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Abstract: The mineralocorticoid hormone aldosterone regulates sodium and potassium homeostasis
but also adversely modulates the maladaptive process of cardiac adverse remodeling post-myocardial
infarction. Through activation of its mineralocorticoid receptor (MR), a classic steroid hormone
receptor/transcription factor, aldosterone promotes inflammation and fibrosis of the heart,
the vasculature, and the kidneys. This is why MR antagonists reduce morbidity and mortality
of heart disease patients and are part of the mainstay pharmacotherapy of advanced human heart
failure. A plethora of animal studies using cell type–specific targeting of the MR gene have established
the importance of MR signaling and function in cardiac myocytes, vascular endothelial and smooth
muscle cells, renal cells, and macrophages. In terms of its signaling properties, the MR is distinct
from nuclear receptors in that it has, in reality, two physiological hormonal agonists: not only
aldosterone but also cortisol. In fact, in several tissues, including in the myocardium, cortisol is the
primary hormone activating the MR. There is a considerable amount of evidence indicating that the
effects of the MR in each tissue expressing it depend on tissue- and ligand-specific engagement of
molecular co-regulators that either activate or suppress its transcriptional activity. Identification of
these co-regulators for every ligand that interacts with the MR in the heart (and in other tissues) is of
utmost importance therapeutically, since it can not only help elucidate fully the pathophysiological
ramifications of the cardiac MR’s actions, but also help design and develop novel better MR antagonist
drugs for heart disease therapy. Among the various proteins the MR interacts with are molecules
involved in cardiac G protein-coupled receptor (GPCR) signaling. This results in a significant amount
of crosstalk between GPCRs and the MR, which can affect the latter’s activity dramatically in the
heart and in other cardiovascular tissues. This review summarizes the current experimental evidence
for this GPCR-MR crosstalk in the heart and discusses its pathophysiological implications for cardiac
adverse remodeling as well as for heart disease therapy. Novel findings revealing non-conventional
roles of GPCR signaling molecules, specifically of GPCR-kinase (GRK)-5, in cardiac MR regulation
are also highlighted.
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1. Introduction

Aldosterone exerts important effects in various organ systems outside the kidneys, its primary
target organ [1]. Among these systems is the cardiovascular system, of which both the heart and the
vasculature are direct targets of aldosterone’s actions [2]. All of the genomic effects of aldosterone
are mediated by the mineralocorticoid receptor (MR), resulting in altered gene expression that affects
vascular tone/blood pressure, cardiac contractility, and ventricular wall remodeling [3]. Specifically,
in the cardiovascular system, the MR is expressed in vascular endothelial and smooth muscle cells of
murine kidneys and in the human heart, including cardiomyocytes, coronary endothelial and vascular
smooth muscle cells, fibroblasts, and immune cells (e.g., macrophages, monocytes, etc.) [4,5]. Of note,
cortisol, whose plasma levels are normally hundreds of time higher than aldosterone’s, binds to,
and activates the MR with similar affinity to that of aldosterone [6,7]. Thus, MR hyperactivity is
prevented by the presence and activity of 11β-hydroxysteroid dehydrogenase type 2 (11-βHSD2),
which converts cortisol to the MR-inactive cortisone [7]. Cardiac myocytes appear to express very
little 11-βHSD2, which means that the cardiomyocyte-residing MR may primarily be stimulated by
cortisol rather than aldosterone [8]. Nevertheless, direct effects of aldosterone in cardiac myocytes
have been documented and the MR plays important roles in cardiac physiology [9,10]. Since its effects
are genomic, MR gene expression effects take at least several hours to manifest, but aldosterone is
known to exert also more rapid, transient, non-genomic effects via other receptors, including GPER
(G protein-coupled estrogen receptor) [11–14]. Contrary to its clearly defined function in the kidneys
promoting sodium (and water) reabsorption and potassium excretion, the function of the MR in the
normal healthy heart is poorly understood [13,15]. It has been shown to regulate cardiomyocyte
growth and cardiac electrical conduction [5,6]. Nevertheless, a large body of evidence, both from
transgenic mouse models of chronic pressure overload or myocardial infarction (MI) with manipulated
MR expression levels and from large scale clinical trials of MR antagonists (MRAs), clearly documents
the role of the MR in cardiac pathophysiology. The present review provides an overview of the role
and signaling of the MR in cardiac pathophysiology with a particular emphasis on adverse remodeling.
It also discusses the experimental evidence for MR’s cross-talk with cardiac G protein-coupled
receptors (GPCRs), highlighting novel, cardiac-specific aspects of MR signaling that can be exploited
for cardiovascular disease therapy.

2. MR in Cardiac Adverse Remodeling

Aldosterone directly induces hypertrophy, ventricular remodeling, arrhythmias, and ischemia
in the myocardium. Importantly, these effects are mostly independent of aldosterone’s systemic
hemodynamic effects [5,16]. Together with high salt (sodium), aldosterone increases myocardial
inflammation via upregulation of the pro-inflammatory cytokines tumor necrosis factor (TNF)-α,
interleukin-1β, and transforming growth factor (TGF)-β [17,18]. These effects are in part mediated
by serum- and glucocorticoid-induced protein kinase (SGK)-1 and transcription factors nuclear
factor (NF)-κB and activator protein (AP)-1 [18,19]. Collagen and pro-fibrotic factor synthesis,
including connective tissue growth factor, TGF-β, plasminogen activator inhibitor (PAI)-1,
matrix metalloproteinase (MMP)-2, and TNFα, also increases upon aldosterone/salt administration
in the rat myocardium [18,20–22]. In addition, oxidative stress, as evidenced by nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase (NOX) activity and reactive oxygen species
(ROS) production, is increased, contributing to the cardiac inflammation and fibrosis induced by
aldosterone [5]. Moreover, MR activation stimulates apoptosis and induces coronary vasoconstriction
in animal hearts [23,24]. The underlying mechanism for the reduced coronary blood flow by the MR is
presumed to be impaired endothelium-dependent, nitric oxide (NO)-mediated vasodilatation due to
decreased NO production [23].

The high-salt requirement for most of the aforementioned effects of aldosterone is thought to stem
from the fact that high sodium stimulates oxidative stress, which, in turn, activates the cardiac MR [25].
Crosstalk between the MR and the angiotensin II type 1 receptor (AT1R), a member of the GPCR
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superfamily, has also been implicated in aldosterone’s damaging effects in the heart [26]. Perhaps the
most solid evidence for the pivotal role of the MR in heart disease comes from the remarkable cardiac
benefits the MRAs, specifically spironolactone and eplerenone, have been demonstrated to exert
clinically and in animal studies. MRAs prevent or significantly attenuate cardiac inflammation, fibrosis,
and oxidative stress induced by aldosterone [1,5,6]. They also reduce the risk of cardiac arrhythmias in
animal models of heart disease [5]. Notably, these beneficial effects of the MRAs appear independent
of any effects on systemic hemodynamics, which strongly indicates that they are due to direct cardiac
(or vascular) MR blockade [1,5,15,16].

The MR is present in cardiac myocytes and functions essentially as a high-affinity cortisol receptor,
since 11-βHSD2 is significantly under-expressed in these cells [7]. However, aldosterone still plays an
important role in regulation of cardiac output. Studies in cardiomyocyte-restricted MR-knockout mice
showed that the absence of the MR led to improved cardiac healing, preventing adverse remodeling,
cardiac hypertrophy, contractile dysfunction, and maladaptive gene expression post-myocardial
infarction (MI) [27]. Cardiac inflammation and apoptosis were also reduced early after the MI
in these mice, and were accompanied by improved left ventricular filling pressures, end diastolic
and end systolic volumes, and ejection fraction [27]. Immediate pharmacological blockade of the
MR also ameliorates cardiac healing post-MI by reducing cardiac inflammation [28] and genetic
ablation of the cardiomyocyte MR protects the heart in the transaortic constriction (TAC) model
of pressure overload [29]. Notably, in the latter animal model of heart failure, the absence of
cardiomyocyte MR only improved cardiac function without affecting cardiac hypertrophy, fibrosis,
apoptosis, or inflammation post-TAC [29]. Thus, the cardiomyocyte-residing MR seems to affect cardiac
function, while cardiac MR expressed in other cardiac cell types (e.g., fibroblasts, endothelial cells,
infiltrated immune cells) regulates cardiac adverse remodeling. Indeed, the cardiomyocyte MR is
essential for the primary inflammatory response and recruitment of inflammatory cells to the heart
associated with high salt-induced cardiac remodeling [30]. Studies in transgenic cardiomyocyte
MR-overexpressing mice corroborate the findings in cardiomyocyte MR-knockout mice. Genome-wide
analyses revealed that connective tissue growth factor (CTGF) and the neutrophil gelatinase-associated
lipocalin are among the early cardiac remodeling-associated MR target genes upregulated by chronic
aldosterone treatment (despite the preponderance of glucocorticoid receptors in the heart) [31,32].
Of note, the MR does not seem to affect normal cardiac development or function. Cardiomyocyte
MR-knockout mice have normal systolic and diastolic functions and cardiac dimensions [1].
When challenged with high salt, however, the inotropic and chronotropic functions of the MR-knockout
hearts are dysregulated [31], which is consistent with evidence in isolated cardiomyocytes for
aldosterone-dependent increases in positive inotropy and chronotropy [33–35]. The effect of the MR on
heart rate is also modulated by the glucocorticoid receptor and oxidative stress [33]. The two steroid
receptors act synergistically to regulate T-type and L-type calcium channel expression and activity,
thereby increasing risk of arrhythmias in the myocardium [33]. Cardiac-specific MR overexpression
leads to a high rate of sudden cardiac death in mice via reduced potassium transient outward and
increased L-type calcium currents resulting in prolonged repolarization (refractory period) [36].
In addition, cardiomyocyte-specific MR overexpression causes NOX-dependent, ROS-mediated
coronary endothelial dysfunction [37]. Additionally, both the MR and 11-βHSD2 are upregulated in
rats post-MI, and, in response to a high-salt diet, cardiac MR expression is elevated in heart failure and
atrial fibrillation patients [6,38–41].

Finally, additional effects by the MR expressed in other cardiovascular tissues outside the
heart, indirectly, but still significantly, contribute to cardiac adverse remodeling. For instance,
the MR promotes endothelial dysfunction in high cholesterol diet-induced atherosclerosis in mice,
in atherosclerotic monkeys, and in models of experimental thrombosis [42,43]. Chimeric low-density
lipoprotein receptor (LDLR)-knockout mice with MR-knockout bone marrow cells have reduced
atherogenesis both basally and in response to angiotensin II [44]. In humans, polymorphisms of
the aldosterone synthase (CYP11β2) gene have been associated with atherosclerotic plaque size,
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and plasma aldosterone was the only independent predictor of plaque progression in one large
study [45]. Another important cell type with substantial endogenous MR expression and contributing to
cardiac adverse remodeling is the macrophages [46]. They also express glucocorticoid receptor but not
11-βHSD2. Thus, under normal circumstances, macrophage MR is stimulated by cortisol, similarly to
the cardiomyocyte MR [47]. Deletion of macrophage MR changes the baseline expression of several
pro-inflammatory genes, but, interestingly, does not affect macrophage recruitment/infiltration into
the diseases myocardium, indicating that the MR operating in other cardiac cell types, e.g., endothelial
cells, contributes to macrophage infiltration in deoxycorticosterone/high salt-treated hearts [48–50].
Of note, even the MR in T-lymphocytes has been implicated in aldosterone-induced Th17-mediated
immune activation, which might be part of the overall MR-driven cardiac inflammation [51,52].

In summary, deletion or inactivation of the MR gene attenuates left ventricular dilatation,
cardiac hypertrophy, and heart failure progression, whereas overexpression of the MR in
cardiomyocyte-specific MR overexpression promotes cardiac adverse remodeling, heart failure
progression, and development of arrhythmias [27,29,36].

3. GPCR Signaling and MR Function

The human MR is a 984-amino acid cytoplasmic protein with three functional domains:
the N-terminal domain (NTD) that regulates transcriptional activity of the receptor, the DNA-binding
domain (DBD) involved in the binding of the promoter of the target gene, and the ligand-binding
domain (LBD) responsible for hormone binding [3]. In the nucleus, the MR depends on numerous
molecular co-regulators to activate and regulate its target genes that carry the (shared with the
glucocorticoid receptor) glucocorticoid response element (GRE) sequence in their promoters [53].
The MR also undergoes post-translational modifications, such as phosphorylation, SUMOylation,
ubiquitination, etc., which also play important roles in regulation of its transcriptional activity and of
its ligand binding specificity/affinity [54]. MR activity is also affected by factors other than its ligands,
including protein kinase A (PKA), Rac-1, ubiquitin conjugating enzymes, and other factors involved
in the regulation of diverse nuclear receptors [53–56]. Additionally, as mentioned above, high salt
(sodium) concentrations lead to MR activation, even in the absence of any hormone/ligand [1,25],
and result in cardiac fibrosis and inflammation.

One of the most powerful physiological stimuli for the synthesis and secretion of aldosterone,
and the last step in the renin-angiotensin-aldosterone system axis, is angiotensin II activation of
the AT1R, a Gq/11 protein-coupled receptor [57–61]. Specifically, the AT1R promotes aldosterone
production in the adrenal cortex through Gq/11 protein, i.e., diacylglycerol (DAG) and inositol
trisphosphate (IP3) signaling, but also through βarrestin1 signaling to extracellular signal-regulated
kinases (ERK)-dependent steroidogenic acute regulatory (StAR) protein upregulation [62–66].
Therefore, there is considerable (indirect) crosstalk between the MR and GPCRs at the level of
the former’s natural hormone ligand regulation. However, there is substantial evidence for direct
regulation of GPCR signaling mediators by the MR, as well. Apart from MR interactions with
the epidermal growth factor receptor (EGFR), a receptor tyrosine kinase (RTK), which are well
characterized [67–69], GPR30 or GPER, an estrogen-responsive GPCR, serves as a membrane
receptor for aldosterone [70,71]. Gq protein-coupled receptor signaling-activated protein kinase
C (PKC)-α also binds aldosterone directly (i.e., in an MR-independent manner), which leads to
its auto-phosphorylation [72]. Aldosterone is known to activate mitogen-activated protein kinases
(MAPKs), which play significant parts in GPCR signaling in all tissues, including the heart. Thus,
the extracellular signal-regulated kinases (ERK)1/2 are activated by aldosterone in various cell types
and tissues, including in vascular smooth muscle cells [73] and in cardiac myocytes [74,75]. In the
latter cells, this leads to hypertrophy [75,76]. p38 MAPK is another MAPK activated by aldosterone via
the MR in vascular smooth muscle cells [77], where it leads to fibrosis through NADPH stimulation.
In fact, p38 MAPK blockade counters the high salt diet-induced deleterious cardiovascular effects in
spontaneously hypertensive rats [78]. Contrary to PKCα, which directly binds aldosterone, PKCδ and
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PKCε are activated by aldosterone via MR-induced EGFR transactivation [79]. Finally, protein kinase
D (PKD)-1 activation leading to cardiac hypertrophy has also been linked to the MR-EGFR crosstalk in
aldosterone-treated cardiac myocytes [80], whereas, in vascular endothelial cells, aldosterone enhances
nitric oxide production via MR- and phosphoinositol 3-kinase (PI3K)-dependent endothelial nitric
oxide synthase (eNOS) phosphorylation [81].

As mentioned above, the MR undergoes several stimulus-induced post-translational
modifications, most frequently direct phosphorylation, which underlies several rapid signaling events
induced by aldosterone. Phosphorylation of co-factors required for MR transcriptional activity also
plays an important role. Regulation of these phosphorylation events by GPCRs and GPCR-activated
signaling molecules provides the basis for the opposite direction of GPCR-MR crosstalk to the
one discussed above, i.e., GPCR-dependent regulation of the MR. Indeed, protein kinase A (PKA),
activated by Gs protein-coupled receptors and inhibited by Gi protein-coupled receptors, induces
dissociation of heat shock protein (Hsp)-90 from the MR [82] (Figure 1). This event is normally required
for MR translocation to the nucleus (Faresse). Furthermore, the steroid receptor co-activator (SRC)
family—comprising SRC1, SRC2, and SRC3—is another group of proteins required for transcription
by nuclear receptors, including the MR and PKA phosphorylates SRC2 resulting in its ubiquitination
and subsequent degradation [83]. Even the ERKs, which can be activated by the aldosterone-induced
MR crosstalk with the EGFR (see above), phosphorylate the MR itself, thereby modulating MR
protein stability (proteasomal degradation) and closing a negative feedback MR regulatory loop [84]
(Figure 1). Moreover, serine-843 located within the LBD of the MR gets phosphorylated by an
unidentified kinase, preventing MR binding to, and activation by aldosterone in renal intercalated
cells [85]. Upon volume depletion (hypovolemia), the AT1R decreases Ser843 phosphorylation of the
MR via protein phosphatase (PP)-1 activation in these cells, in order to increase chloride reabsorption,
inhibit potassium excretion, and ultimately restore (increase) plasma volume [85]. Of note, however,
this Ser843 phosphorylation event is renal intercalated cell-specific, and purportedly absent in cardiac
myocytes [85].
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Agonist-activated GPCRs are phosphorylated by a family of serine/threonine kinases collectively
known as GPCR-kinases (GRKs). This phosphorylation enhances the affinity of the receptor
for binding to the adapter proteins β-arrestins, which sterically hinder G protein coupling and
activation, thereby conferring receptor functional desensitization [86]. Several GRKs are now known to
phosphorylate non-GPCR substrates (the so-called “non-canonical” GRK actions [87]). There are
seven mammalian GRKs (GRK1-7), all of which share a common structural architecture with a
well-conserved, central catalytic domain (≈270 aa), similar to that of other serine-threonine kinases,
flanked by an amino-terminal (NT) domain (≈185 aa) and a variable length carboxyl-terminal
(CT) domain (≈105–230 aa) that contains specific regulatory sites [88,89]. The conservation of
length and specific amino acids in the NT domain suggests that this region is involved in specific
receptor recognition and binding and in intracellular membrane anchoring. The CT domain of GRKs
contributes to their subcellular localization and agonist-dependent translocation by favoring their
interaction with lipids and other membrane proteins. GRK2, GRK3, and GRK5 are ubiquitously
expressed, including in the heart where GRK2 and GRK5 represent the most abundant isoforms [90,91].
When inactive, GRK2 and GRK3 are in the cytoplasm and need to interact with the free Gβγ subunits
of activated heterotrimeric G proteins in order to translocate to the cell membrane and phosphorylate
agonist-occupied GPCRs [90–92]. In contrast, GRK5 forms direct ionic interactions with the cell
membrane phospholipids thanks to a highly basic (lysine-rich) region of its molecule, such that it is
anchored to the plasma membrane even when inactive [91]. The mechanism of its activation by GPCRs,
specifically by the β2-adrenergic receptor (AR), was elucidated recently [93]. Of note, GRK5 is located
also in the cell nucleus, thanks to a nuclear localization/DNA binding sequence (NLS) it contains,
where it can affect gene transcription via epigenetic mechanisms [94–96].

In transfected renal cells, the human MR has been shown to increase β2AR-dependent
intracellular cyclic adenosine monophosphate (cAMP) levels via Gsα protein upregulation and GRK3
downregulation [97]. In murine hearts in vivo, the MR has been documented to promote heart failure
by activating GRK2-dependent cardiac apoptosis and GRK5 nuclear accumulation-dependent cardiac
hypertrophy [76] (Figure 1). These non-canonical, deleterious GRK effects appear to be mediated
by an MR-induced, c-Src kinase-dependent transactivation of the AT1R in the heart [76] (Figure 1).
Importantly, the authors of that study correlated the peripheral lymphocyte GRK2 levels, known to
reflect myocardial GRK2 levels, of heart failure patients with MRA (spironolactone) treatment and
found that patients treated with spironolactone had significantly lower peripheral lymphocyte GRK2
levels compared to non-MRA treated patients [76]. This probably reflects the better cardiovascular
status of heart failure patients conferred by the MRA treatment.

In addition to GRK2 and GRK5 modulation by the cardiac MR, very recent data from our
laboratory indicate that the opposite, i.e., cardiac MR regulation by GRKs, can occur as well. Indeed,
we have found that GRK5, but not GRK2, phosphorylates the MR in H9c2 rat cardiomyoblasts and
in adult rat venrtricular myocytes, inhibiting its transcriptional activity [98] (Figure 1). Moreover,
this non-canonical effect of GRK5 is enhanced by β2AR activation. In contrast, GRK2 phosphorylates
and desensitizes the non-genomic aldosterone receptor GPER [98]. Importantly, GRK5 appears
necessary for the protective effects of the MRAs (eplerenone) against aldosterone’s deleterious
effects in cardiomyocytes (apoptosis, oxidative stress, etc.) [98]. Of note, the GRK5-mediated MR
phosphorylation occurs in the cytoplasm and seems to interfere with the ability of the MR to translocate
to the nucleus to activate gene transcription [99]. Thus, the MR functional blockade by GRK5 is
topologically independent from the kinase’s own nuclear/genomic effects, which can be harmful
(i.e., pro-hypertrophic) in the heart. Therefore, GRK5 can counter the deleterious effects of the
MR, thereby augmenting the beneficial actions of the MRA’s in the heart. This is another line of
evidence supporting a beneficial, rather than detrimental, role for GRK5 in the myocardium. Indeed,
enhanced GRK5 activity has been associated with favorable outcomes, similar to those of beta-blockers,
in human heart failure [100], and GRK5 also inhibits cardiac NFκB, thereby attenuating inflammation
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and hypertrophy in the heart [101–104]. In diametric contrast, every action of GRK2 in the myocardium
uncovered so far appears deleterious for cardiac function or structure [89–92].

4. Therapeutic Implications of GPCR-MR Crosstalk for Heart Disease

From the preceding sections, it becomes evident that there is a considerable amount of GPCR
crosstalk with the MR in the heart, which can have enormous pathophysiologic and, consequently,
therapeutic (in the context of heart disease) implications. From the perspective of the MR regulating
downstream GPCRs and GPCR signaling mediators/regulators (Figure 1), therapeutic targeting of
proteins directly activated by aldosterone like GPER, EGFR, and PKC has the potential of combating
several non-genomic actions of aldosterone, which are as deleterious for the myocardium as its
classic genomic actions, e.g., EGFR transactivation-mediated fibrosis, PKC-mediated hypertrophy,
etc. Targeting of several of these signaling mediators is already being pursued for heart failure
therapy, independently of their molecular connections with the cardiac MR. However, the main
drawback of targeting these molecules is that the equally (if not worse) cardiotoxic actions of the cardiac
MR, activated by aldosterone, cortisol, or no specific ligand (e.g., oxidative stress, hyperkalemia),
are left unopposed.

For this reason, it is imperative that inhibition of the cardiac MR downstream signaling targets be
combined with blockade of the activity of the cardiac MR itself, i.e., an MRA. Given the significant
extent of GPCR signaling crosstalk occurring also upstream of the cardiac MR (Figure 1), targeting of
GPCR signaling mediators/regulators that affect cardiac MR activity might also have therapeutic
potential, at least in that it might act synergistically or additively with an MRA. In that vein,
PKA inhibition or GRK5 stimulation in cardiomyocytes may augment the beneficial effects of MR
antagonists in heart disease, since PKA activates and GRK5 inhibits cardiac MR transcriptional
activity (Figure 1). Indeed, GRK5 appears indispensable for eplerenone’s cardioprotective effects in
ARVMs [98]. Of note, β2AR stimulation in the cardiomyocyte, which can be achieved with agents
currently used in clinical practice (i.e., the anti-asthmatic β2AR-selective agonists), can potentially
lead to MR blockade in the heart, via GRK5 activation (Figure 1). β2AR-activated GRK5 not only
directly phosphorylates and inhibits the cardiac MR, but also (indirectly) suppresses PKA activity by
desensitizing the β2AR (i.e., terminating the receptor’s Gs protein signaling that activates PKA). Not to
mention, the cardiac β2AR is purportedly capable of switching its coupling from Gs to Gi proteins,
an event that would also suppress PKA activity (due to inhibition of cAMP synthesis) [105].

5. Conclusions and Future Perspectives

Although more studies are certainly needed to further elucidate the molecular and signaling
connectome of the cardiac MR, two things are known for sure. The first is that the cardiac MR exerts
overall negative effects in the myocardium, in particular in the diseased or injured myocardium
(e.g., post-MI); thus, all of its actions, direct and indirect, genomic and non-genomic, need to be
blocked in heart disease. This is why MRA drugs have been and continue to be so successful in
human advanced heart failure therapy. The other proven and well-documented fact about the cardiac
MR is that it displays significant signaling crosstalk with GPCRs and GPCR signaling components,
either being upstream of the latter (i.e., modulating them) or being downstream (i.e., its activity being
under the control of the latter). At the same time, there is a need for novel and improved MRA
agents to successfully treat heart failure in humans, since the currently-used agents are riddled with
several adverse effects (e.g., hyperkalemia, renal complications, etc.). Indeed, novel non-steroidal
MRAs (e.g., finerenone), which are purportedly more potent and specific inhibitors at the MR,
are currently in development for human heart failure treatment. Given that the MR is expressed
throughout the cardiovascular system with various effects in each individual tissue/cell type, it would
be advantageous for the pharmaceutic industry to develop novel agents that specifically block the MR
only in the myocardium. To this end, targeting the signaling crosstalk mechanisms between the MR
and GPCRs that occur specifically in cardiac myocytes could be instrumental. With the realization that
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an MRA agent is not enough to fully counter the cardiotoxic actions of the MR or of aldosterone and
as more data on the biochemistry and molecular (patho) physiology of the MR in the heart become
available, the pharmaceutical industry’s odds of coming up with new and better MR-targeting drugs
for heart disease therapy are looking pretty good.
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