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2-Amino-3-cyano-6-methyl-4-phenyl-

4H-pyran-5-ethylcarboxylate
A new, simple thermally efficient and solvent-free condensation of 2-amino-3-cyano-6-methyl-4-

phenyl-4H-pyran-5-ethylcarboxylate derivatives with coumarin-3-carboxylic acid employing

pentafluorophenylammonium triflate (PFPAT) as an inexpensive organocatalyst for the synthe-

sis of a series of ethyl 4,5-dihydro 7-methyl-2-(2-oxo-2H-chromen-3-yl)-4-oxo-5-aryl-3H-chro-

meno[2,3-d]pyrimidine-6-carboxylate derivatives is described. This method has the advantages

of high yields, a cleaner reaction, simple methodology, short reaction times, easy workup,

and greener conditions. All the compounds were evaluated for their in vitro antimicrobial activ-

ity against different bacterial and fungal strains.

ª 2013 Cairo University. Production and hosting by Elsevier B.V. All rights reserved.
Introduction

Coumarins (2-oxo-2H-chromene) are the family of lactones
containing benzopyran skeletal framework. Coumarin deriva-

tives have been established as well-known naturally occurring
oxygen-heterocyclic compounds isolated from various plants
which occupy a special role in nature [1]. The plant extracts

containing coumarin-related heterocycles are employed as her-
bal remedies in traditional systems of medicine. They belong to
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Scheme 1 2-Amino-3-cyano-6-methyl-4-phenyl-4H-pyran-5-

ethylcarboxylate derivatives.
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the flavonoid class of plant secondary metabolite. Coumarin
derivatives constitute an important class of heterocyclic com-
pounds that have attracted significant attention in recent years

[2,3]. They have attracted intense interest because of their di-
verse pharmacological properties. Cancer, a diverse group of
diseases characterized by uncontrolled growth of abnormal

cells, is a major worldwide problem. It is a fatal disease stand-
ing next to the cardiovascular disease in terms of morbidity
and mortality. A series of coumarin–chalcone hybrids have

been synthesized and evaluated for their in vitro cytotoxicity
against a panel of four human cancer cell lines and normal
fibroblasts (NIH3T3) [4]. Tuberculosis (TB) is a common
and often deadly infectious disease caused by various strains

of mycobacterium, usuallyMycobacterium tuberculosis. Tuber-
culosis has been considered to be a disease of poverty for many
years with quite rare occurrence in the developed countries. A

new series of 4-(3-coumarinyl)-3-benzyl-4-thiazolin-2-one ben-
zylidenehydrazones were synthesized, and they were evaluated
for anti-tuberculosis activity against M. tuberculosis H37Rv in

BACTEC 12B medium using the BACTEC 460 radiometric
system [5]. Coumarin derivatives also used as anti-HIV [6],
antioxidant [7], dyslipidemic [8], anti-inflammatory agents [9],

and antimicrobial agents [10].
In view of the pharmaceutical importance of heterocyclic

compounds containing coumarin moiety, many methods have
been developed. Coumarin derivatives are synthesized using dif-

ferent catalysts like nano-crystalline ZnO [11], heteropoly acids
[12] and tetrabutylammonium bromide [13]. Recently, chro-
meno pyrimidinone derivatives [14] and quinoxaline derivatives

containing the coumarinmoiety [15] are reported. Various chro-
meno pyrimidinones are prepared under solvent-free condition
at 120 �C in the presence of 10 mol% of ionic liquid [14].

Although these methods are quite satisfactory, many of
them employ considerable amounts of hazardous organic sol-
vents, which are not environmentally friendly, for carrying out

the reactions and/or for extraction and purification (column
chromatography). Furthermore, these methods are not suit-
able in terms of the recent trends in process chemistry, because
of the use of metallic catalysts. Therefore, a method using a

nonmetallic catalyst is desirable. Organo-catalysts have gained
interesting attraction in recent years due to economic and envi-
ronmental considerations. These catalysts are generally inex-

pensive and easily available. They can conveniently be
handled and removed from the reaction mixture, thus making
the experimental procedure simple and eco-friendly. The lead-

ing contenders for environmentally acceptable processes are
supported reagents.

PFPAT as an efficient organo-catalyst was applied in vari-
ous transformations. From the literatures, it was found that

PFPAT is a useful catalyst for multi-component reactions
(MCRs) [16–22], since it is low toxic catalyst, air and water
compatible and has remarkable ability to suppress side reac-

tions in acid-sensitive substrates.
Recently, Funatomi et al. reported the application of penta-

fluorophenylammonium triflate (C6F5NH3OTf; PFPAT) as a

novel heterogeneous catalyst in organic transformation such
as esterification of carboxylic acids with alcohols [16], C-acyla-
tions of enol silyl ethers or ketene silyl (thio)acetals with acid

chlorides [17] and Mukaiyama aldol and Mannich reactions
using ketene silyl acetals with ketones and oxime ethers [18].
Further, PFPAT also used as the catalyst for acylation of alco-
hols, phenols, and amines [19], one-pot condensation of b-naph-
thol, aldehydes and cyclic 1,3-dicarbonyl compounds [20],
synthesis of xanthenes derivatives [21], and Biginelli reaction

[22]. However, to the best of our knowledge, there are no exam-
ples on the use of PFPAT as catalyst for the synthesis of ethyl-
4,5-dihydro 7-methyl-2-(2-oxo-2H-chromen-3-yl)-4-oxo-5-
aryl-3H-chromeno[2,3-d]pyrimidine-6-carboxylate derivatives.

Recently, we have reported the synthesis of biologically ac-
tive heterocyclic molecules, such as 2-amino-4,6-diphenylpyri-
dine-3-carbonitrile derivatives [23], polyhydroquinoline

derivatives [24], 2-amino-6-(2-oxo-2Hchromen-3-yl)-4-arylnic-
otinonitrile derivatives [25], and 2-arylbenzothiazole deriva-
tives [26] by multi-component reactions. In continuation of

our research on the development of environmentally friendly
procedures, we now describe the synthesis of ethyl-4,5-dihydro
7-methyl-2-(2-oxo-2H-chromen-3-yl)-4-oxo-5-aryl-3H-chro-

meno[2,3-d]pyrimidine-6-carboxylates using PFPAT as an effi-
cient novel organocatalyst. These compounds were synthesized
using 2-amino-3-cyano-6-methyl-4-phenyl-4H-pyran-5-ethyl-
carboxylates (Scheme 1).

Experimental

Apparatus and analysis

Chemicals were purchased from Merck, Fluka, and Aldrich

Chemical Companies. All yields refer to isolated products un-
less otherwise stated. 1H NMR (500 MHz) and 13C NMR
(125 MHz) spectra were obtained using Bruker DRX-500

Avance at ambient temperature, using TMS as internal stan-
dard. FT-IR spectra were obtained as KBr disks on Shimadzu
spectrometer. Mass spectra were determined on a Varion –

Saturn 2000 GC/MS instrument. Elemental analysis was mea-
sured by means of Perkin Elmer 2400 CHN elemental analyzer
flowchart.

Preparation of the catalyst (PFPAT)

To a solution of 2,3,4,5,6-pentafluoroaniline (25 mmol) in tol-
uene (25 mL), CF3SO3H (25 mmol) was added at 0–5 �C. The
reaction mixture was stirred at the same temperature for
30 min. After this time, the solvent was evaporated in vacuo,
and the crude product was collected and washed with hexane

to give the pure catalyst in 92% yield [16].

General procedure to synthesis of 2-amino-3-cyano-6-methyl-4-
phenyl-4H-pyran-5-ethylcarboxylate derivatives using
ZrOCl2Æ8H2O (5 mol%) as catalyst

A mixture of ethyl acetoacetate (1 mmol), aldehydes (1 mmol),
malononitrile (1 mmol), and catalyst ZrOCl2Æ8H2O (5 mol%)
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in 5 mL of EtOH/H2O[50/50(v/v)] were refluxed for appropri-
ated time. After the TLC indicates the disappearance of start-
ing materials, the reaction was cooled to room temperature,

ethanol (20 mL) was added, and the insoluble material was fil-
tered to separate the catalyst. The filtrate was concentrated un-
der vacuum, and the crude residue was purified by

recrystallization. 2-Amino-3-cyano-6-methyl-4-phenyl-4H-
pyran-5-ethylcarboxylate was obtained as crystals. The recov-
ered catalyst can be washed consequently with diluted acid

solution, water, and then acetone. After drying, it can be re-
used without noticeable loss of reactivity. The products were
identified by IR, 1H NMR, 13C NMR, mass, elemental analy-
sis, and melting points.

Spectral data for the selected synthesized compounds

2-Amino-3-cyano-6-methyl-4-(4-N,N-dimethylaminophenyl)-
4H-pyran-5-ethylcarboxylate (4d)

(KBr, cm�1): 3413, 3342, 3214, 2217, 1662, 1638, 1484, 1203,

785; 1H NMR (500 MHz, CDCl3) d: 1.20 (t, J = 7.2 Hz, 3H,
CH3CH2), 2.66 (s, 6H, N(CH3)2), 2.28 (s, 3H, CH3), 4.11 (q,
J = 7.2 Hz, 2H, CH3CH2), 4.94 (s, 1H, CH), 5.17 (s, 2H,

NH2), 7.11 (d, J= 7.2 Hz, 2H, ArH), 7.34 (d, J = 7.2 Hz,
2H ArH) ppm; 13C NMR (125 MHz, CDCl3) d: 15.1, 19.2,
39.8, 57.4, 59.8, 105.8, 120.3, 125.2, 128.3, 129.1, 131.1,
144.8, 147.1, 166.5 ppm; MS (ESI): m/z 328 (M+H)+. Anal.

Calcd. for C18H21N3O3 (%): C, 66.05; H, 6.42; N, 12.84.
Found: C, 66.00; H, 6.41; N, 12.85.

2-Amino-3-cyano-6-methyl-4-(4-fluorophenyl)-4H-pyran-5-
ethylcarboxylate (4f)

IR (KBr, cm�1): 3428, 3329, 3205, 2216, 1667, 1636, 1483,
1219, 793. 1H NMR (500 MHz, CDCl3) d: 1.13 (t,

J = 7.0 Hz, 3H, CH3CH2), 2.26 (s, 3H, CH3), 4.06 (q,
J = 7.0 Hz, 2H, CH3CH2), 4.90 (s, 1H, CH), 5.21 (s, 2H,
NH2), 7.10 (d, J= 7.4 Hz, 2H, ArH), 7.32 (d, J = 7.4 Hz,

2H ArH) ppm; 13C NMR (125 MHz, CDCl3) d: 14.5, 19.6,
39.4, 58.0, 60.4, 105.3, 120.3, 125.0, 129.1, 131.1, 144.7,
146.7, 167.5 ppm; MS (ESI): m/z 303 (M+H)+. Anal. Calcd.

for C16H15FN2O3 (%): C, 63.57; H, 4.96; N, 9.27. Found: C,
63.50; H, 4.95; N, 9.28.

2-Amino-3-cyano-6-methyl-4-(4-methoxyphenyl)-4H-pyran-5-

ethylcarboxylate (4g)

IR (KBr, cm�1): 3429, 3337, 3219, 2220, 1675, 1644, 1488,
1219, 779. 1H NMR (500 MHz, CDCl3) d: 1.16 (t,

J = 7.4 Hz, 3H, CH3CH2), 2.24 (s, 3H, CH3), 3.62 (s, 3H,
OCH3), 4.17 (q, J= 7.2 Hz, 2H, CH3CH2), 4.87 (s, 1H,
CH), 5.15 (s, 2H, NH2), 7.07 (d, J = 7.2 Hz, 2H, ArH), 7.34
(d, J= 7.2 Hz, 2H ArH) ppm; 13C NMR (125 MHz, CDCl3)
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Scheme 2 Ethyl 4,5-dihydro 7-methyl-2-(2-oxo-2H-chrome

derivatives.
d: 14.9, 19.8, 40.6, 58.6, 60.6, 106.3, 119.9, 125.7, 128.4,
129.2, 131.2, 144.8, 147.3, 167.6 ppm; MS (ESI): m/z 315
(M+H)+. Anal. Calcd. for C17H18N2O4 (%): C, 64.97; H,

5.73; N, 8.92. Found: C, 64.90; H, 5.70; N, 8.91.

2-Amino-3-cyano-6-methyl-4-(4-nitrophenyl)-4H-pyran-5-

ethylcarboxylate (4h)

IR (KBr, cm�1): 3430, 3338, 3209, 2202, 1668, 1644, 1489,
1203, 774. 1H NMR (500 MHz, CDCl3) d: 1.19 (t,
J= 7.4 Hz, 3H, CH3CH2), 2.31 (s, 3H, CH3), 4.14 (q,

J= 7.3 Hz, 2H, CH3CH2), 4.92 (s, 1H, CH), 5.07 (s, 2H,
NH2), 7.15 (d, J= 7.4 Hz, 2H, ArH), 7.44 (d, J = 7.4 Hz,
2H ArH) ppm; 13C NMR (125 MHz, CDCl3) d: 15.2, 20.2,
39.3, 58.3, 59.7, 105.7, 119.3, 125.6, 128.1, 129.0, 131.0,
144.1, 147.4, 167.0 ppm; MS (ESI): m/z 330 (M+H)+. Anal.
Calcd. for C16H15N3O5 (%): C, 58.35; H, 4.56; N, 12.76.

Found: C, 58.30; H, 4.53; N, 12.75.

General procedure for the synthesis of ethyl 4,5-dihydro-7-
methyl-4-oxo-2-(2-oxo-2H-chromen-3-yl)-5-phenyl-3H-
pyrano[2,3-d]pyrimidine-6-carboxylate by PFPAT

Amixture of 2-amino-3-cyano-6-methyl-4-phenyl-4H-pyran-5-
ethylcarboxylate 4a–j (1 mmol), coumarin-3-carboxylic acid

(1 mmol) and PFPAT (5 mol%) were heated at 80 �C for
about 5.5–7.0 h (Scheme 2). After completion of the reaction
as indicated by TLC, 2 mL of water was added and stirred

at room temperature for 20 min. The precipitated product
was filtered, washed with water, dried and purified over col-
umn chromatography using silica gel (230–400 mesh) with n-

hexane and ethyl acetate (8:2) as eluent. The aqueous layer
containing catalyst was recovered, washed with acetone, dried
and reused for subsequent reactions without loss in its activity
and product yield.

Recycling and reusing of the catalyst

The catalyst is soluble in water and could therefore be recycled

as the filtrate. The catalyst was recovered by evaporation of the
water, washed with hexane, dried at 50 �C under vacuum for
1 h, and reused in another reaction without appreciable reduc-

tion in the catalytic activity.

Spectral data for the synthesized compounds (6a–j)

Ethyl 4,5-dihydro-7-methyl-4-oxo-2-(2-oxo-2H-chromen-3-yl)-
5-phenyl-3H-pyrano[2,3-d] pyrimidine-6-carboxylate (6a)

IR (KBr, cm�1): 3311, 1714, 1677, 1638, 1600, 1208; 1H NMR

(500 MHz, CDCl3) d: 1.18 (t, J= 7.4 Hz, 3H, CH3CH2), 2.22
(s, 3H, CH3), 4.12 (q, J = 7.2 Hz, 2H, CH3CH2), 4.53 (s, 1H,
C2H5O

O NH3C

O

NH

OO

O
R1

PAT
mol%)

vent-free, 
 80 oC

6a-j

n-3-yl)-4-oxo-5-aryl-3H-chromeno[2,3-d]pyrimidine-6-carboxylate
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CH), 7.01–7.41 (m, 5H, ArH), 7.75–7.92 (m, 4H, ArH), 8.66 (s,
1H, Coumarin H), 9.07 (s, 1H, NH) ppm; 13C NMR
(125 MHz, CDCl3) d: 16.4, 20.1, 26.4, 36.0, 37.4, 100.7,

113.5, 116.1, 118.0, 118.7, 121.3, 124.5, 126.4, 127.0, 129.3,
130.8, 134.0, 136.8, 153.0, 154.2, 157.0, 163.7, 170.4 ppm;
MS(ESI): m/z 456 (M+H)+; Anal. Calcd. for C26H20N2O6:

C, 68.42; H, 4.38; N, 6.14%. Found: C, 68.31; H, 4.33; N,
6.14%.

Ethyl 4,5-dihydro-7-methyl-4-oxo-2-(2-oxo-2H-chromen-3-yl)-
5-(3-hydroxyphenyl)-3H-pyrano[2,3-d pyrimidine-6-
carboxylate (6b)

IR (KBr, cm�1): 3362, 3308, 1712, 1675, 1640, 1609, 1212; 1H

NMR (500 MHz, CDCl3) d: 1.10 (t, J = 7.2 Hz, 3H,
CH3CH2), 2.18 (s, 3H, CH3), 4.22 (q, J= 7.2 Hz, 2H,
CH3CH2), 4.58 (s, 1H, CH), 7.09–7.49 (m, 4H, ArH), 7.71–

7.90 (m, 4H, ArH), 8.70 (s, 1H, Coumarin H), 9.01 (s, 1H,
NH), 9.66 (s, 1H, OH) ppm; 13C NMR (125 MHz, CDCl3)
d: 15.9, 20.2, 26.3, 36.4, 37.3, 100.6, 114.0, 116.4, 117.7,
118.8, 121.0, 124.3, 126.2, 127.2, 129.4, 130.4, 134.5, 136.8,

153.2, 154.5, 156.9, 163.6, 170.3 ppm; MS(ESI): m/z 473
(M+H)+; Anal. Calcd. for C26H20N2O7: C, 66.10; H, 4.24;
N, 5.93%. Found: C, 66.01; H, 4.20; N, 5.90%.

Ethyl 4,5-dihydro-7-methyl-4-oxo-2-(2-oxo-2H-chromen-3-yl)-
5-(3-nitrophenyl)-3H-pyrano[2,3-d]pyrimidine-6-carboxylate

(6c)

IR (KBr, cm�1): 3296, 1720, 1680, 1644, 1611, 1216; 1H NMR
(500 MHz, CDCl3) d: 1.09 (t, J= 7.0 Hz, 3H, CH3CH2), 2.26
(s, 3H, CH3), 4.26 (q, J= 7.0 Hz, 2H, CH3CH2), 4.44 (s, 1H,

CH), 7.03–7.33 (m, 4H, ArH), 7.68–7.88 (m, 4H, ArH), 8.80 (s,
1H, Coumarin H), 9.05 (s, 1H, NH) ppm; 13C NMR
(125 MHz, CDCl3) d: 16.2, 20.0, 26.7, 36.1, 37.1, 100.2,

113.7, 115.7, 117.6, 119.0, 121.4, 124.4, 126.7, 127.5, 128.6,
129.4, 130.6, 134.6, 136.8, 153.3, 154.5, 156.8, 162.9,
170.1 ppm; MS(ESI): m/z 502 (M+H)+; Anal. Calcd. for
C26H19N3O8: C, 62.27; H, 3.79; N, 8.38%. Found: C, 62.22;

H, 3.74; N, 8.35%.

Ethyl 4,5-dihydro-7-methyl-4-oxo-2-(2-oxo-2H-chromen-3-yl)-

5-(N,N-dimethylaminophenyl)-3H-pyrano[2,3-d]pyrimidine-6-
carboxylate (6d)

IR (KBr, cm�1): 3304, 1704, 1688, 1633, 1604, 1200; 1H NMR
(500 MHz, CDCl3) d: 1.12 (t, J= 7.2 Hz, 3H, CH3CH2), 2.27

(s, 3H, CH3), 2.74 (s, 6H, N(CH3)2), 4.19 (q, J = 7.4 Hz, 2H,
CH3CH2), 4.39 (s, 1H, CH), 7.08–7.17 (m, 2H, ArH), 7.34–
7.48 (m, 2H, ArH), 7.74–7.82 (m, 4H, ArH), 8.77 (s, 1H, Cou-

marin H), 9.24 (s, 1H, NH) ppm; 13C NMR (125 MHz,
CDCl3) d: 15.5, 20.3, 26.5, 36.5, 37.3, 46.5, 100.4, 113.9,
116.0, 118.1, 118.8, 122.0, 124.6, 126.3, 127.7, 129.5, 130.1,

134.3, 136.5, 153.0, 154.3, 156.7, 163.0, 170.2 ppm; MS(ESI):
m/z 500 (M+H)+; Anal. Calcd. for C28H25N3O6: C, 67.33;
H, 5.01; N, 8.42%. Found: C, 67.35; H, 5.00; N, 8.37%.

Ethyl 4,5-dihydro-7-methyl-4-oxo-2-(2-oxo-2H-chromen-3-yl)-
5-(4-chlorophenyl)-3H-pyrano[2,3-d]pyrimidine-6-carboxylate
(6e)

IR (KBr, cm�1): 3294, 1716, 1677, 1640, 1609, 1206; 1H NMR
(500 MHz, CDCl3) d: 1.16 (t, J= 7.1 Hz, 3H, CH3CH2), 2.19
(s, 3H, CH3), 4.14 (q, J= 7.2 Hz, 2H, CH3CH2), 4.53 (s, 1H,
CH), 7.11–7.24 (m, 2H, ArH), 7.42–7.52 (m, 2H, ArH), 7.76–

7.96 (m, 4H, ArH), 8.75 (s, 1H, Coumarin H), 9.12 (s, 1H, NH)
ppm; 13C NMR (125 MHz, CDCl3) d: 16.6, 20.7, 26.7, 35.9,
36.8, 101.0, 114.2, 116.2, 117.5, 119.1, 121.2, 124.8, 126.0,
127.5, 129.0, 130.1, 134.7, 136.9, 153.6, 154.2, 156.9, 162.7,

170.4 ppm; MS(ESI): m/z 491 (M+H)+; Anal. Calcd. for
C26H19ClN2O6: C, 63.61; H, 3.87; N, 5.71%. Found: C,
63.58; H, 3.86; N, 5.73%.

Ethyl 4,5-dihydro-7-methyl-4-oxo-2-(2-oxo-2H-chromen-3-yl)-
5-(4-fluorophenyl)-3H-pyrano[2,3-d]pyrimidine-6-carboxylate

(6f)

IR (KBr, cm�1): 3314, 1722, 1682, 1646, 1616, 1214; 1H NMR
(500 MHz, CDCl3) d: 1.19 (t, J = 7.2 Hz, 3H, CH3CH2), 2.20
(s, 3H, CH3), 4.17 (q, J= 7.2 Hz, 2H, CH3CH2), 4.55 (s, 1H,

CH), 7.07–7.16 (m, 2H, ArH), 7.46–7.57 (m, 2H, ArH), 7.66–
7.74 (m, 4H, ArH), 8.88 (s, 1H, Coumarin H), 9.10 (s, 1H, NH)
ppm; 13C NMR (125 MHz, CDCl3) d: 15.9, 20.0, 26.4, 35.8,
36.7, 101.2, 113.9, 116.4, 117.7, 118.6, 121.5, 124.0, 125.9,
127.8, 129.4, 130.1, 133.9, 136.5, 153.4, 154.6, 157.2, 163.5,
170.3 ppm; MS(ESI): m/z 475 (M+H)+; Anal. Calcd. for
C26H19FN2O6: C, 65.82; H, 4.01; N, 5.91%. Found: C,

65.80; H, 4.00; N, 5.90%.

Ethyl 4,5-dihydro-7-methyl-4-oxo-2-(2-oxo-2H-chromen-3-yl)-

5-(4-methoxyphenyl)-3H-pyrano[2,3-d]pyrimidine-6-
carboxylate (6g)

IR (KBr, cm�1): 3310, 1711, 1668, 1652, 1603, 1205; 1H NMR
(500 MHz, CDCl3) d: 1.08 (t, J = 7.2 Hz, 3H, CH3CH2), 2.27

(s, 3H, CH3), 3.62 (s, 3H, OCH3), 4.10 (q, J = 7.1 Hz, 2H,
CH3CH2), 4.35 (s, 1H, CH), 7.12–7.30 (m, 2H, ArH), 7.43–
7.56 (m, 2H, ArH), 7.70–7.82 (m, 4H, ArH), 8.65 (s, 1H, Cou-

marin H), 9.06 (s, 1H, NH) ppm; 13C NMR (125 MHz,
CDCl3) d: 16.1, 20.1, 26.4, 36.1, 37.4, 100.5, 113.8, 115.8,
117.6, 118.7, 121.2, 124.2, 126.1, 127.3, 129.2, 130.1, 134.4,

136.4, 153.7, 154.8, 157.3, 163.0, 170.2 ppm; MS(ESI): m/z
487 (M+H)+; Anal. Calcd. for C27H22N2O7: C, 66.67; H,
4.53; N, 5.76%. Found: C, 65.70; H, 4.50; N, 5.75%.

Ethyl 4,5-dihydro-7-methyl-4-oxo-2-(2-oxo-2H-chromen-3-yl)-
5-(4-nitrophenyl)-3H-pyrano[2,3-d]pyrimidine-6-carboxylate
(6h)

IR (KBr, cm�1): 3299, 1709, 1671, 1647, 1600, 1210; 1H NMR
(500 MHz, CDCl3) d: 1.13 (t, J = 7.2 Hz, 3H, CH3CH2), 2.20
(s, 3H, CH3), 4.20 (q, J= 7.2 Hz, 2H, CH3CH2), 4.30 (s, 1H,
CH), 7.00–7.15 (m, 2H, ArH), 7.40–7.52 (m, 2H, ArH), 7.69–

7.81 (m, 4H, ArH), 8.58 (s, 1H, Coumarin H), 9.21 (s, 1H, NH)
ppm; 13C NMR (125 MHz, CDCl3) d: 16.7, 20.6, 26.6, 36.4,
37.6, 100.7, 113.3, 116.1, 118.0, 118.5, 121.4, 124.3, 125.8,

127.0, 129.4, 130.1, 134.0, 136.2, 153.3, 154.3, 156.7, 162.6,
170.6 ppm; MS(ESI): m/z 502 (M+H)+; Anal. Calcd. for
C26H19N3O8: C, 62.27; H, 3.79; N, 8.38%. Found: C, 62.29;

H, 3.79; N, 8.36%.

Ethyl 4,5-dihydro-7-methyl-4-oxo-2-(2-oxo-2H-chromen-3-yl)-

5-(4-bromophenyl)-3H-pyrano[2,3-d]pyrimidine-6-carboxylate
(6i)

IR (KBr, cm�1): 3292, 1714, 1675, 1644, 1611, 1208; 1H NMR
(500 MHz, CDCl3) d: 1.12 (t, J = 7.1 Hz, 3H, CH3CH2), 2.16

(s, 3H, CH3), 4.16 (q, J= 7.2 Hz, 2H, CH3CH2), 4.56 (s, 1H,
CH), 7.16–7.26 (m, 2H, ArH), 7.46–7.58 (m, 2H, ArH), 7.72–
7.90 (m, 4H, ArH), 8.78 (s, 1H, Coumarin H), 9.09 (s, 1H, NH)
ppm; 13C NMR (125 MHz, CDCl3) d: 16.5, 20.5, 26.5, 35.7,
36.6, 101.1, 114.4, 116.4, 117.4, 119.4, 121.6, 124.6, 126.0,
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127.3, 129.2, 130.3, 134.5, 136.7, 153.7, 154.5, 156.7, 162.9,
170.7 ppm; MS(ESI): m/z 535.9 (M+H)+; Anal. Calcd. for
C26H19BrN2O6: C, 58.32; H, 3.55; N, 5.23%. Found: C,

58.28; H, 3.50; N, 5.21%.

Ethyl 4,5-dihydro-7-methyl-4-oxo-2-(2-oxo-2H-chromen-3-yl)-

5-(4-methylphenyl)-3H-pyrano[2,3-d]pyrimidine-6-carboxylate
(6j)

IR (KBr, cm�1): 3313, 1714, 1669, 1655, 1603, 1208; 1H NMR
(500 MHz, CDCl3) d: 1.09 (t, J = 7.2 Hz, 3H, CH3CH2), 2.22

(s, 3H, CH3), 2.29 (s, 3H, CH3), 4.14 (q, J = 7.1 Hz, 2H,
CH3CH2), 4.38 (s, 1H, CH), 7.18–7.35 (m, 2H, ArH), 7.45–
7.58 (m, 2H, ArH), 7.77–7.88 (m, 4H, ArH), 8.69 (s, 1H, Cou-

marin H), 9.14 (s, 1H, NH) ppm; 13C NMR (125 MHz,
CDCl3) d: 16.3, 20.3, 26.6, 27.3, 36.3, 37.8, 100.7, 113.4,
115.4, 117.9, 118.8, 124.4, 126.2, 127.0, 129.5, 130.4, 134.6,

137.0, 154.0, 155.9, 157.5, 163.3, 170.5 ppm; MS(ESI): m/z
471 (M+H)+; Anal. Calcd. for C27H22N2O6: C, 68.93; H,
4.68; N, 5.95%. Found: C, 68.88; H, 4.65; N, 5.94%.

Results and discussion

The synthetic pathway of the title compounds was achieved via
2-amino-3-cyano-6-methyl-4-phenyl-4H-pyran-5-ethylcarb-

oxylates intermediates (4a–j). Considering the broad spectrum
of biological activities of 4H-pyrans, synthetic chemists have
developed numerous protocols for their syntheses including

two-step as well as one-pot three component synthesis, cata-
lyzed by Baker’s yeast [27], MgO [28], hexadecyldimethylben-
zyl ammonium bromide (HDMBAB) [29], phenylboronic

acid [30], 2,2,2-trifluoroethanol [31], and silica gel-supported
polyphosphoric acid (PPA–SiO2) [32]. However, these methods
often suffer from one or the other kind of drawbacks and most

of them give moderate yields even after prolonged reaction
time. This has clearly indicated that there is still scope to devel-
op an efficient and eco-sustainable method for the synthesis of
4H-pyrans. The intermediates were obtained by the three com-

ponent condensation of ethyl acetoacetate, aldehydes with
malononitrile using ZrOCl2Æ8H2O as catalyst in aqueous
ethanol.

In order to optimize the conditions, we studied the reaction
of ethyl acetoacetate, benzaldehyde with malononitrile and
ZrOCl2Æ8H2O (5 mol%) as a simple model reaction in various

conditions. The reaction was performed in various solvents to
identify the best solvent condition. A range of solvents like
Table 1 Optimization of the reaction conditions on the synthesis o

Entry Solvent Amount of

1 CH3CN 5

2 CHCl3 5

3 H2O 5

4 EtOH 5

5 None 5

6 EtOH/H2O[30/70(v/v)] 5

7 EtOH/H2O[50/50(v/v)] 5

8 EtOH/H2O[70/30(v/v)] 5

9 EtOH/H2O[50/50(v/v)] 3

10 EtOH/H2O[50/50(v/v)] 10

a Reaction conditions: ethyl acetoacetate (1 mmol), benzaldehyde (1 mm
b Isolated yield.
CH3CN, CH3Cl, EtOH, and H2O were examined at reflux con-
dition (Table 1, Enries 1–4). The reaction without any solvent
at reflux was not very successful (Table 1, Entry 5). The model

reaction was studied at various mixtures of EtOH/H2O sol-
vent. The EtOH/H2O[50/50(v/v)] is proven to be the most suit-
able solvent for this condensation in terms of yield and

reaction time (Table 1, Entry 7). We have studied the amount
of ZrOCl2Æ8H2O required for the reaction. It was found that
when decreasing the amount of the catalyst from 5 mol% to

3 mol%, the yield decreased from 95% to 77% (Table 1, Entry
9). When increasing the amount of the catalyst from 5 mol%
to 10 mol%, there is no change in the yield (Table 1, Entry
10). The use of 5 mol% of ZrOCl2Æ8H2O maintaining the yield

at 95%, so this amount is sufficient to promote the reaction. In
the presence of more than this amount of the catalyst, neither
the yield nor the reaction time was improved (Table 1, Entry

10). Encouraged by this successful three component reaction,
synthesis of diverse 2-amino-3-cyano-6-methyl-4-phenyl-4H-
pyran-5-ethylcarboxylate derivatives 4a–j was undertaken.

The aromatic aldehydes bearing electron-withdrawing and
electron donating groups were found to be equally effective
to produce 2-amino-4H-pyrans 4a–j in very good yields

(Table 2).
After the synthesis of 2-amino-3-cyano-6-methyl-4-phenyl-

4H-pyran-5-ethylcarboxylate derivatives, we have synthesized
Ethyl 4,5-dihydro 7-methyl-2-(2-oxo-2H-chromen-3-yl)-

4-oxo-5-aryl-3H-chromeno[2,3-d]pyrimidine-6-carboxylate
derivatives. Initially, the reaction between compound 4a and
coumarin-3-carboxylic acid was carried out under neat condi-

tions at 80 �C without and with different acid catalyst (phenyl-
boronic acid, bismuth nitrate, silica perchloric acid, sulfamic
acid, PFPAT each 5 mol%) and observed maximum yield with

PFPAT (Table 3).
The solvents played an important role in the synthesis of

chromeno pyrimidine derivatives. Various reaction media were

screened (1,4-dioxane, ethanol, acetonitrile, THF, methanol,
and t-BuOH) using the model reaction (Table 4, Entries 1–
6). It was found that the best results were obtained with
5 mol% of PFPAT under solvent-free condition (Table 4, En-

try 7). The reaction was completed in 6 h, and the expected
product was obtained in 89% yield.

At these optimize conditions (solvent-free, 80 �C, 5 mol%

of PFPAT), we synthesized various chromeno pyrimidinones
6a–j (Table 5). After completion of the reaction, the catalyst
was recovered by evaporating the aqueous layer, washed with
f 4a: Effect of solvent and catalyst amount.a

catalyst (mol%) Time (h) Yield (%)b

3 41

3 62

3 72

3 68

3 31

1.5 78

1.5 95

1.5 80

1.5 77

1.5 96

ol) and malononitrile (1 mmol) at reflux.



Table 2 Preparation of various 2-amino-3-cyano-6-methyl-4-phenyl-4H-pyran-5-ethylcarboxylate derivatives.a

Entry R1 Product Time (h) Yield (%)b Mp (�C)

Found Reported

1 H 4a 1.5 95 193–195 195–196 [28]

2 3-OH 4b 1.5 93 162–164 161–162 [28]

3 3-NO2 4c 1.0 90 182–184 182–183 [28]

4 4-N(CH3)2 4d 2.0 88 180–182 –

5 4-Cl 4e 1.5 87 170–172 172–174 [28]

6 4-F 4f 1.5 91 186–188 –

7 4-OCH3 4g 2.0 87 141–143 142–144 [28]

8 4-NO2 4h 2.5 89 182–184 180–182 [28]

9 4-Br 4i 1.5 90 172–174 –

10 4-CH3 4j 2.0 86 178–180 177–179 [28]

a Reaction conditions: ethyl acetoacetate (1 mmol), aldehyde (1 mmol), and malononitrile (1 mmol) in the presence of ZrOCl2Æ8H2O (5 mol%)

in EtOH/H2O[50/50(v/v)] at reflux.
b Isolated yield.

Table 3 Preparation of ethyl 4,5-dihydro-7-methyl-4-oxo-2-(2-oxo-2H-chromen-3-yl)-5-phenyl-3H-pyrano[2,3-d]pyrimidine-6-car-

boxylate: effect of catalyst.a

Entry Catalyst Amount of catalyst (mol%) Time (h) Yield (%)b

1 Phenylboronic acid 5 8 55

2 Bismuth nitrate 5 8 62

3 Silica perchloric acid 5 8 72

4 Sulfamic acid 5 8 68

5 PFPAT 5 6 89

6 None 0 8 Trace

7 PFPAT 10 6 89

8 PFPAT 3 6 84

9 PFPAT 2 6 75

a Reaction conditions: 4a (1 mmol) and coumarin-3-carboxylic acid (1 mmol) at 80 �C.
b Isolated yield.
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acetone, dried and reused for subsequent reactions without sig-

nificant loss in its activity. The catalyst was recycled for four
runs without loss of its activity (Table 5, Entry 1). All the syn-
thesized compounds were confirmed by their analytical and
spectroscopic data.

To explain the formation of 6a as a model via the condensa-
tion reaction,we have proposed a plausible reactionmechanism,
which is illustrated in Scheme 3. Firstly, the protonation of cou-

marin-3-carboxylic acid by PFPAT as a Brønsted acid was oc-
curred to form a cation intermediate (a). In continue, the
formation of (b) resulting from the amidation of (a) with 4a
Table 4 Preparation of ethyl 4,5-dihydro-7-methyl-4-oxo-2-(2-ox

boxylate: effect of solvent.a

Entry Solvent Amount of catal

1 1,4-Dioxane 5.0

2 Ethanol 5.0

3 Acetonitrile 5.0

4 THF 5.0

5 Methanol 5.0

6 t-BuOH 5.0

7 None 5.0

a Reaction conditions: 4a (1 mmol) and coumarin-3-carboxylic acid (1
b Isolated yields.
was established. In the next step, the protonation of nitrile group

of intermediate (b) following by a cyclo-addition reaction was
occurred to form the intermediate (c). In continue the addition
reaction of pentafluorophenyl amine (PFPA) followed by ring-
opening of the (c) to the intermediate (d) and (e) followed by ring

closure of intermediate (e) results in the formation of intermedi-
ate (f) that convert to the (6a) as product by the de-protonation
reaction. Interestingly, the formation of compound 6a, obtained

from the condensation of coumarin-3-carboxylic acid with 4a,
confirms the mechanism of the reaction which was rarely de-
scribed in the literature as Dimroth rearrangement [33,34].
o-2H-chromen-3-yl)-5-phenyl-3H-pyrano[2,3-d]pyrimidine-6-car-

yst (mol%) Time (h) Yield (%)b

6.0 66

6.0 82

8.0 20

8.0 25

6.0 78

6.0 25

6.0 89

mmol) in the presence of PFPAT (5 mol%); 80 �C.



Table 5 Preparation of various ethyl 4,5-dihydro-7-methyl-4-oxo-2-(2-oxo-2H-chromen-3-yl)-5-phenyl-3H-pyrano[2,3-d]pyrimidine-

6-carboxylate derivatives.a

Entry R1 Product Time (h) Yield (%)b Mp (�C)

1 H 6a 6.0 89 (87, 85, 84)c 272–274

2 3-OH 6b 6.0 85 234–236

3 3-NO2 6c 6.0 84 268–270

4 4-N(CH3)2 6d 5.5 82 280–282

5 4-Cl 6e 5.5 87 218–220

6 4-F 6f 5.5 86 286–288

7 4-OCH3 6g 7.0 84 220–222

8 4-NO2 6h 5.0 86 266–268

9 4-Br 6i 5.5 87 244–246

10 4-CH3 6j 6.0 85 234–236

a Reaction conditions: 4a–j (1 mmol) and coumarin-3-carboxylic acid (1 mmol) in the presence of PFPAT (5 mol%) at 80 �C.
b Isolated yield.
c Reusability of catalyst.
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Table 6 In vitro antibacterial activity of compounds 6a–j.

Compounds MIC in lg/mL and zone of inhibition in mm

E. coli P. aeruginosa K. pneumonia S. aureus

6a 12.5(15–18) 12.5(15–18) 12.5(15–18) 12.5(16–18)

6b 6.25(16–19) 6.25(19–21) 6.25(15–18) 6.25(16–18)

6c 12.5(14–17) 12.5(15–18) 12.5(15–18) 12.5(16–18)

6d 12.5(12–15) 12.5(12–15) 12.5(15–18) 12.5(15–18)

6e 6.25(16–18) 6.25(15–18) 6.25(15–18) 6.25(16–18)

6f 6.25(16–18) 6.25(15–18) 6.25(15–18) 6.25(16–18)

6g 25(8–11) 25(9–12) 25(8–11) 25(9–12)

6h 25(8–11) 25(9–12) 25(8–11) 25(9–12)

6i 6.25(18–20) 6.25(16–18) 6.25(16–18) 6.25(16–18)

6j 6.25(18–20) 6.25(15–18) 6.25(16–18) 6.25(18–20)

Ciprofloxacin 6.25(30–35) 6.25(26–32) 6.25(21–25) 6.25(25–28)
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Biological evaluations

All the compounds were screened for their antibacterial and

antifungal activity. Compounds 6a–j with various substituents
in the aromatic ring will be useful in understanding the influ-
ence of steric and electronic effects on the biological activity.

Antibacterial activity

The newly synthesized compounds were screened for their

in vitro antibacterial activity against Escherichia coli (E. coli),
Pseudomonas aeruginosa (P. aeruginosa), Klebsiella pneumonia
(K. pneumonia), and Staphylococcus aureus (S. aureus) bacte-

rial stains by serial plate dilution method. Serial dilutions of
the drug in Muller Hinton broth were taken in tubes, and their
pH was adjusted to 5.0 using phosphate buffer. A standardized
suspension of the test bacterium was inoculated and incubated

for 16–18 h at 37 �C. The minimum inhibitory concentration
(MIC) was noted by seeing the lowest concentration of the
drug at which there was no visible growth.

A number of antibacterial disks were placed on the agar for
the sole purpose of producing zones of inhibition in the bacte-
rial lawn. Twenty milliliters of agar media was poured into

each Petri dish. Excess of suspension was decanted, and plates
were dried by placing in an incubator at 37 �C for an hour.
Using a punch, wells were made on these seeds agar plates,
and minimum inhibitory concentrations of the test compounds

in dimethyl sulfoxide (DMSO) were added into each labeled
Table 7 In vitro antifungal activity of compounds 6a–j.

Compounds MIC in

A. flavus R. sch

6a 12.5(16–20) 12.5(1

6b 6.25(16–20) 6.25(1

6c 12.5(15–18) 12.5(1

6d 12.5(10–12) 12.5(1

6e 6.25(12–16) 6.25(1

6f 6.25(10–14) 6.25(1

6g 25(10–12) 25(8–1

6h 25(10–12) 25(9–1

6i 6.25(15–16) 6.25(1

6j 6.25(14–18) 6.25(1

Amphoterecin-B 6.25(22–26) 6.25(3
well. A control was also prepared for the plates in the same

way using DMSO as a solvent. The Petri dishes were prepared
in triplicate and maintained a 37 �C for 3–4 days. Antibacterial
activity was determined by measuring the diameter of inhibi-
tion zone. Activity of each compound was compared with cip-

rofloxacin as standard. Zone of inhibition was determined for
6a–j. The results are summarized in Table 6. The MIC values
were evaluated at concentration range, 6.25–25 lg/mL. The

figures in the table show the MIC values in lg/mL and the cor-
responding zone of inhibition in mm. From the activity report
(Table 6) it was notified that most of the compounds showed

moderate activity against all the bacterial strains.

Antifungal activity

Newly prepared compounds were also screened for their anti-
fungal activity against Aspergillus flavus (A. flavus), Rhizopus
schipperae (R. schipperae), Aspergillus niger (A. niger) and Can-
dida albicans (C. albicans) in DMSO by serial plate dilution

method. Sabourauds agar media were prepared by dissolving
peptone (1 g). D glucose (4 g) and agar (2 g) in distilled water
(100 mL) and adjusting the pH to 5.7. Normal saline was used

to make a suspension of sore of fungal strains for lawning. A
loopful of particular fungal strain was transferred to 3 mL sal-
ine to get a suspension of corresponding species. Twenty mil-

liliters of agar media was poured into each Petri dish. Excess
of suspension was decanted, and plates were dried by placing
in an incubator at 37 �C for 1 h. Using a punch, wells were
lg/mL and zone of inhibition in mm

ipperae A. niger C. albicans

8–22) 12.5(20–22) 12.5(20–22)

8–22) 6.25(20–22) 6.25(18–20)

8–22) 12.5(20–22) 12.5(18–20)

2–16) 12.5(16–18) 12.5(18–18)

2–16) 6.25(16–18) 6.25(16–18)

2–14) 6.25(12–15) 6.25(14–16)

1) 25(10–12) 25(10–12)

2) 25(10–12) 25(10–12)

8–22) 6.25(18–22) 6.25(18–20)

6–14) 6.25(16–18) 6.25(16–18)

0–34) 6.25(27–30) 6.25(28–32)
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made on these seeded agar plates. Minimum inhibitory con-
centrations of the test compounds in DMSO were added into
each labeled well. A control was also prepared for the plates

in the same way using solvent DMSO. The Petri dishes were
prepared in triplicate and maintained at 37 �C for 3–4 days.
Antifungal activity was determined by measuring the diameter

of inhibition zone. Activity of each compound was compared
with Amphoterecin-B as standard. Zones of inhibition were
determined for 6a–j. The results are summarized in Table 7.

The MIC values were evaluated at concentration range,
6.25–25 lg/mL. The figures in the table show the MIC values
in lg/mL and the corresponding zone of inhibition in mm.
All the newly synthesized compounds showed moderate activ-

ity against all the fungal strains.

Conclusions

Various derivatives of ethyl 4,5-dihydro-7-methyl-4-oxo-2-(2-
oxo-2H-chromen-3-yl)-5-phenyl-3H-pyrano[2,3-d] pyrimidine-
6-carboxylate (6a–j) were synthesized from the reaction of

2-amino-3-cyano-6-methyl-4-phenyl-4H-pyran-5-ethylcarboxy-
lates (4a–j) with coumarin-3-carboxylic acid in the presence of
PFPAT as reusable and inexpensive Brønsted acidic catalyst

under solvent-free condition. All the synthesized compounds
were screened for their in vitro antimicrobial activity. The new-
ly synthesized compounds showed moderate activity against all

the bacterial and fungal strains.
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