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ABSTRACT Permafrost environments play a crucial role in global carbon and meth-
ane cycling. We report here the draft genome sequence of Methylocella silvestris
TVC, a new facultative methanotroph strain, isolated from the Siksik Creek catch-
ment in the continuous permafrost zone of Inuvik (Northwest Territories, Canada).

Methanotrophic bacteria utilize methane as sole carbon and energy sources, thus
playing a major role in the global methane cycle (1). They are widespread in the

environment, including lakes, rivers, sediments, rice paddies, sewage sludge, forests,
and landfill soils (2, 3). All described methanotrophic species belonging to the genus
Methylocella (family Beijerinckiaceae) possess a soluble methane monooxygenase
(sMMO) that catalyzes the oxidation of methane to methanol, a key methane-oxidizing
enzyme that is present in only a subset of methanotrophs (4–6). Methanotrophs of the
genus Methylocella do not possess a particulate methane monooxygenase (pMMO),
which is present in most other methanotrophs (7). Methylocella species can also utilize
multicarbon compounds, including acetate, pyruvate, succinate, ethane, and propane
(7, 8). Three species of Methylocella have so far been described, M. palustris, M. silvestris,
and M. tundrae (4–6). Type strain M. silvestris BL2 was isolated from an acidic forest
cambisol, and its genome sequence was reported previously (9). We now report the
isolation and draft genome of a new strain, M. silvestris TVC.

Samples for isolation were taken from a middle hill slope to stream channel transect
of the Siksik Creek catchment (68°44=54.5� N, 133°29=41.7� W), a tributary of Trail Valley
Creek (TVC), Canada (10). After initial enrichment of the soil samples with CH4 (18%
vol/vol in the headspace), subsamples were transferred to liquid medium and plated
repeatedly until the culture was pure.

Genome sequencing of M. silvestris TVC was performed by MicrobesNG (Birming-
ham, UK) using Illumina HiSeq technology (1,151,332 trimmed reads, 109-fold mean
coverage) and assembled, using SPAdes version 3.11.1 (11), into 82 contigs with a
genome size of 4,292,072 bp and a G�C content of 62.94%. Annotation was performed
using Prokka version 1.12 (12).

Comparative genome analysis revealed that although the 16S rRNA gene se-
quences of strain TVC and strain BL2 shared 99% nucleotide identity, the similarity
of mmoXYBZDC, encoding the sMMO, and mxaF, encoding methanol dehydroge-
nase, was 90 to 95% between the two strains. Average nucleotide identity between
strains BL2 and TVC was calculated using JSpecies (13), showing 89.80% and 90.59%
similarities based on the BLAST algorithm and MUMmer ultrarapid aligning tool,
respectively.
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Strain TVC used C1 substrates, including methane and methanol, as sole carbon
sources. In addition to genes encoding the sMMO and methanol dehydrogenase,
genes encoding the tetrahydrofolate (H4F)-dependent and tetrahydromethanop-
terin (H4MPT)-dependent pathways of formaldehyde oxidation and those of the
serine cycle are present in the genome. Like M. silvestris BL2, strain TVC was a
facultative methanotroph and was able to utilize multicarbon compounds, includ-
ing acetate, ethanol, succinate, and propane. Genes encoding the glyoxylate bypass
enzymes isocitrate lyase and malate synthase are present. Also identified were the
prmA, prmB, prmC, and prmD genes encoding a propane monooxygenase, showing
91%, 84%, 86%, and 86% identities to those of M. silvestris BL2, respectively,
enabling growth on propane. Further analyses of the genome and comparison with
other strains will lead to a better understanding of the phylogeny and evolution of
facultative methanotrophs.

Accession number(s). This whole-genome shotgun project has been deposited at
DDBJ/ENA/GenBank under the accession number PDZR00000000. The version de-
scribed in this paper is the first version, PDZR01000000.
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