
plasma membranes of pancreatic islet cells. The surface charge interactions allow the cellulosic material to asso-
ciate and aggregate with the seeded beta cells ex vivo, further supporting cellular infiltration into the porous 
substructure.

These studies have found that intraperitoneal (i.p.) implanted donor-derived syngeneic islet seeded into the 
biomaterial reduced hyperglycemia levels and improved metabolic hormone balances in recipient diabetic mice. 
Importantly, the islet-seeded copolymeric scaffold electrostatically assembled into a surrogate pancreas-like orga-
noid that maintained the islet microenvironment, which included neovascularization within the transplant to 
prevent hypoxia and provide access to monitor blood glucose levels for reduction of hyperglycemia in recipients.

Results
Biomaterial co-polymer properties.  The patented bioscaffold (or biomaterial) utilized in these studies 
was developed in house at Howard University. The approach included selectively oxidizing cellulose, covalently 
cross-linking 2,3 di-aldehyde cellulose with polyamine polymers and reducing the carbon-nitrogen double 
bonds of the imines. Microscopy (Supplemental Fig. 1A-C) and Fourier-transform infrared spectroscopy (FTIR; 
Supplemental Fig. 1D) were performed on samples to assess macroscopic and molecular structures, with FTIR 
noting comparison between originating cellulose structure to the final co-polymer product. Characteristic peaks 
at 2940-2830 cm−1 (—C—H stretching), 1576 cm−1 (—N—H bending) and 1350-1000 cm−1 (—C—N stretch-
ing) can be found in the spectrum of the novel copolymer derived from cellulose. Additionally, the spectrum 
of the novel cationic polymer displays a distinct peak at 1656 cm−1, which is the stretching band of —C=N, 
indicating the Schiff reaction between the amine groups of polyethyleneimine and the aldehyde groups of 2, 
3-dialdehyde cellulose.

Pancreatic islets seeded in the bioscaffold retain ability to produce insulin.  The bioscaffold 
without seeding of any cells (empty biomaterial) is a fine structure of monomeric particles (Fig. 1A). However, 
addition of murine pancreatic islets to the biomaterial (islet-seeded biomaterial) results in an immediate aggre-
gation in vitro. Reorganization of the scaffold assembly occurred within 3-4 h after initial seeding (Supplemental 
Fig. 1E), with complete embedding of the cells into the biomaterial within 2 weeks of in vitro co-culture 
(Supplemental Fig. 1F). Scanning electron microscopy performed on empty biomaterial at 10,000x magnifica-
tion and islet-seeded biomaterial at 3,500x magnifications (Supplemental Fig. 1G-H) highlights the interactive 
aggregation between the pancreatic islet cells and cellulosic co-polymer biomaterial. To further characterize islets 
seeded within the biomaterial, harvested pancreas islets were labeled with Far Red dye ex vivo just prior to seed-
ing in the biomaterial. After 14 days of in vitro culturing, phase contrast overlay with fluorescence microscopy 
shows Far Red-labeled islets stably aggregated with the biomaterial (Fig. 1B). Using islets harvested from mice 
carrying green fluorescent protein (GFP) under the insulin promoter, fluorescence microscopy overlay of Far 
Red-labeled islets show that the seeded cells in the biomaterial were able to drive the insulin promoter to produce 
GFP (Fig. 1C). For visualization, the intensity of the Far Red fluorescence channel was reduced substantially to 
show the dim GFP expression from insulin-producing beta cells within the islet-seeded biomaterial.

Functionality of the islets seeded within the biomaterial was assessed by measuring insulin responses upon in 
vitro glucose stimulation. Briefly, islets seeded in the biomaterial were incubated in basal media (3.3 mM glucose) 
prior to stimulation with high glucose solution (16.7 mM glucose). Supernatant was then harvested every 20 min 
for 1 h. Islets without seeding in the biomaterial (islets-only) served as internal control. Results revealed that the 
islets seeded within the biomaterial were able to sufficiently produce insulin in response to glucose, surprisingly 
more robust to that of the islets-only group (Fig. 1D). These results establish that insulin can be secreted and 
released out of the biomaterial into the supernatant; molecules are not trapped within the biomaterial scaffold 
network. As a corroborative index, Far Red-labeled islets seeded in the biomaterial were stimulated with glu-
cose prior to freeing the labeled cells from the bioscaffold by gentle disassociation. These pancreatic islet cells 
were then assessed by flow cytometric analyses for insulin expression 4 h after glucose stimulation (Fig. 1E,F). 
Results revealed that the islet-seeded biomaterial had an increase in frequency of insulin+ pancreatic cells from 
10.0% ± 2.4 to 46.9% ± 6.7 upon addition of 5 mM glucose.

Implantation of islet-seeded biomaterial reduces hyperglycemia in diabetic mice.  After corrob-
oration of islet cells’ functionality upon in vitro seeding into the biomaterial, studies next evaluated their ability 
to reduce glucose levels and increase survival of diabetic mice in vivo. Islet-seeded biomaterial, islets (islets-only) 
or empty biomaterial (biomaterial-only) was i.p. injected into STZ induced-diabetic mice with glucose levels in 
the range of 26.8 ± 3.1 mmol/L. The STZ model was employed to exclude beta cell autoantigen-driven autoim-
munity as a variable. Reduced glucose levels in the cohort that received the islet-seeded biomaterial treatment 
were observed (Fig. 2A), whereas glucose levels continued to elevate in control recipients receiving implants of 
islets-only or biomaterial-only controls. Glucose tolerance tests (GTT) were performed by i.p. injection 3 weeks 
after implantation of islet-seeded biomaterial or controls into recipient diabetic mice. Results revealed decreased 
blood glucose levels in the islet-seeded biomaterial treated mice, but not controls (Fig. 2B). Lastly, insulin lev-
els were markedly higher in the islet-seeded biomaterial treatment groups compared to controls at the end of 
the GTT assay (Fig. 2C). Next, using the non-obese diabetic (NOD) mouse model, analogous studies were per-
formed under autoimmune settings. Results of islet-seeded biomaterial implantation recapitulated that of the 
STZ-induced diabetic model, whereby there was lowered glucose levels (Fig. 2D), decreased blood glucose upon 
GTT (Fig. 2E) and increased total insulin levels (Fig. 2F) in the islet-seeded biomaterial implantation group, 
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Figure 1.  Pancreatic islets seeded in the bioscaffold produces insulin in response to glucose stimulation in vitro. 
(A) Images of aggregation of pancreatic islets seeded in biomaterial within 10 min after being added in vitro. Empty 
biomaterial shows original small non-aggregated fine structures. (B) Phase contrast and fluorescence microscopy 
imaging of Far Red dye-labeled islets seeded into the biomaterial after 14 days. Empty biomaterial served as control. 
Scale bar represents 1 mm. (C) Phase contrast and fluorescent imaging overlay of Far Red dye-labeled insulin-
GFP+ islets seeded into the biomaterial. Scale bar represents 200 μm. (D) GSIS assays performed on islet-seeded 
biomaterial vs. islet-only controls. Supernatant collected at 20 min intervals over 60 min prior to assessing for insulin 
production by ELISA. (E) Flow cytometric gating strategy of Far Red-labeled islets dissociated from the biomaterial; 
controls include empty biomaterial (biomaterial-only) and Far red-labeled islets-only groups. (F) Flow cytometric 
analyses of intracellular insulin production from islet-seeded biomaterial under 0.5 mM-basal vs. 5.0 mM-high 
glucose treatment for 4 h. Gates were established based on unlabeled groups and isotype controls. For bar graphs, 
paired student t test was utilized for statistical analysis. A p value <0.05 was considered statistically significant; * is p 
<0.05, ** is p <0.01 and ns = not significant. Error bars indicate standard error of the mean (SEM).
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but not controls. It is important to note that implantation with islet-seeded biomaterial in the STZ-induced dia-
betic mice resulted in long-term survival of the mice, with 4 out of 7 treated animals surviving beyond 120 
days post-implantation (Supplemental Fig. 2A). Islets-only or biomaterial-only treated groups died of severe 
morbidity ~60 days after implantation. However, within the NOD mouse model, studies revealed that survival 
of mice treated with islet-seeded biomaterial was prolonged by 2.5-fold over control groups (Supplemental Fig. 
2B). This may suggest that autoreactive immune cell infiltration may be disrupting the function of the i.p. injected 
islet-seeded biomaterial after extended periods within the NOD diabetic recipient mice.

Partial rescue of metabolic levels upon treatment with pancreatic islet-seeded bioscaffold.  
After implantation, blood serum was collected weekly for 8 weeks. Measures of metabolic indices were evaluated 
comparing treated islet-seeded biomaterial vs. empty biomaterial (biomaterial-only) controls in the STZ-induced 
diabetic mice. Results showed increased C-peptide, GIP, insulin, PP, PPY and resistin levels, with leptin levels 
significantly lowered, in diabetic mice receiving the islet-seeded biomaterial (Fig. 3A). Analogous results were 
observed in the NOD model, where metabolic levels began to stabilize for 3–6 weeks post islet-seeded biomaterial 
implantation (Fig. 3B). However, metabolic levels began to destabilize after the 6-week mark, as seen with lowered 
C-Peptide, GIP, insulin and PP. Therefore, in comparison with STZ-induced diabetic, islet-seeded biomaterial 
began to fail under autoimmune settings in the NOD diabetic model, which corresponds with observed reduced 
long-term survival.

Islet-seeded biomaterial drives neovascularization for long-term function and viability.  
Implanted biomaterial seeded with islets was resected from sacrificed STZ-induced diabetic and NOD treated 
mice 5 weeks after i.p. implantation. Analyses revealed that the islet-seeded biomaterial aggregated around the 

Figure 2.  Implanted islet-seeded biomaterial into diabetic mice reduces glucose levels. Islet-seeded biomaterial 
or respective controls were injected intraperitoneal into both STZ-induced and NOD diabetic mice. STZ-
induced diabetic mice were treated with biomaterial-only (n = 7), islets-only (n = 6) or islet-seeded biomaterial 
(n = 8). Days −25 through 0 designate pre-treatment period to identify baseline glucose levels. STZ was injected 
day −7 through day −3 (for a total of 5 days) to induce diabetes. (A) STZ-induced diabetic mice assessment of 
blood glucose levels recorded over the treatment time period. Dashed horizontal line represents 16.7 nmol/L 
marker for diabetes determination. (B) Glucose tolerance test (GTT) performed in STZ-induced diabetic 
mice on day 20 post-implantation treatment with islets-only, biomaterial-only or islet-seeded biomaterial. (C) 
Total blood insulin levels were measured 120 min after GTT performed in STZ-induced diabetic mice 20 days 
post-implantation treatment. (D) NOD diabetic groups were treated with biomaterial-only (n = 6), islet-only 
(n = 6) or islet-seeded biomaterial (n = 8). Blood glucose levels recorded over 30 days post-implantation. (E) 
GTT performed in NOD treated mice on day 20 post-implantation. (F) Total blood insulin levels measured 
after GTT performed in NOD treated groups on day 20 post-implantation. Paired student t test was utilized for 
statistical analysis. A p value < 0.05 was considered statistically significant; * is p < 0.05, ** is p <0.01 and ns = 
not significant. Error bars for all figures indicate standard errors of the mean (SEM).
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intestinal area closest to the pancreas (Fig. 4A,B); arrows show the in vivo self-assembled islet-seeded biomaterial 
as an organ-like structure approximately 3 mm in diameter within implanted STZ-induced and NOD diabetic 
recipient mice. Importantly, this was only observed in islet-seeded biomaterial treated groups, as no aggregated 
assembly was found in implanted biomaterial-only groups. No islet-seeded biomaterial was observed in or near 
the lungs, liver, heart or brain (data not shown). Cryosections of resected islet-seeded biomaterial were prepared 
prior to staining for insulin or the endothelial cell marker CD31. In the STZ-induced diabetic model, both insulin 
and CD31 expression are present, confirming results of long-term insulin production and vascularization for 
supporting implant survival and access to monitoring blood glucose levels (Fig. 4C,D). Harvested islet-seeded 
biomaterial in STZ-induced diabetic treated mice 10 weeks after initial implantation continued to show the solid 
organ-like structure containing islets supported by vascularization (Supplemental Fig. 3). Similar profiles of 
endothelial marker recruitment were observed in the NOD diabetic groups that received islet-seeded biomaterial 
(Fig. 4E). However, lower overall levels of insulin-producing cells within the implanted islet-seeded biomaterial 
were observed (Fig. 4F).

Implantation of islet-seeded biomaterial does not elicit inflammatory responses.  Serum from 
islet-seeded biomaterial treated diabetic mice was collected 5 weeks after implantation and assessed for inflam-
matory cytokines. Results showed no significant differences in IL-6, TNFα, INFγ, IL-1β, IL-12, IL-22 or IL-10 
between the islet-seeded biomaterial vs. islet-only and biomaterial-only controls in STZ-induced or NOD dia-
betic recipients, suggesting no systemic inflammation caused by implantation of the biomaterial (Fig. 5A,B). As 
expected, elevated levels of pro-inflammatory cytokines were detected in the NOD model. There was no observ-
able direct reversal of autoimmune events in the treated NOD diabetic model, as measured by serum cytokine 
levels, suggesting that implantation of islet-seeded biomaterial does not abrogate autoimmunity. In order to 
investigate infiltration of immune cells, excised biomaterial was harvested and sectioned from implanted mice. 

Figure 3.  Partial rescue of metabolic indices upon islet-seeded biomaterial implantation into diabetic mice. 
Islet-seeded biomaterial (n = 6) was intraperitoneal injected into both STZ and NOD mice; control group is 
empty biomaterial (biomaterial-only; n = 6). Serum samples were collected weekly and assessed for C-peptide, 
GIP, insulin, leptin, PP, PPY, resistin and amylin hormone secretion in recipient (A) STZ-induced and (B) NOD 
diabetic mice. Experiments were performed in replicates with 6 mice per group. Data is presented as mean. No 
values determined after week 6 for STZ-induced and week 5 for NOD diabetic mice due to increasing states of 
severe morbidity in the control groups.
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Fluorescence microscopy analyses showed no infiltration of CD45+ leukocytes or IFNγ-producing cells into the 
islet-seeded biomaterial within the STZ-induced diabetic mouse (Fig. 5C,D). However, for the NOD model, 
results showed infiltration of CD45+ immune cells and presence of IFNγ in the resected islet-seeded biomaterial 
(Fig. 5E,F). Monoclonal anti-CD3 neutralization treatment markedly reduced, but did not abolish, immune cell 
infiltration and re-emergence of diabetic pathologies in the NOD cohorts (data not shown). Taken together, the 
islet-seeded biomaterial can reduce hyperglycemia by restoring insulin levels in a glucose-responsive manner 
in both STZ-induced and autoimmune-driven NOD diabetic mouse models. Success of the clinically relevant 
approach shows efficacy in establishing long-term retention as a surrogate-like organ that is able to effectively 
induce neovascularization for access to oxygen, nutrients and monitoring of blood glucose levels.

Discussion
These studies show the effectiveness of this new cationic copolymer biomaterial in serving as an effective bios-
caffold for seeding pancreatic islet cells and formation of a self-sufficient organoid to reduce hyperglycemia upon 
implantation in diabetic recipients. Cells can grow on both the exterior and interior surfaces of the cationic 
charged surface of the biomaterial, which better mimics 3D growth patterns. This unique capability also sup-
ports nutrient infiltration during anchorage-dependent cell growth and viability. The result of the observed 
islet-biomaterial assembly is a densely interlocked network that well supports cellular functions and interactions 
(i.e. infiltration, reorganization, signaling and secretion) under physiological conditions. While conventional 
microcarriers are often used for cultivating cells in a suspended state by supporting cell proliferation in a single 
layer on the surface, the cationic copolymer biomaterial used in these studies advantageously provides multiple 
layers with porous structures. The size of the bioscaffold, as well as the pore size, can be controlled by the reaction 
conditions to optimally support a variety of cell types. In this respect, simple chemical modifications and sheer-
ing approaches provide an advantageous means to produce the biomaterial with uniform size and variable sized 
pores, allowing generation of median particle sizes ranging from 100 μm to about 1 mm and pores between 30 
and 300 μm. Thus, the system allows a high cell-to-carrier ratio for cell seeding and culturing.

Figure 4.  Islet-seeded biomaterial forms an organ-like structure in vivo that promotes neovascularization. 
Stereomicroscope imaging of resected islet-seeded biomaterial 5 weeks after initial i.p. implantation into (A) 
STZ-induced and (B) NOD mice peritoneal cavity at 2.5x and 20x magnifications. Arrow indicates location of 
the aggregated islet-seeded biomaterial substructure nearest small intestines and (original site of) pancreas. 
Fluorescence microscopy images of excised and sectioned islet-seeded biomaterial from STZ-induced diabetic 
mice stained for (C) CD31 and (D) insulin and from NOD mice stained for (E) CD31 and (F) insulin; DAPI 
used as nuclear staining dye.
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Seeding the pancreatic islets within the biomaterial allows for maximal occupancy, with the cationic copoly-
mer serving as a scaffold for interacting strongly with the charged surface of cells. This is an important innovation 
in design, as surfaces of many existing microcarriers generally need to be treated (e.g., by an attachment protein) 
to enhance the anchorage/affinity of cultured cells19,20. However, the inherent electrostatic state of the bioscaffold 
assembly allows immediate and long-term retention of pancreatic islet cells, as well as subtle reorganization of the 
copolymer around the cells to create a stable niche and organoid substructure.

Visualization of the islet-seeded biomaterial in vitro revealed viable insulin-producing pancreatic cells by fluo-
rescence microscopy, as observed by expression of GFP driven under the insulin promoter. Notably, fluorescence 
intensity levels for insulin were variable. This may be attributed to the different levels of insulin based on various 
stages of cell activity and/or maturation under steady-state conditions21. Furthermore, due to the intrinsic bright-
ness of the Far Red dye signal relative to the lowly expressed GFP fluorescence intensity, levels of Far Red were 
greatly reduced during imaging and post-acquisition analyses to compensate for the dimly expressed GFP+ cells.

Beta cells within the islet-seeded biomaterial were able to both produce and secrete insulin into the superna-
tant in direct response to glucose, as detected by flow cytometric analyses and ELISA. Interrogating cells by flow 
cytometric analyses confirmed both cell viability and intracellular production of insulin, with levels increasing in 
direct response to glucose addition to the culture. Collection of supernatant after varying time points proved that 
the scaffold biomaterial supports release of molecules into the extracellular spaces, while providing a stable aggre-
gate niche for the seeded cells to stay in place. Taken together, the pancreatic islet cells seeded into the biomaterial 
remained viable for 4 weeks in vitro and small molecules can diffuse passively in-and-out of the bioscaffold.

Implantation of islet-seeded biomaterial into either STZ-induced or NOD diabetic mice resulted in significant 
reduction of hyperglycemia coupled with marked increase in insulin levels. Both treated STZ-induced and NOD 

Figure 5.  No significant changes in inflammation upon islet-seeded biomaterial implantation. Luminex panel 
analyses on collected serum for IL-6, TNFα, IFNγ, IL-1β, IL-12, IL-22 and IL-10 inflammatory cytokines from 
(A) STZ-induced and (B) NOD diabetic mice after treatment with islet-seeded biomaterial (n = 6); control is 
empty biomaterial-only (n = 6). Experiments were performed in replicates with 6 mice per experimental group. 
Data is presented as mean ± SEM. Paired student t test was utilized for statistical analysis. A p value < 0.05 was 
considered statistically significant; * is p <0.05, ** is p < 0.01 and ns = not significant. Error bars for all figures 
indicate standard errors of the mean (SEM). Excised islet-seeded biomaterial was sectioned and stained with 
(C,E) IFNγ or (D,F) CD45 after 20 days post-implantation in STZ-induced and NOD diabetic mice; DAPI 
served as nuclear staining dye.
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diabetic mice lived longer than control littermates. However, reduced pathology in the NOD group was limited 
due to subsequent autoimmune cell infiltration into the islet-seeded biomaterial implant. Thus, as expected, the 
islet-seeded biomaterial does not directly alleviate immune responses; infiltration of immune cells was detected 
upon resection of the islet-seeded biomaterial from the treated animals. Therefore, combinatorial treatments of 
islet-seeded biomaterial with antigen-specific immunosuppressive agents, such as dendritic cell-based vaccines 
to silence autoreactive T cells, would best serve to complement this insulin restorative strategy. Future studies 
are currently underway addressing this approach by utilizing tolerogenic dendritic cells and ex vivo expanded 
regulatory T cells co-seeded within the biomaterial along with the pancreatic islets.

Glucose and metabolic levels were stabilized consistently 2-3 weeks after implantation of islet-seeded bioma-
terial in both STZ-induced and NOD diabetic recipients. This included increased levels of insulin, C-peptide, 
GIP, PP PPY and amylin in islet-seeded biomaterial treated groups, but not empty biomaterial or islet-only con-
trols. However, results also showed moderate increases of resistin, associated with obesity and type 2 diabetes in 
islet-seeded biomaterial treated diabetic mice22. It is possible that the sudden rapid production of insulin from 
the implanted islet-seeded biomaterial triggers an early negative-feedback mechanism to drive insulin resistance. 
Furthermore, lowered leptin levels found in the treated mice suggest decreased insulin sensitivity and impaired 
ability to suppress appetite23,24. Although there was no noticeable difference in appetite of mice during weekly 
post-implantation monitoring, changes in leptin could be a result of the dramatic lowering of hyperglycemia.

Upon intraperitoneal implantation of the islet-seeded biomaterial, self-aggregation into a larger macromo-
lecular substructure resembling an organ-like structure was identified. The diameter of the explanted islet-seeded 
biomaterial ranged between 3 and 4 mm, which is about half the typical 5–8 mm length of the adult mouse heart 
and twice as large as a lymph node. An important component of long-term retention in vivo of adoptively trans-
ferred cells is access to the vasculature. Strikingly, the islet-seeded biomaterial induced neovascularization events 
to form branched access to neighboring blood vessels within the self-assembled structure. The studies took care to 
deplete endothelial cells from ex vivo isolated pancreatic islets using antibodies to deplete CD31+ and VEGFR2+ 
subsets by magnetic bead isolation approaches prior to seeding and i.p. implantation in recipient diabetic mice. 
This prevented potential endothelial cells from being carried over upon in vivo transfer.

It remains to be determined how the seeded islets in the sheered biomaterial survived for the first weeks of 
implantation prior to aggregation and neovascularization events. Previous reports have shown that isolated islets 
can survive in vivo if oxygen supply is available through diffusion from the surrounding well-oxygenated tissue 
after transplantation25. Furthermore, hypoxic conditions of the islet-seeded biomaterial implanted into the peri-
toneal space may drive recruitment of endothelial progenitors to promote angiogenesis. Additionally, glucose 
and inflammation can directly control vascularization, suggesting that the implantation coupled with high levels 
of glucose can further support recruitment of endothelial cells to form new vasculature26. It is also possible that 
macrophages infiltrated into the islet-seeded biomaterial to help drive vascular endothelial growth factor-driven 
angiogenesis27,28.

Overall, these studies demonstrate that this new class of copolymer biomaterials seeded with islets can sup-
port cell viability and glucose-responsive insulin production to restrain hyperglycemia in diabetic recipients. 
Importantly, upon implantation, the pancreatic islets seeded in the bioscaffold form an organ-like structure that 
directly promotes long-term sustainability by inducing neovascularization. The use of this copolymer biomate-
rial would directly address key requirements for recapitulating an islet microenvironment supporting long-term 
insulin production in a physiological-relevant manner to elevated blood glucose. These features highlight the 
feasibility for effective insulin restoration and opens the door to additional applications to rescuing other types of 
organ failures using this new class of biomaterials.

Methods
Biomaterial assembly.  For biomaterial preparation, the patented approach includes selectively oxidizing 
cellulose, covalently cross-linking 2,3 di-aldehyde cellulose with polyamine polymers and reducing the carbon–
nitrogen double bonds of the imines. Importantly, 2,3 di-aldehyde cellulose covalently cross-links with the func-
tional block polymers to form the polyamine cellulosic copolymers with a three-dimensional densely interlocked 
network. Amine groups were protonated under an aqueous environment with a pH lower than 9 allowing the 
positively charged copolymeric scaffold to form hydrogel matrices. Functional group characterization of the 
material was evaluated using Fourier Transform Infrared Spectroscopy (FTIR) analysis. Compete details of the 
patented biomaterial is available through patent US 20180094080 (April 2018).

FTIR spectra sample preparation and analysis.  Fourier transform infrared spectroscopy was per-
formed to determine the chemical structure of the cationic copolymer biomaterial prior to cell seeding. For infra-
red analysis, synthesized biomaterials were lyophilized to obtain powders. Spectra of these samples falling in the 
range between 400–4000 cm-1 were obtained using a Thermo Scientific Nicolet 6700 FT-IR spectrometer.

SEM sample preparation and analysis.  The biomaterial was co-cultured in fetal bovine serum (FBS) 
supplemented RPMI medium with (islet-seeded biomaterial) or without islets control (empty biomaterial). 
Islet-seeded biomaterial was incubated for 24 h at 37 °C in vitro. Next, aggregated pieces of islet-seeded biomate-
rial or empty biomaterial were transferred into 2% buffered glutaraldehyde. Samples were fixed overnight at 4 °C. 
After fixation, samples were rinsed with 0.1 M HEPES buffer 3x for 5 min each with gentle agitation followed by 
extensive rinsing. Preparations were dehydrated using an alcohol serial dehydration approach. Next, samples were 
chemically dried through incubation in gradients of HMDS for 15 min each prior to placing onto clean silicon 
chips and sputter coated with a thin film (~15 nm) of palladium. Ultrastructure images were acquired via FEI 
Helios G4 field emission scanning electron microscope operated at an acceleration voltage of 3 kV.
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Mice.  Both male and female C57BL/6 (wild type; WT), GFP reporter under the insulin promoter on C57BL/6 
background (INS-GFP), and NOD.CB17-Prkdcscid (NOD.SCID) mice at 8–12 weeks of age were used as a source 
for pancreatic islets. NOD/ShiLtj (non-obese diabetic; NOD)29,30 and NOD.CB17-Prkdcscid (NOD.SCID) female 
mice at 16–20 weeks of age served as recipients of intraperitoneal (i.p) implantations with islet-seeded biomate-
rial, islets-only or biomaterial-only. NOD diabetic mice received syngeneic pancreatic islets derived from NOD.
CB17-Prkdcscid donor mice. For streptozotocin (STZ)-induced diabetes, low dose STZ (Cayman Chemicals; Ann 
Arbor, MI) (12 g/kg) treatment was i.p. injected each day over the course of five days into both male and female 
C57BL/6 WT mice at ages 10–16 weeks old31,32. STZ-induced diabetic mice received syngeneic pancreatic islets 
from healthy (i.e. non-STZ treated) donor WT mice. Littermates were used for age- and sex-matching. Animal 
procedures were performed in accordance and approved by the Institutional Animal Care and Use Committee. 
Mice were purchased from The Jackson Laboratory (Bar Harbor, ME) and housed in pathogen-free facilities at 
Howard University.

Glucose monitoring.  Glucose monitoring using the Aviva Accu-Check (Roche; Indianapolis, IN) glucome-
ter by tail vein prick was performed twice a week to assess onset and progression of diabetes in both STZ-induced 
and NOD mice. Tails of mice were pricked to collect 2 µl of blood for immediate reading on glucometer test strips. 
Diabetes was identified as values > 16.7 mmol/L of non-fasted mice. Hyperglycemic states identified as values 
11–16.6 nmol/L.

Pancreatic islet isolation.  Sacrificed donor mice were dissected using a 40X wide-field stereomicroscope 
for pancreas islet isolation. Islet purification steps were performed using a modified protocol from Stull et al.33. 
Briefly, pancreas was inflated with 200 µl of collagenase type IV at a concentration of 0.5 mg/mL in HBSS prior to 
injection through the hepatic vein using a 27-gauge needle. The pancreas was digested with collagenase type IV 
(Thermo Fisher Scientific; Waltham, MA) for 30 min at 37 °C. Next, suspension was mixed gently prior to centrif-
ugation for 1 min. The pellet was re-suspended in HBSS and overlaid with pre-mixed histopaque 1100 and his-
topaque 1077 (Sigma Aldrich; St. Louis, MO) prior to centrifugation for 20 min at 330xg. The middle white layer 
containing islets was carefully collected and transferred to a new tube containing RPMI media. In some studies, 
CD31+ and VEGFR+ endothelial cells were depleted using magnetic beads; primary antibodies purchased from 
BioLegend and secondary antibodies conjugated to magnetic microbeads from Qiagen (Hilden, Germany). Islets 
were allowed to recover by incubating at 37 °C for 24 h. Next, ~2000 islets were hand-picked using a stereomicro-
scope and seeded into the biomaterial.

Islet seeding into biomaterial.  Biomaterial was disinfected in 70% ethanol and then washed extensively 
with deionized water. After washing, the biomaterial was cultured with isolated pancreatic islets in RPMI media 
supplemented with FBS and incubated at 37 °C.

Dissociation of cells from the islet-seeded biomaterial.  Islet-seeded biomaterial was centrifuged 
down prior to resuspension in collagenase type IV. The mixture was incubated on a rotating platform at 37 °C 
for 1 h. Next, cells were vortexed and strained using a 40 µm cell strainer. Dissociated cells were prepared for flow 
cytometry analyses and microscopy.

In vitro glucose-stimulated insulin secretion (GSIS) assay.  Stock Kreb’s buffer (KRB) 
insulin-stimulating media was prepared with NaCl (8.0 g/L), KCL (0.44 g/L), KH2PO4(0.16 g/L), 
MgSO4−7H2O(0.3 g/L), CaCl2−2H2O(0.37 g/L), NaHCO3(2.1 g/L). 3.3 mM glucose and 16.7 mM glucose were 
added to KRB to prepare basal media and glucose working solutions, respectively34. Islet-seeded biomaterial was 
transferred to basal media and incubated for 30 min at 37 °C. Islets alone (islets-only) served as internal controls. 
Next, glucose working solution was added to the cells for 60 min prior to incubation at 37 °C. Supernatant was 
harvested every 20 min (through the 60 min incubation window) to assess insulin production by ELISA (Thermo 
Fisher Scientific; Waltham, MA). For flow cytometric analyses of intracellular insulin production, islet cells were 
immediately dissociated out of biomaterial post-high glucose exposure utilizing collagenase type IV digestion 
(0.5 mg/mL; Thermo Fisher Scientific), fixed, stained and acquired on the BD Accuri C6 flow cytometric analyzer 
(BD Biosciences).

Islet-seeded biomaterial injection into mice.  After the two-week in vitro culture, islet-seeded bio-
material was sheered 5 times by passing through a 27-gauge needle 24 h prior to implantation. The amount of 
islet-seeded biomaterial used for injection per mouse held approximately 500 islets. The sheered islet-seeded bio-
material was washed extensively in PBS to remove residual media and serum prior to re-suspension to 200 µl with 
PBS for intraperitoneal injection into STZ-induced or NOD diabetic recipient mice. Injection of empty sheered 
biomaterial (biomaterial-only) and free islets (islets-only) served as controls.

Glucose tolerance test (GTT) and collection of blood sera for metabolic indices measure-
ment.  Mice were fasted for 12 h prior to i.p. injection with dextrose (2 g/kg) bolus. Blood glucose levels were 
measured using a glucometer at 0, 30, 60 and 120 min. Additional blood sera was collected 120 min after dextrose 
injection and utilized for determining insulin levels by ELISA.

Dyes and Luminex multiplex analyses.  Far Red dye (Thermo Fisher Scientific) was used to label islets 
prior to seeding in the biomaterial. The dye allows for visualization of islets in the biomaterial for several days 
in vitro. For multiplex analyses, blood was collected from mice weejkt after treatment. Blood was processed into 
serum prior to adding to a mixture of color-coded beads pre-coated with analyte-specific capture antibodies. 
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Biotinylated detection antibodies specific to the analytes of interest were added to form the antibody-antigen 
sandwich prior to reading on the Luminex MAGPIX Analyzer (Luminex; Austin TX).

Antibodies, cryosections and fluorescence microscopy.  Excised islet-seeded biomaterial from 
implanted mice were fixed in 3% PFA prior to transfer into a 30% sucrose solution. Sections were prepared at 10 
or 20 µm thickness using a standard automated cryosectioner (Cryostat NX70; Thermo Fisher). Preparations were 
transferred onto poly-L-lysine coated glass slides. Samples were then permeabilized using 0.3% Triton-X solution 
and blocked with 0.2% BSA in permeabilization buffer. Sections were stained with insulin (cat# MAB1417; R&D 
Systems), CD31 (clone MEC 13.3), IFNγ (clone XMG1.2) and/or CD45 (clone 30-F11), followed by extensive 
washing. CD31, IFNγ and CD45 antibodies were purchased from Biolegend. Isotype control antibodies were used 
as internal controls. Sections were co-stained with DAPI (Thermo Fisher) nuclear staining dye prior to mounting 
with cover slips. Slides were imaged using the Olympus FSX100 (Olympus, Waltham MA) or Evos FL (Thermo 
Fisher) fluorescence microscopes.

Hematoxylin eosin (H&E) staining.  Samples were H&E stained prior to observation by phase contrast 
microscopy. Hematoxylin solution was used to stain samples for 10 min prior to washing with water and alcohol. 
Counterstain was with eosin-phloxine solution for 1 min. Standard phase-contrast images were taken using the 
Evos FL Manual (Thermo Scientific) inverted fluorescence microscope. Images were randomly taken from differ-
ent regions within the material and the diameter of particles were measured using a CellProfiler.

Flow cytometry.  Flow cytometry approaches were performed as previously described35–37. Cell surface 
staining was performed with PBS supplemented with 1 mM EDTA and 2.5% bovine serum (FACS buffer). Cells 
were washed with FACS buffer prior to extracellular staining with fluorochrome-tagged antibodies. Dilutions 
were antibody specific, but roughly 10 µl of a 10 µg/mL working concentration was utilized per 2 ×105 cells. 
Respective isotype controls were used in all assays. Cells were then fixed with 3% paraformaldehyde (PFA) in 
PBS. For intracellular antibody labeling, fixed cells were permeabilized with 0.2% saponin in PBS. Next, primary 
antibodies or isotype controls were added at approximately 10 µg/mL concentrations followed by washing and 
subsequent staining with secondary fluorochrome-labeled antibodies. Cells were acquired on a BD FACSVerse 
or Accuri C6 flow cytometric analyzer (BD Biosciences, San Jose CA). Datasets were analyzed using Flow Jo v10 
(Flow Jo LLC; Ashland OR).

Statistical analysis.  GraphPad Prism v8.0 (GraphPad Software, La Jolla CA) was used to determine statis-
tical significance and generates graphs and plots. Statistical analyses were performed as previously described38. 
Student unpaired two-tailed t test was used to evaluate the significance of two groups. A p value < 0.05 was con-
sidered statistically significant; * is p < 0.05, ** is p < 0.01 and *** is p < 0.001. ns = not significant. Error bars 
for all figures indicate standard errors. Survival data was plotted using the Kaplan-Meier method. Significance of 
differences between groups were tested by comparing group means and medians (mean survival time [MST]) by 
either the two-tailed t test or Wilcoxon’s signed-rank test.
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