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Abstract
Major breakthroughs and disruptive methods in disease treatment today owe their thanks to our inch by inch developing 
conception of the infinitive aspects of medicine since the very beginning, among which, the role of the regenerative medicine 
can on no account be denied, a branch of medicine dedicated to either repairing or replacing the injured or diseased cells, 
organs, and tissues. A novel means to accomplish such a quest is what is being called “medical biowaste”, a large assortment 
of biological samples produced during a surgery session or as a result of physiological conditions and biological activities. 
The current paper accentuating several of a number of promising sources of biowaste together with their plausible applications 
in routine clinical practices and the confronting challenges aims at inspiring research on the existing gap between clinical and 
basic science to further extend our knowledge and understanding concerning the potential applications of medical biowaste.
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Introduction

Human has long sought plausible means to feed their vora-
cious appetite for immortality. Throughout history, human-
kind has dreamed of circumventing death in various ways, 
a dream confronted by fatal challenges, such as acts of God 
and pandemics duelling for living. Recently, scientists rely-
ing on regenerative medicine have accentuated strategies to 
save and restore the damaged organs [1], a field of study 
fundamentally involved with cells, scaffolds, extracellular 
matrix (ECM), and biochemical molecules [2]. A mass of 
research has been undertaken to investigate the conceivably 
positive effects of cell therapy in preclinical and clinical tri-
als; however, many obstacles to regard these strategies as a 
reliable treatment option need to be taken care of.

Current limitations in the autologous organ or cell trans-
plantation leave no choice but to devise alternative options, 
such that autologous cell transplantation in the elderly 
proves barely efficient for several reasons like low quality, 
high cost, and patience-trying window of cell expansion [3]. 
In this sense, utilising allograft and further xenograft tis-
sues in the clinic has struck promising in recent times [4]. 
Therefore, providing and administering tissue stocks seems 
a promising approach and a new horizon in medicine.

Nowadays, many clinics bring xenograft tissues into 
practice, such as porcine heart valves for patients with heart 
failure. However, since nothing is perfect, using xenograft 
tissues come with inevitable disadvantages, including immu-
nological mismatch, ethical concerns, and even religious 
beliefs [5]. It is noteworthy that the human body is a rich 
store of biological tissues. The term “Biowaste” refers to all 
tissues that could be potentially removed from the human 
body and used in restoring the damaged organs. The human 
embryo and foetus are perceived as extraordinarily well-
supplied sources of cells and tissues of high repair capabil-
ity, including inner cell mass, a valuable embryonic stem 
cell depot, placenta, amniotic membrane, amniotic fluid, 
umbilical cord, cord blood, and aborted embryo or foetus 
[6]. Add to this urine, stool, oral cavity components, surgi-
cal residues, benign tumours, semen, and menstrual blood. 
Furthermore, deceased donation constitutes the most com-
mon multipurpose source of massive biowaste in regenera-
tive medicine. In the present review, we are to introduce 
the plausible sources of human body biowaste and spotlight 
their potential application in reconstructing, restoring, or 
repairing the damaged tissues, firmly believing that intro-
ducing novel supplies and their regenerative potential could 
help healthcare decision-makers as a prospective choice of 
treatment.

Urine‑derived Stem Cells (USCs)

Roughly one million nephrons in each kidney collectively 
secrete 0.96–1.8 L of urine per day into the urinary tract, 
consisting of a heterogeneous population of 2000–7000 cells 
[7]. Aside from the toxic metabolites, blood cells [8], and 
epithelial cells [9], such as dead squamous cells, renal tubu-
lar epithelial cells, and transitional epithelial cells of zero 
potencies [10, 11], voided human urine as a biological waste 
could also constitute a beneficial source of stem-like multi-
potent progenitor cells distinct from MSCs, known as urine-
derived stem cells (USCs) [12, 13]. The biological proper-
ties of USCs, far from expressing haematopoietic markers, 
such as immune response trigger HLA-DR, CD14, CD31, 
CD34, CD45, and CD184 [14, 15], include self-renewability, 
paracrine effects, tissue regeneration [16], immunoregula-
tion [17], immunomodulation [18], low levels of senescence-
associated proteins [19], and adhesion to plastic surfaces, 
and multi-lineage differentiation into ectodermal, endoder-
mal, and mesodermal cell lines [20], such as adipogenic, 
chondrogenic, osteogenic [17], beta-cell, uroepithelial [18], 
urothelial, smooth/skeletal myogenic [21], endothelial [22], 
endodermal hepatic [23], interstitial [24], renal tubular epi-
thelial, podocyte, and neuronal lineages [25]. Also, having a 
competitive advantage over MSCs, the isolation and amplifi-
cation of USCs are facile, safe, cost-effective, painless, free 
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of the need for digestive enzymes [20], and free of the risk 
of potential complications caused by invasive procedures 
[26], such as skin incision during liposuction [27]. Further-
more, USCs having a higher telomerase activity (USCs-TA+) 
and longer telomerase compared to BMSCs allows a higher 
indefinite proliferative property [28], chromosomal stability 
over long passages, telomere length maintenance [29], and 
absence of teratomas/tumour formation or renal abnormali-
ties [30]. USCs exert paracrine effects by secreting multiple 
nutrient factors and trophic factors [22], including but not 
limited to cytokines, fibroblast growth factor (FGF), vascular 
endothelial growth factor (VEGF), insulin-like growth factor 
(IGF), platelet-derived growth factor (PDGF), and hepatic 
growth factor (HGF), which explains the USCs-associated 
angiogenesis during tissue regeneration [31].

Aside from the urine, USCs could also be obtained from 
the upper urinary tract (tubules of the nephron, renal pelvis, 
and ureters), the morphology, cell growth pattern, and dif-
ferentiation potential of which resemble those of bladder and 
urethra origins [18]. The main isolation protocol of USCs 
involves collecting 100–300 mL of voided midstream urine 
from healthy and ill donors in sterilised containers [32], cen-
trifuging, washing out the sediment with phosphate-buffered 
saline (PBS), resuspending cell pellets in a medium, and 
culturing in gelatine-coated plates of 24 wells [12]. It is 
noteworthy that the donor age, isolation procedure, and cul-
ture media techniques would affect the quantity, proliferation 
rates, senescence tendency [33], and differentiation quality 
of USCs [34]. In this sense, urothelial-differentiated USCs 
are positive for corresponding markers like uroplakins (Ia, 
III), cytokeratin-7 (CK7), and CK13 [24], such that urine 
cells of urinary tract origin and renal system origin express 
the urothelial cell marker CK7 [35] and the renal epithe-
lial marker carbonic anhydrase (CA) [36], respectively. In 
addition, renal system-derived urine cells of an individual 
are categorised under two subpopulations, exhibiting a cou-
ple of distinct morphologies, including (1) dome-forming 
cobblestone-like type I cells of smooth-edged contours 
and nephron tubule origin (Bowman’s capsule to the dis-
tal convoluted tubule) with a tendency to differentiate into 
osteogenic and adipogenic lineages [10] and (2) randomly 
arranged spindle-like type II cells of renal mesenchyme ori-
gin (thin descending limb of the loop of Henle and the distal 
convoluted tubule) with higher proliferative capacity, lesser 
frequency, and greater motility, which are highly drawn to 
form chondrogenic lineage [10]. Thus, type I cells seem to 
be more promising for uroepithelium remodelling, whereas 
type II cells befit bone tissue reconstruction. USCs regard-
ing their differentiation capability and surface markers have 
been illustrated in Fig. 1.

Exercising USCs in clinic is still in its infancy, demand-
ing more comprehensive studies for better drawing a sound 
conclusion regarding their limitations and addressing the 

related issues. Table 1 depicts several preclinical and clinical 
studies using USCs for treating pathological conditions [23, 
37–45]. In this context, current limitations highlighted in 
several experiments are well worth discussing, allowing for 
(1) despite the fact that USCs could be collected from indi-
viduals of any gender and age, viral/bacterial urinary tract 
infection, urinary tract malignancies [46], and anuria fail the 
procedure [47], (2) floor-derived microorganism contamina-
tion and the highly effective solution to eliminate multidrug 
resistant bacteria contamination in cell cultures is to add the 
broad-spectrum antibacterial reagent normocure [48], (3) 
low reprogramming, long-term manipulation, and tumori-
genicity of USC-iPSCs, which could be overcome by replac-
ing with USC-iNSCs [49], (4) the variety of genetic back-
ground and disease associated mutations [50] from person 
to person, which affects the lineage-specific differentiation 
efficiency of genome-edited wild-type USC-iPSCs under 
the same culture condition and the key is genome editing 
technology like CRISPR-Cas9 system, which helps correct 
genetic abnormalities, create disease mutation or deletion 
in USC-iPSCs and the healthy control USC-iPSCs of the 
same person, compare the two patterns of isogenic cell pairs 
[51], and cast light on the disease mechanism with genetic 
origins [52], and (5) various patterns of epigenetic memory 
in USC-iPSCs of different somatic origins, which means 
leading the differentiation into donor cell type-related line-
age [53], which can be resolved by proper DNA methylation 
and histone acetylation in somatic cell genome followed by 
putting vitamin C or histone deacetylase inhibitor valproic 
acid (VPA) in the culture medium [54].

Gut Microbiota

For quite a time, microbiota transplantation (MT), which by 
definition is utilising microbial communities of commensal, 
symbiotic, and pathogenic microorganisms in various human 
body sites, has been subject to thorough investigations 
concerning their safety, efficacy, and potential therapeutic 
administration in a variety of infections like the recurrent 
Clostridium difficile infection (rCDI), especially in the case 
of multiple courses of antibiotic treatment [55, 56], such as 
vancomycin or fidaxomicin [57, 58]. Of the very first experi-
ments conducted by Bohnhoff et al. on the susceptibility 
of streptomycin-fed mice to induced Salmonella infection, 
it was found that exposure to antibiotics is a contributing 
risk factor, highlighting that resident gut microbiota act out 
the role of an eradicator of invading pathogens [59]. Fur-
ther studies carried out point out the connection between 
gut microbiota composition and gastrointestinal (GI) tract 
inflammatory diseases, such as ulcerative colitis, Crohn’s 
disease, graft versus host disease (GvHD), metabolic syn-
drome, hepatic disease, and mental disorders [60]. In this 
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sense, stool, a heterogeneous complex consortium of highly 
variable and specialised microorganisms [61], as well as 
human tissue cells like bacteriophages, bile acids [62], 
mucus, water, diet-derived metabolites, and undigested food 
materials, would be taken into account as a transplant prod-
uct equivalent to blood products [63]. The origins of this 
approach can be traced back to the ancient world, such as 
Tibetan, Korean, Dai, Yao, Tujia, Nu, Mongolian, and Chi-
nese ethnic medicine. In this framework, traditional Chinese 
medicine, known as the most representative traditional medi-
cal system in China, exemplifies a reliable and efficacious 
therapeutic administration of animal- or human-derived dry 
faeces, processed faeces, or fresh faecal suspension (yel-
low soup) for centuries in the long-term nervous system, 
GI, skin, ophthalmic, or gynaecological disease prevention 
and treatment [64], such as heat toxins, high fever-caused 
unconsciousness, food poisoning, diarrhoea [65], rheuma-
tism, jaundice, fever [66], dyspepsia, gastric ulcer [67], 
blood stasis, swelling, and trauma pain [68]. Every known 
drug among different ethnic medicines is attributed a dif-
ferent therapeutic application, for instance, Wu-Ling-Zhi, 
dry faeces of Trogopterus xanthipes, is a common medicine 

for promoting blood circulation in blood stasis, engender-
ing pain relief in the chest and hypochondrium [69]. Other 
therapeutic applications include dysmenorrhea, amenor-
rhea, post-traumatic swelling and aching, snake bites, gout, 
itching, whooping cough, and fever. Of note, as drying and 
processing are accompanied by the eradication of living 
microorganisms, various routes of faeces administration may 
follow a distinct molecular pathway [64].

Faecal Microbiota Transplantation (FMT)

Nowadays, faecal microbiota transplantation (FMT) fol-
lowing donor screening and stool regulation is a potentially 
life-saving therapeutic strategy and one of the recommended 
resources by clinical practice guidelines [70] aimed at modu-
lating the altered gut microbiome [71], ensuring the safety of 
healthcare products, and restoring the gut microbiota com-
munity to a level analogous to that of a healthy individual 
[61]. A healthy gut microbiome is involved in enhancing 
metabolism, resisting inflammation and infection, preventing 
cancer and autoimmune diseases, and acting on the namely 

Fig. 1  Shows the characterisation of USC. It has been demonstrated 
that AQP1 in proximal tubules forms a highly permeable water-
specific channel. KRT18 is a critical element of epithelial interme-
diate filament. USCs lack tumorigenesis phenotype due to the lack 
of teratoma formation when injected into immunodeficient in  vivo 
models. Type I USCs partially express AQP1, NPHS1, SLC12A1, 
UMOD, and KRT18 and few are positive for AQP2. Type II USCs 
barely express SLC12A1 and UMOD and are negative for the other 
renal markers. i expressed both in type I USCs and type II USCs, 
ii expressed partially in type I USCs, iii negative in type I USCs, iv 

expressed partially in type II USCs, v negative in type II USCs. 
AQP1; protein aquaporin-1, AQP2; protein aquaporin-2, KLF4; 
Krüppel-like factor 4, KRT18; keratin 18, MHC-I; major histocom-
patibility complex I, NG2; neural/glial antigen 2, NR3C2; nuclear 
receptor subfamily 3 group C member 2, Oct3/4; octamer-binding 
transcription factor 3/4, PDGF-rβ; platelet-derived growth factor 
receptor beta, SLC12A1; solute carrier family 12 member 1, SOX2; 
SRY-box transcription factor 2, SSEA-4; stage-specific embryonic 
antigen 4, UMOD; uromodulin, Vim; vimentin, vWF; von Willebrand 
factor, α-SMA;α-smooth muscle actin
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brain-gut axis [72, 73]. In this context, adult-derived wet 
stool contains  1011 prokaryotes, 107 colonocytes, and 108 
archaea and viruses per gram [74]. To sum up, albeit no uni-
versally agreed-upon definition exists for FMT, Hoffmann 
et al. [75] would regard this as transferring biologic material 
of minimally manipulated microbial communities of com-
mensal, symbiotic, and pathogenic microorganisms from a 
human donor to a human recipient to affect the recipient’s 
microbiota or also define it as transplanting pre-screened 
and regulated stool into the gastrointestinal tract (GI) system 
[71].

Stool Provision and FMT Regulation

Stool provision for FMT material preparation might be car-
ried out through a couple of scenarios [76]. Overall, the core 
of both scenarios is ideally all about conducting a screen-
ing assay to examine whether a stool contains the minimum 
infective dose of a known pathogen and at the same time, 
not restrict access unduly to FMT material [77]. One sce-
nario is the patient-selected donor through which the patient 
introduces an exclusive donor and further stool screening 
is done by physicians while the other proposed scenario 
is the stool banking, a seemingly cost-effective approach 
offering pre-screened frozen stool of more consistent and 
stringent manufacturing quality and safety criteria as well 
as an overnight supply of efficiently screened [78, 79]. Once 
stool is provided, the stool regulation follows phase-appro-
priate current good manufacturing practices (cGMP) and 
intends to supply clinicians with FMT materials [80]. For 
instance, Fig. 2 depicts the procedures conducted according 
to cGMP standards at the OpenBiome stool bank. The very 
first step is to call for stool donors aged 18–50 years old 
through conventional press or social media campaigns. The 
second step is to conduct an on-site screening and fill in an 
in-depth donor questionnaire, which is carried not out until 
providing informed consent and a signed affidavit attesting 
that the health information is reliable. After reviewing the 
questionnaire by a staff member, applicants then have to 
pass through an in-person assessment. Eligible candidates 
are further asked a three-part laboratory screening, including 
nasal swab, blood, and stool to assess the probable presence 
of infectious risk factors and microbiota-mediated condi-
tions. Once screening is successfully accomplished, stool 
samples are passed on-site in stool collection kits. Samples 
meeting the inclusion criteria are then homogenised using 
a sterile 330 μm filter bag to separate fibrous material from 
microorganisms, small molecules, and water. The product is 
further processed into two liquids and a capsule preparation, 
stored at − 80℃, as well as a safety aliquot of 30 mL volume 
for safety testing. The liquid material of 250 mL volume, 
22.7 g stool, and 1:10 dilution is administered through colo-
noscopy, sigmoidoscopy, or enema while the other one of Ta
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30 mL volume, 8.6 g stool, and 5:2 dilution is administered 
through esophagogastroduodenoscopy or nasoenteric tube. 
Prepared FMT materials in the next step are shipped for 
research purposes or enforcement discretion procedures con-
ducted by infectious disease physicians and gastroenterolo-
gists to treat non-responsive recurrent Clostridium difficile 
infection (rCDI) to standard therapy. Last but not least is to 
assess FMT material quality and efficacy.

Stillbirth, Neonatal Biowaste, and Embryo

Stillbirth

Stillbirth, also less commonly known as intrauterine foe-
tal demise (IUFD), is by definition either foetal death since 
20 weeks’ gestation or a birth weight of at least 350 g [81]. 
Over 2.6 million gestations worldwide are probed to cul-
minate with third-trimester stillbirth, which in other words 
equals 18.4/1000 of total births [82]. Although there are con-
troversies about whether or not stillbirth could be included 
as death or not, stillborn could be practised for medical 
purposes like organ donation in transplantation or research 
objectives. The following provides an intriguing window 
into the plausible therapeutic approaches to stillborn foetus 
within the currently existing framework of practice.

Resurrection following death stands the primary route 
for organs to depart their host and live on in another one. 
Though astounding, precious few could come across the 
radar in the research literature. Of the very first papers 
regarding the issue is a study conducted by De Paepe et al. 
[83], with the objective of providing rat models with alveo-
lar epithelial progenitor cells of second-trimester stillborn 
foetus origins and examining their regenerative capac-
ity, suggesting that foetal tissues, compared to those of 
adult, stand to benefit from higher proliferation and lower 

immunogenicity. The grafts were obtained from the stillborn 
at 13–22 weeks’ gestation, cultured for a short time, and 
grafted to the renal subcapsular space of immunosuppressed 
rats, culminating with foetal the lung tissues regaining their 
inherent high regenerative potential regardless of the pres-
ence of any inflammation or chorioamnionitis. Among the 
other stillborn foetus organs, heart transplantation might 
draw intriguing, as it is harvested merely from the brain-
dead donors, limiting the accessible heart number. However, 
the possibility of exercising stillborn foetus’ heart seems 
impractical since the procedure is facing a shortage of time. 
That is to say, it requires monitoring the exact timing of 
heartbeat stop in the uterus and thus running caesarean and 
harvesting heart for resuscitation for as long as a matching 
donor from the waiting list heaves into sight. Still, there 
is hope since the advancing breakthrough allows restoring 
the heartbeat five minutes after donor death by means of a 
console, connected up with blood to provide the heart with 
sufficient oxygen along with a special preservation solution 
to encourage the resistance to hypoxia-induced damage [84]. 
In a nutshell, despite the fact that stillborn donor could prove 
a game-changing breakthrough for potential regenerative 
exercise, questions rage as to the ethics and safety concerns 
succinctly addressed below.

Neonatal Biowaste

In consonance with the World Health Organisation (WHO), 
the first 28 days of a new-born’s life is recognised as the 
neonatal period, during which the risk of death compara-
tively reaches its peak. In this sense, statistics reveal that 
developing countries with low access to health care hold 
the highest number of neonatal mortality cases [85]. Not-
withstanding the grief and sorrow coming with this tragedy, 
recent advances provide an sunny window by drawing the 
gaze to exercising neonatal organ/tissue, such as the heart, 

Fig. 2  Current standard six-part 
methodology conducted by 
stool banks. (A) Call for stool 
donors (B) Conduct an on-site 
screening and fill in an in-depth 
donor questionnaire (C) Manu-
facturing (D) random health 
status and vital signs checks (E) 
Fulfilment and (F) FMTmaterial 
quality and efficacy and patient 
safety
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kidney, intestine, pancreas, lung, thymus, skin, bone mar-
row, and eye [86] for multiple transplantation purposes or 
research objectives at once revolving around both deter-
mining the causal agents associated with severe conditions, 
including neurological disorders, trauma, fatal anomalies, 
chromosomal abnormalities like Edwards’ syndrome, con-
genital malformations like anencephaly being the major 
reason, and congenital deformations together with treat-
ing diseases, such as methicillin-resistant Staphylococcus 
aureus (MRSA) infection, diabetes, autism, rheumatoid 
arthritis, chronic diseases, cancer, infertility [87, 88], along 
with neurologic, gastrointestinal, pulmonary, vision, and 
genitourinary disorders [89]. One such instance could be 
Amalya Nathaniel, the boy who survived for 80 min and in 
the light of his mother’s request to donate his organs/tissues, 
researchers could study the casual factors of type I diabetes, 
investigate cell generation, and pursue FDA clearance for a 
medical device specialised for rapid paediatric resuscitation 
[90, 91]. So much for the benefits of neonatal organ/tissue 
donation. The following lines will be giving a brief insight 
into the ethical aspects.

Ethicolegal considerations and procedures

As exercising neonatal organs/tissues in the field of research 
becomes mainstream, debates occur to draw upon compre-
hensive, simplified, and transparent standards and guidelines 
with reference to ethicolegal issues. In this regard, scholars 
have contributed to adopting policies and algorithms cen-
tred on at-term delivered neonates suffering from a lethal 
anomaly (LA), pre-term delivered neonates with an LA, 
and dead neonates with no LA by the agency of screen-
ing potential neonate donors for transplantation or research. 
This would also benefit family members of the deceased 
neonates as authorising the decision brings comfort and 
consolation [92, 93]. However, donating neonatal organs/
tissues for transplantation stands to occur infrequently due 
to the fact that the number of recipients with matching sizes 
appears negligible [94]. On the other end, allocating neo-
natal organs/tissues to research has failed to elicit ample 
attention as neither family members are aware of this choice 
nor researchers seek this very option, which could be attrib-
uted to several reasons, encompassing limited access, highly 
specified organ/tissue donor acceptance criteria for a wide 
assortment of existing research types, uninformed healthcare 
staff about screening the eligible neonates for donation, or 
untrained transplant surgeons in organ recovery for research, 
rather than for transplant [95]. In order to promote neonatal 
organ/tissue donation, families experiencing a case of LA 
diagnosis need to carry the foetus to term and deliver a live 
birth since LA conditions perfectly justify the administration 
of the medical neglect, that is to say, withholding or with-
drawing aggressive reviving treatment from the neonates 

[96]. Also, pre-term delivery and abortion-obtained donated 
organ/tissue fail to commend themselves to ethicolegal prin-
ciples. Once the delivery session takes place, neonates man-
age to survive for minutes to days and following the loss of 
their neonates, families will be confronted with a choice 
about which organs/tissues are to be donated and what the 
purpose of the donation will be in terms of transplantation 
and/or research. Of note, in the meanwhile of drawing on 
some time with their deceased neonate, organ recovery sur-
gery has to be timed accordingly to address the concerns 
regarding the warm ischemia time (WIT) effect [87].

Placenta

Human foetal placenta of disk-like shape, 16–20 cm diam-
eter, and roughly 470 g weight [97] acts as a peculiar and 
unprecedented coordinator between both the maternal and 
foetal organs, giving rise to the 55–60 cm chorioallantoic 
umbilical cord [98] and nourishing foetal-wise organs to 
champion their growth and development through provid-
ing abundant nutrients and oxygen, sweeping away toxic 
and hazardous metabolites, averting immune rejection [99], 
and relatively eliminating any chance of microbial infec-
tion [100], all of which happen to occur in the presence of 
umbilical cord. In a deeper dive into the foetal growth and 
development, trophoblasts play a conspicuous role by con-
tributing vital gestational hormones, such as estradiol, pro-
gesterone, and chorionic gonadotropin [101]. Consequently, 
in the light of the exceptionally conducted research, foetus 
could safely be perceived as a semi-allograft, letting out 
ample room for a wide range of discrepancies between the 
attributed genotypes to mother and foetus [102]. In reference 
to the ways and means of placental cells remaining intact 
from the maternal immune response, research reveals that 
a series of factors suffice to justify the immunomodulatory 
face of the placenta as follows: (1) the presence of decidual 
stromal cells (DSCs), which guarantee immune tolerance 
by interacting with decidua-infiltrated immunocytes [103], 
(2) secretion of a whole range of hormones, cytokines, and 
growth factors like progesterone, which contribute to  Th2 
upshift and  Th1 downshift, involved in secreting anti-inflam-
matory and pro-inflammatory cytokines, respectively [102], 
(3) induction of apoptosis in immunocompetent cells in a 
tumour necrosis factor (TNF)-related apoptosis-inducing 
ligand (TRAIL)-Fas ligand (FasL)-dependent manner [104], 
(4) expression of MHCs in highly negligible levels, and last 
but not least, (5) expression of trophoblast-exclusive immu-
nomodulatory non-classic MHC, encompassing HLA-G, 
HLA-F, and HLA-E [105].

Given the background, the above-mentioned critical func-
tions and multiple cells in abundance characterise the non-
invasively generated mature placenta, i.e. third-trimester 
placenta, as a potentially feasible post-delivery organ for 
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therapeutic application in the fast-approaching horizon of 
regenerative medicine and cell therapy [106]. This matter 
has assumed significant importance in literature since the 
past century and solidified its position with the absence of 
ethical hindrances and the advent of tissue banking, ena-
bling access to a rich source of various cells at will [97], 
which mainly comprises MSCs, trophoblasts, and vascular 
endothelial cells (VECs). In a deeper dig, harvested postpar-
tum placenta consists of maternal and foetal constituents. 
Foetal membranes of thin transparent amnion and chorion, 
with the former rising from a monolayer epithelium and 
the avascular connective tissue mesenchyme and the latter 
encompassing amnion and springing up from the fibroblastic 
and trophoblastic populations make up the foetal constitu-
ents along with the 50–70 cm long umbilical cord, which is 
composed of a triad of vessels, including two arteries and a 
vein encircled by Wharton’s jelly and serves as a connecting 
wire between the foetus and the placenta [107, 108]. Com-
ing to the maternal constituents, immune cells like natural 
killer (NK) cells and macrophages exist within a boundary 
of lacunae of decidual endometrial origin [109]. Having the 
detailed placental composition outlined, countless clinical 
endeavours have been conducted administering various com-
ponents, including extracts and lyophilisates, umbilical cord 
blood serum (UCBS), umbilical cord blood cell (UCBC), 
tissue fragments, and foetal membranes in various amounts 
[110]; various forms of native, milked, chemically or ther-
mally processed, cryopreserved, and sublimated; and various 
routes of intravenous (IV), intramuscular (IM), subcutaneous 
(SC), intraoperative (IO), or oral [111–113]

Placental Extracts and Lyophilisates

Aqueous placental extracts are,  in actual fact, lysates 
enriched with essential macromolecules like proteins, min-
erals like trace elements, natural metabolites, and biomol-
ecules, all of which enable this specific placental product 
to possess anti-oxidant, anti-inflammatory [113], endocrine 
[114], immunomodulatory [115], and regenerative charac-
teristics [116]. Studies unveil that placental extracts best 
function when delivered at the mid-gestation and late gesta-
tion [117]. Evidence suggests α-fetoprotein (AFP) concen-
trations might be behind the anti-oxidant and cytoprotective 
conduct against the oxidative stress [118], thereby dwindling 
the oxidative stress-induced cellular harm away to negligi-
ble levels in vitro. Turning our attention from anti-oxidant 
and anti-inflammatory properties, another facet of placental 
extracts will be activating  Th2 cells, stimulating IgG and 
IgM secretion, and altering the levels of pro-inflammatory 
cytokines, such as TNF, interferon γ (IFNγ), and IL-6 
[119]. Consequently, placental extracts hold an advantage 
over chemotherapeutics and anti-biotics regarding the cor-
responding angiogenic and anti-microbial properties [120]. 

Plus, placental trophoblast-derived TNFs and IFNs pave 
the way for exerting impairing forces on RNA and DNA 
virus replication [121], such that type I IFNs are known to 
regulate systemic infections while type III IFNs regulate 
the local ones by trophoblasts [122]. In addition, having the 
participation of inflammatory cytokines in instigating aller-
gic responses and fatigue in mind, it could be assumed that 
placental extracts labour hormonal and anti-allergic proper-
ties [123]. Coming to tissue regeneration, purified placental 
extracts are found to be involved in infiltration debilitation, 
cellular biosynthesis, and epithelial regeneration by support-
ing the turnover of collagen and upregulating the expres-
sion of epithelialisation factors [124], such as transforming 
growth factor β (TGFβ), VEGF, and FGF [125], thereby 
shortlisted as an upcoming commonplace option of treating 
surgical wounds, burns, and leprotic/diabetic ulcers. Accord-
ing to Chandanwale et al. [126], topically administered puri-
fied extract (PE) following orthopaedic surgeries exhibit 
analogous wound healing outcomes with that of povidone-
iodine (PI). This regeneration property is not only limited to 
epithelial cells but also stretches horizons to osteocytes and 
neurons [119] since it induces growth-associated protein 43 
(GAP43) and human glioma proliferation-associated CDC2 
expression [127]. Be that as it may, one by far a significant 
drawback to consider after all the mentioned benefits would 
surround the biosafety issues, that is to say, early gestation-
associated foetotoxic observations in vivo, but not in adult 
animal models or cell cultures [128]. All in all, placental 
extracts may be counted as a treatment option in the light of 
conducting investigations to address the biosafety concerns.

UCBS

A large body of evidence suggests that umbilical cord blood 
surpasses peripheral blood since a plentiful supply of cell-
deficient supernatant serum could be collected when clot-
ting occurs, which signifies best in patients suffering from 
blood dyscrasias like anaemia, and by far most importantly, 
UCBS, unlike the peripheral blood serum (PBS) is absent 
of any autoantibodies and proinflammatory cytokines 
[129]. The obtained serum harbours growth factors and 
active components in high concentrations [130], includ-
ing epidermal growth factor (EGF), FGF, human growth 
hormone (hGH), nerve growth factor (NGF), insulin-like 
growth factor 1 (IGF-1), and fibronectin [131]. This further 
enables the topical eye drops application for treating ocular 
anterior segment disorders (ASDs), encompassing corneal 
epithelial defects, neurotrophic keratitis, dry eye syndrome, 
and persistent epithelial defects. Treatment results indicate 
accelerated epithelial recovery, refined symptoms, upshifted 
corneal sensitivity, and raised goblet cell density [131, 
132]. Also, Mirazi et al. [133] found the beneficial facet of 
UCBS in alleviating gentamycin-induced liver necrosis and 
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inflammation when injected intraperitoneally in Wistar rat 
models. The results indicated a dramatic fall in the level of 
liver enzymes and inflammatory cytokines. In reference to 
obstetric anti-phospholipid syndrome (APS), Trifonov et al. 
[134] reported that UCBS flourished to drop the levels of 
anti-phospholipid antibodies.

UCBC

Empirical evidence for placental cells of foetal membrane, 
chorionic villi, and umbilical cord origins spotlights the 
capability of placental cells to differentiate into cardiomyo-
cytes [135], hepatocytes [136], and endothelium [137]. In 
this sense, accumulating literature cast light on the fact that 
50–100 mL of human umbilical cord blood (hUCB) could 
be obtained by means of hyaluronidase or explant technique 
[107], offering a stockpile laden with haematopoietic stem 
cells (HSCs) coinciding with that of bone marrow [138], 
as well as unrestricted somatic stem cells (USSCs) and 
mesenchymal stem cells (MSCs), with the former analo-
gous with pluripotent embryonic stem cells (ESCs) as to the 
differentiation potential into ectodermal, mesodermal, and 
endodermal cell lines and the latter capable of proliferation, 
multi-lineage differentiation, CK7 and CD200 expression, 
and chorionic gonadotropin synthesis [139, 140], insofar as 
placental MSCs, including those acquired from the umbili-
cal cord blood, have proven more immunomodulatory and 
proliferative compared to their fellows obtained from other 
sources [141]. Allogeneic transplantation of placental HSCs 
has proved efficacious in treating various benign and malig-
nant haematological diseases along with ocular pathologies 
[142]. The very first attempt was to treat a 5-year-old patient 
suffering from Fanconi anaemia-caused aplastic anaemia by 
transplanting cryopreserved cells once undergoing thawing, 
culminating in complete haematological reconstitution after 
22 days with no subsequent signs of GvHD [143]. In the 
light of this research, further endeavours by Huang et al. 
[144] details the efficacy of hUCB-derived MSCs in refining 
gross motor as well as comprehensive functions of an infant 
suffering from cerebral palsy (CP) after IV administration of 
four fixed doses. In addition, Bahk et al. [145] revealed that 
umbilical cord-derived SCs could benefit treating diabetes 
mellitus-engendered erectile dysfunction when transplanted 
intracavernously. Also, hUCB-MSCs had shown ameliorat-
ing effects in knee osteoarthritis patients. Expanding fron-
tiers of research to address today’s concerns, hUCB-MSCs 
relying on their immunomodulatory characteristics regard-
ing inflammation suppression alleviate COVID-19 symp-
toms [146, 147]. Plus, Koh et al. [148] investigated the effec-
tiveness of hUCB-MSCs differentiated into retinal pigment 
epithelium cells (RPECs), best reputed for promoting pho-
toreceptor cell survival. The study involved a functionally 

MERTK-deficient rat model with retinal degeneration and 
subretinal transplantation of PRECs was observed to retain 
retinal synaptic connectivity and save visual function. In 
fact, further in vivo experiments on animal models build up 
hopes for treating colitis [149], acute kidney injury [150], 
ischemia [151], GvHD [152], intracerebral haemorrhage 
(ICH) [153], and liver injuries [154]. Other than SCs, DSCs 
are observed to contribute towards treating haemorrhagic 
cystitis, a severe complication of HSCs transplantation 
[155]. Aside from the SCs and DSCs, add in the efficacy 
of foetal haemoglobin, known for its comparatively higher 
content and oxygen affinity than adult haemoglobin in has-
tening the recovery of premature newborn and delivering 
blood to an  Rh+ foetus through intrauterine transfusion 
(IUF) [156]. Be that as it may, Khodabux and colleagues 
[157] contradicted this claim earlier based on the failure of 
hUCB-derived autologous RBCs in replacing at least 50% 
of allogeneic transfusions in premature infants.

Foetal Membranes

To briefly make mention of what is discussed earlier, foetal 
membranes, comprising the innermost amniotic membrane 
(AM) and the overlying chorionic membrane (CM) are all 
about encircling the foetus with the aim of shielding against 
trauma, infectious and toxic agents, and retaining health 
[158]. Harvesting AM follows screening for hepatitis B virus 
(HBV), HCV, human immunodeficiency virus (HIV), and 
syphilis to address the concerns over transmissible infections 
and occurs in no time post-caesarean delivery. Once blood 
clots are washed off, AM has to be detached from CM, rinsed 
with anti-biotic-containing saline solution, cut into pieces, 
laid smoothly with the epithelial face supine onto steri-
lised nitrocellulose papers, and preserved in vials of eighty 
degrees of frost for a year’s time [159]. In parenthesis to 
add, cryopreservation is a proposed alternative to extend the 
lifespan to a couple of years more, but then again, the abil-
ity of growth factors and anti-inflammatory agents to elude 
the frigid temperature demands further unveiling [159]. 
Besides, foetal membrane-derived cells like human amniotic 
fluid stem cells (hAFSCs) and human amniotic fluid MSCs 
(hAFMSCs) could be harvested drawing upon collagenase, 
trypsin, or dispase [107]. Application of AM and CM are 
comparatively commonplace in clinical approaches through 
two monolayer and multilayer techniques due mostly to the 
extracellular matrix (ECM)-raised unprecedented properties 
[160], inclusive of crystalline clarity, immunomodulatory 
characteristics, anti-inflammatory and anti-microbial quali-
ties, anti-angiogenic and pro-apoptotic features, stem cell 
migration and proliferation induction, and non-tumourigenic 
epithelial cell growth [161–164]. In an attempt to further 
illustrate the AM composition, Cooper et al. detail that amni-
otic membrane ECM from the bottom to the apex consists 
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of collagen fibrils-harbouring stroma, fine fibrils-contain-
ing basal lamina, and the electron-dense lamina densa with 
abundant masses of heparan sulphate constituting the proteo-
glycan perlecan, along with the comparatively highest con-
centration of adhesive glycoproteins fibronectin and laminin 
of multiple binding sites for the underlying lamina densa and 
the overlying cells [165]. With this in mind, the very first 
attempt at utilising foetal membrane was the closure of der-
mal defects. In the light of this, foetal membranes drawing 
the interests of the future literature subsequently became of 
widespread use as a surgical plastic material in performing 
recurrence-free pterygium surgery, vaginal rejuvenation, and 
pelvic peritoneum reconstruction [166] and later on in treat-
ing inflammatory disorders [167], bone pathology, severe 
burns [168] and non-healing ulcers [168], such as persistent 
ocular inflammation, persistent corneal epithelial defects 
(PEDs), and keratitis [169–171].

Amniotic fluid

So much for whole foetal membranes. The amniotic fluid 
(AF) could be harvested during amniocentesis from the 
embryo or the inner face of the foetal amniotic sac by the 
agency of therapeutic purposes, foetal maturity evaluation, 
and foetal abnormality diagnosis [172]. AF, characterised as 
antimicrobial properties and foetal development-dependant 
dynamicity regarding the composition (coinciding with foe-
tal plasma) and volume (25 mL-400 mL during the weeks 
10–20) throughout various stages of pregnancy [173], har-
bours a widely heterogeneous cell population from the three 
germ layers along with nutrients, growth factors, hormones, 
electrolytes, enzymes, hyaluronic acid stimulating activator 
(HASA), amino acids like taurine, and biomolecules like 
carbohydrates, lipids, and proteins all suspended in water 
[174]. In this sense, aside from epithelioid and fibroblastic 
cells, a couple of other amniocytes of treatment-wise signifi-
cance include hAFSCs and hAFMSCs of both embryonic 
and adult SC markers, which could be isolated on specific 
culture media and further stimulated to give rise to several 
germ layer-associated lineages [175], inclusive of osteo-
genic, adipogenic, myogenic, hepatic, endothelial, and neu-
ronal [176]. On this subject, De Coppi and colleagues [177] 
revealed that  CD117+ (c-Kit+) AFSCs constitute 1% of the 
amniocyte population and exhibit pluripotent features anal-
ogous with pluripotent ESCs or induced pluripotent stem 
cells (iPSCs), which in other words means the feasibility of 
reprogramming AFSCs towards pluripotency in a genetic 
manipulation-free manner [178]. Added to this the absence 
of ethical hindrances and tumorigenesis potential, along 
with the ability to give rise to keratinocyte precursors and 
pluristratified epithelium in vitro [179], altogether providing 
ample reasoning to safely recognise AFSCs as an autologous 
source of stem cells in the field of regenerative medicine like 

dermal tissue engineering. This assumes inevitably critical 
significance since the current skin repair methods that of 
treating burns, encompassing autologous, allogeneic, and 
heterologous skin grafting are strongly argued due to the 
insufficient number of skin donors and high risk of immune 
rejection or secondary infection [180]. One such instance 
could be B7-H4+ AFSCs differentiating into keratinocyte 
precursors in vitro, regenerating the pluristratified epithe-
lium in tissue culture, and suppressing inflammation con-
tribute to wound repair [179]. In addition to  CD117+ and 
B7-H4+ AFSCs, Liu et al. [181] acted to examine the effi-
cacy of  CD44+/CD105+ hAFMSCs on a mouse model of 
cyclophosphamide-induced premature ovarian failure (POF), 
ascertaining that the administered seed cells exhibit durable 
customary cell proliferation and self-renewal cycles, which 
nominate them an ideal prospective treatment option. Fig-
ure 3 illustrates the embryo- or neonate-derived biowastes.

Oral Cavity

The oral cavity of high reparability strikes plausible as 
another source of MSCs provision from both physiologi-
cal and pathological aspects, according to maxillofacial 
specialists. To date, a widely heterogeneous population of 
MSCs from various oral cavity components, including dental 
pulp (DPSCs) [182], human exfoliated deciduous/primary 
teeth (SHED) [183], periodontal ligament (PDLSCs), peri-
odontal ligament of deciduous teeth (DePDL) [184], den-
tal follicle progenitor cells (DFPCs) [185], apical papilla 
(SCAP), and gingiva [186], all of which fall under the 

Fig. 3  Shows the embryonic-derived biowaste, including placenta, 
amniotic membrane, and amniotic fluid
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umbrella term “dental-derived MSCs (DMSCs)”, have been 
harvested(Fig. 4). Throughout the recent years, conceptions 
concerning the structural development of teeth like dentin 
and pulp place emphasis on these structures arising from a 
couple of embryonic tissues, which include the ectodermal 
epithelium and the ectomesenchymal neural crests [187]. 
DMSCs hold a competitive edge over their fellow MSCs 
of other sources due to the fact that the extracted or exfoli-
ated teeth are drawn from in a low-risk manner, rather than 
through invasive procedures, thus are safely recognised as a 
biowaste of dental procedures [188], but then again like any 
that has gone before, DMSCs too have to undergo a sound 
examination for their properties and feasibility in tissue 
regeneration endeavours. It is noted that the Mesenchymal 
and Tissue Stem Cell Committee of the International Society 
for Cellular Therapy mentions that DMSCs show the char-
acteristics of mesenchymal stem cells clonogenicity, plastic 
adhesion ability, multi-lineage differentiation potency, and 
specific surface markers. The following provides an insight 
into succinct conciseness with regard to DMSCs and the 
corresponding outlook. Table 2 shows the surface markers 
of different oral cavity- derived MSCs.

Dental Pulp‑derived Stem Cells (DPSCs)

Dental pulp holds a reputation for highly critical importance 
in retaining teeth homeostasis and thus offering a longer 
lifespan. This property owes its thanks to the correspond-
ing vascular system, contributing to oxygen and nutrition 
supply and waste material outtake, as well as the nerve 
fibres drawn into angiogenesis, neurogenesis, and immu-
nisation [189]. Given the background, pulp-resident stem 
cells too benefit from this effective provision system. Of 
all the previously mentioned DMSCs, dental pulp-derived 

stem cells (DPSCs) are the very first to be isolated from the 
permanent third molars in 2000 by Gronthos et al. [190] 
and have been subject to studies in minute detail since then. 
The story unfolds that the total unfractionated SC population 
expresses CD markers of CD105, CD133, CD24, MHCI, 
and MHCII [189]. Further revelation relates that inapposite 
of BMSCs, DPSCs are more proliferative and less mineral 
deposits-forming in vitro [190]. As for the differentiation 
potentials, these cells are observed to differentiate into adi-
pogenic lineage in the presence of the necessary supple-
ments [191]. According to in vivo literature, DPSC colonies 
either give rise to aligned odontoblast-like cells (OLCs) and 
subsequently dentin-like structures [190] or directly gener-
ate reparative dentin-like tissue on the dentin surface [192].

Stem cells from Human Exfoliated Deciduous teeth 
(SHED)

Bearing in mind that throughout an at least seven-year tran-
sition period, which dynamically involves replacing twenty 
deciduous teeth by means of dissolving the deciduous roots 
and developing permanent roots [193], the time comes to 
cast light on a comparatively unprecedented population of 
stem cells of multipotency. These stem cells, which stand 
to be of remnant pulp in origin, were first harvested in 
2003 [184]. Recent compiling evidence in vitro indicates 
that SHED surpass BM-MSCs in terms of proliferation and 
are capable of giving rise to osteoblasts, adipocytes, and 
neural cells [194]. Contrarily, this differentiation ability 
of SHED into osteogenic lineage is cast doubt by Miura 
and colleagues [183], detailing that SHED is only char-
acterised as an osteoinductive agent in vivo. Further cor-
responding in vivo studies on immunocompromised mice 
model by this group suggest that no more than 25% of the 

Fig. 4  Illustrates the stem cells 
derived from the oral cavity
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12 single-colony-derived SHED clones acted parallel with 
multicolony-derived ones by forming ectopic dentin-like 
tissue on the scaffold hydroxyapatite/tricalcium phosphate 
(HA/TCP) carrier. Analogous observation is reported when 
administering SHED-seeded tooth slides to the mice model 
[195].

Periodontal Ligament‑derived Stem Cells (PDLSCs)

Periodontal Ligament exists as an anchoring network of 
connective tissue fibres, which function to keep the root 
cementum of teeth attached to the alveolar bone [196]. It 
is noted that a novel population of MSCs is harvested from 
a heterogeneous population of various cellular subsets 
that was reported in 2004 by Seo et al., which inhabit the 
perivascular region of the periodontium [197] and live to 
differentiate into fibroblasts and osteoblasts/cementoblasts 
[198]. Interestingly, these MSCs are positive for the tendon-
specific transcription factor scleraxis (Scx) [198]. Compared 
to BM-MSCs, PDLSCs are of higher proliferation ability 
[199]. In addition, PDLSCs taking their source of origin 
into account, are unsurprisingly capable of mineralising and 

thereby differentiating into cementoblasts [200]. However, 
the number of nodules has never outnumbered that of BM-
MSCs in vitro [198].

Periodontal Ligament of Deciduous teeth (DePDL)

A decade following the isolation of the first MSCs from the 
dental pulp, this time MSCs were detected in DePDL with 
the conception of harvesting MSCs from PDLSCs. Accumu-
lating evidence in vitro signifies that DePDL favour adipo-
cytes over osteoblasts, unlike their counterparts, and prove 
to be more active in proliferation [201].

Dental Follicle Progenitor Cells (DFPCs)

The dental follicle harbours a triad of periodontium-forming 
cells around the early-stage tooth germ [202]. The periodon-
tium is a connective tissue of gingival tissue, alveolar bone, 
periodontal ligament (PDL), and cementum [203]. Accord-
ing to Patil et al., DFPCs, isolated first in 2005 by Morsczeck 
et al., tend to be more proliferative compared to DPSCs and 
SCAP of the same donor. When addressing the number of 

Table 2  shows the surface 
markers of oral cavity stem cells

Marker DPSCs SHED PDLSCs SCAP DFPCs GMSCs DePDL

Embryonic Stem cell marker
  Oct-4  +  +  +  +  −  +  + 
  Nanog  +  +  −  −  −  + NA

Mesenchymal markers
  CD106  −  −  −  +  −  + NA
  CD166  +  +  +  +  +  −  + 

Stem cell marker
  SSEA-4  +  +  −  +  +  + NA
  CD9  +  −  +  +  +  + NA
  CD13  +  −  +  +  +  + NA
  Nestin  +  +  +  +  +  − NA
  Notch-1  +  −  −  −  +  + NA
  CD24  −  −  −  +  +  + NA
  CD29  +  −  +  +  +  + NA

Haematopoietic marker
  CD80  −  −  −  +  −  − NA
  CD86  −  −  −  +  −  − NA

Multipotency
  Chondro  +  +  +  −  +  + NA
  Myo  +  +  −  −  −  − NA
  Odonto  +  +  −  +  −  − NA
  Cardiomyo  +  −  −  −  −  − NA
  Hepatocyte-like cell  +  −  −  +  +  − NA
  Melanocyte  +  −  −  −  −  − NA
  Endothelial  −  +  −  −  −  − NA
  Cemento  −  −  +  −  +  − NA
  Endodermal  −  −  −  −  −  + NA
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the mineralised nodules in vitro, DPSCs and DFPCs surpass 
SCAP. Plus, DFPCs hold an advantage over the other two 
cell sources due to the expression of the chondrogenic-spe-
cific markers type I collagen, type III collagen, and aggre-
can, rather than solely expressing the aggrecan marker [191].

Stem Cells from Apical Papilla (SCAP)

Apical papilla harbours MSCs in charge of root formation 
and thereby lies at the apex of the root [204]. Stimulating 
a developing tooth condition in a culture medium, in 2006, 
Sonoyama and colleagues ascertained that these cells could 
generate osteoblasts, odontoblasts, and adipocytes, but fail to 
form the dentin-like structure on a scaffold HA/TCP in vivo. 
Further in-depth investigation into the cDNA microarray 
profile brought down the curtain on whether or not these 
cells are the same as DPSCs and the results unveiled that 
SCAP proved to act more efficiently regarding the prolifera-
tion, migration, and telomerase activity [205].

Human Periapical Cyst Mesenchymal Stem Cells 
(hPCy‑MSCs)

In 2013 Marrelli et al. [206] managed to add a new popu-
lation of MSCs harvested from periapical cyst to the list 
of oral cavity-derived SCs. [207]. MSCs stood eyewitness 
suspects as a newly formed bone came to report in the light 
of surgical removal of periapical cyst. Antecedents to this 
conception could be traced in the observations credited to 
Maeda and subsequently Patel, assuming that a population 
of MSCs of osteogenic lineage commitment inhabit the peri-
apical granulation tissue [208, 209]. [210]. Fibroblast-like 
design and SC-like properties, including proliferation, self-
renewability, and multi-lineage differentiation into neuro-
genic, adipogenic, chondrogenic, and osteogenic cell lines 
characterise the isolated cells [206, 211]. Corresponding to 
their fellow DMSCs, hPCy-MSCs resemble no haematopoi-
etic markers and importantly comprise two subpopulations 
with respect to the expression of CD146, with the CD146-
low expressing subpopulation exhibiting a comparatively 
higher proliferative, clonogenic, and osteogenic capabilities 
from that of CD146-high expressing one [212]. When cul-
tured in osteogenic medium within a three weeks’ window, 
hPCy-MSCs and DPSCs reportedly orient towards osteogen-
esis and dentinogenesis, respectively [213].

Gingival Mesenchymal Stem Cells (GMSCs)

The stratified squamous gingival epithelium composed 
of the underlying basal cell bed [214], mucous mem-
brane-encompassed vascular fibrous tissue [215], and the 

submucosal connective tissue lamina propria constitutes 
of swift wound healing characteristic. In addition to the 
immune cells, as the neural crest and the mesenchyme 
are asserted to give rise to the gingiva, it is recognised as 
the most readily available and expandable depot of MSCs 
through minimally invasive interventions compared to 
the previously-mentioned oral cavity components [216, 
217], such that GMSCs are obtained from the inflamed 
gum either directly through periodontal therapy like gin-
givectomy and gingiva incision during flap debridement 
or indirectly through preconditioning in a proinflamma-
tory cytokine-supplemented milieu, which functionally 
in terms of differentiation capacity, colony formation, 
and cell surface marker expression, but not proliferation, 
coincide with those of healthy gum origins attained dur-
ing dental therapies like crown lengthening and removing 
the third molars [218–220]. As described by Kim et al. 
[221], fibroblast-like spindle GMSCs corresponding to 
their fellow MSCs are positive for a series of known cell 
surface markers like CD73, CD105, CD90, STRO-1, and 
SSEA-4, but not the haematopoietic surface markers [222], 
and exhibit multipotent differentiation characteristics into 
osteogenic, adipogenic, and neurogenic lineages [223]. On 
a closer examination, GMSCs were proved to be a tough 
act to follow in terms of greater proliferation potential 
and shorter doubling time than BMSCs and hUCB-SCs 
[224, 225]. This goes on to an extent that IL-1β- and/
or TNF-α-treated GMSCs demonstrate augmented pro-
liferation, migration, and motility capacity compared to 
those of no exposure to the proinflammatory cytokines 
and also remain alteration-exempt as to the viability, 
morphology, and functionality [226, 227]; however, these 
GMSCs together with their periodontal ligament counter-
parts (PDLSC) were observed to form fewer mineralised 
nodules, exert less alkaline phosphatase (ALP) activity, 
and express reduced titres of osteogenic surface mark-
ers osteocalcin (Ocn), type 1 collagen (COL1), and runt-
related transcription factor 2 (RUNX2; CBF-alpha-1) in 
a corresponding differentiation induction medium [228]. 
The clinical application of DPSCs has been summarised 
in Table 3.

Surgical Biowastes

Surgery is counted as one of the most commonly per-
formed medical procedures worldwide, the interventional 
nature of which allows the flow of biowaste in surplus 
depending on the fields of specialisation, encompassing 
dermal and mucosal irritations, abdominal diseases, tho-
racic disorders, trauma, herniation, and peripheral artery 
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disease (PAD). On this basis, the following will be accen-
tuating various means of biorecycling.

Liposuction and Lipoaspirates

Liposuction is defined as pulling out and disposing of the unin-
vited adipose tissue enveloping the ADSCs in a low-risk and safe 
manner [229, 230]. In this sense, liposuction-derived lipoaspi-
rates today serve as an efficient way of harvesting ADSCs, also 
addressed as processed lipoaspirate cells (PLACs), the pheno-
typic characteristics of which are analogous to their fellows of 
bone marrow and skeletal muscle origins [231, 232] and resem-
ble BMSCs in terms of differentiation into mesodermal line-
ages, inclusive of adipogenic, chondrogenic, and myogenic cell 
lines [233] along with antioxidant-induced ectodermal lineages 
in vitro like neurogenic cell lines [234]. Considering the afore-
mentioned, ADSCs are right to be assumed of undeniable sig-
nificance in aesthetic plastic surgery and reconstructive plastic 
surgery on account of remodelling the adipose tissue and refin-
ing the malpositioned subcutaneous fat and also in the regenera-
tive medicine on account of serving as an alternative to BMSCs 
[235]. Simply put, one gram of adipose tissue equals 70,000 
ADSCs following a 24-h culturing window, which could be 
continued for up to two weeks in vitro [236]. Once that is done, 
the extracted ADSCs are to form adipose tissue in vivo in the 
presence of biomaterials like alginate and poly(lactic-co-glycolic 
acid) (PLGA) [237]. To cut a long story short, characterising, 
analysing, and manipulating ADSCs would prove beneficial for 
supplying autologous adipose graft and thus treating anatomical 
defects caused by either pathological conditions, such as lipod-
ystrophy, trauma, and injury or excision like breast-conserving 
surgery, also known as lumpectomy. This becomes mainstream 
since the current techniques drawn upon in reconstructive plas-
tic surgery like shifting the mature adipocytes fail to meet the 
expectations in many cases [238, 239]. Aside from the afore-
mentioned fields of interest, ADSCs could also serve to fulfil 
the insatiable demand for abundant sources of adipose tissue in 
body sculpting [240] as well as stromal vascular fraction (SVF), 
composed of MSCs, endothelial cells, adipocytes, immune cells 
and ECM, the reparative potency of which, allowing for angio-
genesis, immunomodulation, and anti-inflammation renders 
SVF an invaluable therapeutic candidate for treating diabetic 
foot ulcer (DFU), cardiac diseases, cerebral ischemia, and facial 
deformities [241].

Hysterectomy

Hysterectomy, as another source of biowaste provision, involves 
the surgical excision of the uterus (ureterectomy) and the sur-
rounding organs, such as the uterine cervix (trachelectomy), ova-
ries (oophorectomy), and the fallopian tubes (salpingectomy). 
The answer to the question arising concerning the benefits of 
hysterectomy to the regenerative medicine lies in the presence of 

endometrial stroma-resident MSCs (eMSCs), which resembling 
their fellows of bone marrow origin [242] and expressing several 
surface markers, inclusive of melanoma cell adhesion molecule 
(MCAM; CD146), platelet-derived growth factor receptor-β 
(PDGFRβ; CD140b), and sushi domain-containing 2 (SUSD2) 
are postulated to inhabit the perivascular compartment and thus 
could be acquired from the endometrial biopsy samples [243]. 
Given a rudimentary background, eMSCs are theoretically able 
to give rise to the progesterone-mediated decidualised stroma 
in vivo and the observations unfold these cells not only com-
mit to adipogenic, osteogenic, chondrogenic, myogenic, and 
endothelial lineages [244, 245], but also take part in the for-
mation of vascular renal parenchyma in the superimmunode-
ficient NSG™ mice and endometrial stroma in vivo [246]. In 
this context, decellularising and recellularising the uterus of the 
fauna, especially sheep and pigs can prove beneficial in fabricat-
ing ECM-based uterine scaffolds and thus reconstructing and 
repairing the female genital tract. This matter gains even more 
significance as the number of people undergoing hysterectomy 
rapidly continues to rise [247–249].

Small Intestine

The small bowel, the 6–7 m long nutrient absorption hub made 
up of the duodenum, jejunum, and ileum could be deemed to 
be another feasible source of biowaste on account of the deep 
in the crypts-resident intestinal stem cells (ISCs), marked by the 
exclusive expression of leucine-rich-repeat-containing G-pro-
tein-coupled receptor 5 (Lgr5; GPR49) [250], olfactomedin 4 
(OLFM4), and B cell-specific Moloney murine leukaemia virus 
integration site 1 (Bmi1) surface markers [251] and constitute crit-
ical components in frequently renewing the intestinal epithelium 
regarding the absorptive or secretory lineages [252] and retaining 
its homeostasis [253]. Of note,  Lgr5+ cells represent a distinct 
population from the  Bmi1+ cells, appointed a conspicuous role 
in physiological and pathological conditions, respectively [254]. 
Having the aforementioned in mind, ISCs have been widely taken 
advantage of in organoplasty, several cases of which are recapitu-
lated moving forward. Trombetta et al. [255] attempted to evalu-
ate the efficacy of longitudinal detubularisation and transverse 
retubularisation of ileo-neovagina in treating vaginal stenosis. 
The formation of the neovagina, abiding by the Monti channel 
principle, involved the isolation and exploitation of a modified 
ECM-rich ileal segment intestine, the advantages of which include 
low morbidity and treatment satisfaction. In addition to the ileum, 
the free vascular jejunal flap-derived neovagina too could act as 
an alternative to that derived from the ileal segments for vagino-
plasty, the long-term safety and treatment objective achievement 
of which was confirmed by Akar et al. [256]. Aside from the 
vaginoplasty, the small intestine may benefit ureteroplasty fol-
lowing functional defects, the typical culprits of which encom-
pass iatrogenic trauma or perforation, tumours, radiation therapy, 
stricture, and tuberculosis [257]. Another example would be the 
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empty nose syndrome (ENS) and administrating porcine small 
intestine submucosa (SIS) xenograft could produce statistically 
positive effects on reconstructing the inferior turbinate, refining 
the serial SNOT-25 scores as well as the quality of life (QOL) 
metrics [258]. Bladder diseases would be the last instance here 
among the many plausible applications of small bowel for organ 
reconstruction, such that augmentation cystoplasty is believed to 
lift the total bladder capacity along with QOL [259].

Post‑Burn Scars

Post-burn scars, together with scar contractures, can by no means 
be avoided even with treatment at its best in that they heavily rely 
on the degree of burn and the severity of the immune response. 
In other words, disregarding the first-degree burn, also called the 
superficial burn, all other types of burns, allowing for the  2nd-4th 
degree burns culminate with tissue destruction and scar forma-
tion due to the post-burn hyperinflammatory response [260, 261]. 
The standard of care for burn management on an aesthetic basis 
involves early excision, debridement, and autologous skin graft-
ing [262, 263]. Of the alternative means to address would be the 
keratinocyte-derived epidermal transplantation [264], physical 
therapy, and plastic surgery mentioned earlier; however, these 
procedures only offer a partial, but not complete, recovery from 
the scars [265]. For further elaboration, it is not until the surgi-
cal release of the contracture that a chronic ulcer or an unstable 
scar would heal. For this reason, burn-derived mesenchymal stem 
cells (BD-MSCs) discarded during debridement and exempt 
from ethical hindrances and risk of immune rejection could be 
perceived a robust and novel treatment option. BD-MSCs are 
characterised by the expression of CD73 and CD105, but not 
CD34 and CD45, and are able to give rise to chondrocytes, osteo-
cytes, and adipocytes [266]. This distinct population of MSCs, 
when administered to the porcine and murine models [267] 
through decellularised tissue extracts, hydrogel formulation, 
and premade porous scaffolds, were reported to intensify wound 
closure, hasten epithelialisation, and counter tissue granulation 
[268]. Taking the above-mentioned into thorough account, prop-
erly processed cutaneous scar tissues could constitute a promising 
source of biowaste provision for skin grafting and organoplasty 
[269]. Nevertheless, to date, no clinical trials have been con-
ducted to assess and evaluate the feasibility, therapeutic effects, 
and probable complications. Therefore, there is an urgent call 
for designing in vitro and in vivo clinical studies to ascertain the 
efficacy of such a theory.

Benign Tumours

Tumours, particularly benign tumours, strike as a promising 
source of biowaste for supplying ECM along with various 
cell types like stem cells, which could be harvested, induced, 

or frozen for therapeutic purposes. Below further elaborates 
on a couple of benign tumours highlighting their applicabil-
ity to regenerative medicine.

Cholesteatoma

Cholesteatoma, a likely lethal and noncancerous inflammation 
of the tympanic cavity engendered by the abnormal hyperkerati-
nisation of the squamous epithelium together with the erosion of 
the middle ear bone. In this context, Nagel et al., [270] detected a 
unique population of  Nestin+S100B+ middle ear cholesteatoma-
derived SCs (ME-CSCs) of self-renewal, neurosphere formation, 
and differentiation capacities into the mesodermal and ectodermal 
cell lines, which effectively contribute to the cholesteatoma pro-
gression, formation, or both. This finding assumes significance 
for providing precious and novel insights into the cholesteatoma 
pathogenesis and therefore unveiling specified treatment options. 
Given that cholesteatoma is of high incidence rate, it could be 
deemed an invaluable source of SCs and consequently biowaste.

Nasal Polyps

Nasal polyp, a sort of chronic rhinosinusitis, involves the parana-
sal sinus mucous membrane, the causal agents of which incorpo-
rate allergens along with microorganisms like bacteria, viruses, 
and fungi [271]. The noncancerous nature of nasal polyps, much 
like cholesteatoma, nominates them as a potentially nifty biowaste 
laden with various types of SCs, such as the progenitor cells and 
MSCs, namely the nasal polyps-derived MSCs (NPO-MSCs), 
which resemble the basic characterisation frame of reference of 
their bone marrow fellows [272], including plastic adherence, 
multilineage differentiation in vitro into the osteogenic, adipo-
genic, chondrogenic, and neurogenic cell lines, and expression 
of CD73, CD90, CD105, CD133 [273], neuroepithelial stem cell 
protein (Nestin), BMI-1 [274], Nanog, octamer-binding transcrip-
tion factor 4 (Oct-4), SOX2, Kruppel-like factor 4 (KLF4), c-Myc, 
ATP-binding cassette super-family G member 2 (ABCG2), but 
not MHC-II, CD11b, CD14, CD34, or CD45 [275]. The above 
features consequently qualify NPO-MSCs as a suitable option 
to better investigate the molecular mechanisms associated with 
chronic rhinosinusitis with nasal polyposis (CRSwNP) in vitro 
and in vivo. Also, the immunomodulatory features attributed to 
PO-MSCs render them a potentially novel treatment option.

Menstrual Blood

Menstruation refers to the rhythmic discharge of menstrual fluid 
from the uterine endometrium all the way through the vagina. 
The menstrual fluid, also generally known as menstrual blood 
[276], consists of the peripheral blood, endometrial tissue, cer-
vical mucosa, and vaginal secretions, which comprises variable 
percentages of proteins and electrolytes, such as sodium, cal-
cium, phosphate, iron, and chloride [277]. Aside from the above 
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components, menstrual blood-derived MSCs (MenMSCs) origi-
nating from the endometrium play a crucial role in initiating the 
menstrual cycle of regeneration, differentiation, and finally shed-
ding [278]. MenMSCs of endometrial stroma-resident fibroblast 
morphology and doubling time  (Td) of 18-36 h [279] exhibit at 
least 1.5-fold population doubling and thereby proliferate more 
rapidly compared to BMSCs [280], rendering this population 
of SCs conspicuous in preclinical in vivo experimental studies 
as well as in regenerative and restorative medicine, such that 
MenSCs are observed to exert protective and restorative effects 
on various organs including liver, lung, ovaries, and skin. It has 
been found that MenSCs drawing down the plasma levels of 
liver enzymes and metabolites could migrate to the fibrous area, 
lower the collagen fibre deposition together with macrophage 
and T-cell infiltration to consequently stop the inflammation 
and correspondingly refine the hepatic functions in acute liver 
injury. Furthermore, MenSCs, when administered intravenously, 
settle in the injury site and exert anti-inflammatory and restora-
tive effects by modulating Interleukins. In addition, MenSCs 
were observed to migrate to the ovarian stroma in a POF model 
and prevent the granulosa cell apoptosis along with the ovar-
ian stroma fibrosis, leading to elevated numbers of follicles, 
improved ovarian functions, and reinstated estrogen and pro-
gesterone plasma levels. As for the skin, the intradermal admin-
istration of MenSCs to rat models suffering from unresponsive 
wounds was reported to be accompanied by upregulated expres-
sion of angiogenic factors IL-8 and VEGF and thus enhanced 
angiogenesis and wound healing [281].

Semen

Predominantly remaining unnoticed, semen would be another 
invaluable supply of mitochondrial biowaste in that comparatively 
tremendous numbers of mitochondria of analogous functions with 
those in somatic cells are contained within the midpiece region 
of human sperm in an end to end arrangement [282]. This would 
conclusively promote mitochondria transplantation and further 
popularise novel therapeutic approaches towards mitochondrial 
dysfunctions [283–286].

Nail

Nails as the hyperkeratinised skin appendages [287] house 
nail stem cells (NSCs) in the nail matrix and the proximal 
fold, characterised by the rapid and slow proliferation rate, 
respectively [288] and the expression of keratin 19 (K19), 
K15, K14, CD29, and CD34 surface markers [289]. Nowa-
days, NSCs continue to assume widespread interest not 
only in treating nail-associated injuries and healing scars 
but also in curing other diseases in regenerative medicine, 

owing a great debt of gratitude to a number of reasons, such 
as unlimited accessibility, relatively non-invasive collection 
procedure, transformation into corneocytes in the stratum 
corneum, and adhesion to fibrous scaffold in vitro [290]. 
Furthermore, transplanting cultured NSCs into a rat model 
of non-regenerative nail injury was reported to culminate 
with complete healing within four weeks window [291].

Hair

Hair is a protein rising from a follicle lying deep within 
the dermis. The origins of follicles could be traced back to 
the embryonic stage, developing a plate-like structure and 
maturing as a result of embedded stem cell proliferation. 
Given the background, hair follicles remaining in the der-
mis during alopecia marks plentiful stem cells for regen-
erative medicine objectives [292]. Hair follicle stem cells 
(HFSCs) are characterised by the expression of CD34, p63, 
and Ki-67, which are recognised as the major corresponding 
markers [293]. According to in vivo analysis, HFSCs, when 
implanted into a murine model of non-regenerative hair, had 
triggered hair regeneration [294]. Consistently, HFSCs had 
effectively alleviated the complications associated with 
radiation-induced acute alopecia in vivo [295]. Addition-
ally, in vitro observations fabricating a similar microenviron-
ment confirm this ability of HFSCs [296], which would be 
naïve to assume limited to hair regrowth, such that cultured 
HFSCs had proved to exhibit bladder-regenerative proper-
ties in vivo [293]. Add to this the ability of this population 
of stem cells to hasten wound healing [297]. These results 
demonstrate that HFSCs relying on their unique charac-
teristics to support tissue regeneration could find a robust 
stem cell-based therapy method for treating alopecia, skin 
complications [298], neurodegenerative disorders [286], as 
well as bone-related diseases since HFSCs own osteogenic 
differentiation abilities [299].

Conclusion

As the days and nights are drawing on and the borders of 
science and knowledge keep stretching, we come to realise 
that we have been blind to matters beyond measure, which 
we address here as human biowaste, an unending supply 
of precious gifts that own the potential to bring us a step 
closer to what we as researchers have sworn to fulfil, that 
is the quest for voraciously making life more convenient 
and removing any obstacles confronting us in our way. In 
this paper, we have put a great deal of effort into making 
mention of a number of sources among the ceaseless list of 
biowaste, holding an overly optimistic view that this would 
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increasingly draw the attention and interest from scholars 
and therefore bring novel insights into our perception con-
cerning the disease treatment.
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