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Abstract

Our understanding of ecological processes is built on patterns inferred from data. Applying mod-
ern analytical tools such as machine learning to increasingly high dimensional data offers the
potential to expand our perspectives on these processes, shedding new light on complex ecological
phenomena such as pathogen transmission in wild populations. Here, we propose a novel
approach that combines data mining with theoretical models of disease dynamics. Using rodents
as an example, we incorporate statistical differences in the life history features of zoonotic reser-
voir hosts into pathogen transmission models, enabling us to bound the range of dynamical phe-
nomena associated with hosts, based on their traits. We then test for associations between
equilibrium prevalence, a key epidemiological metric and data on human outbreaks of rodent-
borne zoonoses, identifying matches between empirical evidence and theoretical predictions of
transmission dynamics. We show how this framework can be generalized to other systems through
a rubric of disease models and parameters that can be derived from empirical data. By linking life
history components directly to their effects on disease dynamics, our mining-modelling approach
integrates machine learning and theoretical models to explore mechanisms in the macroecology of
pathogen transmission and their consequences for spillover infection to humans.
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INTRODUCTION

Naturalists have long observed myriad features distinguishing
species from one another. While some of these features cap-
ture minor phenotypic differences within a population, others
reflect more intrinsic differences among species. Suites of mul-
tiple correlated features capture variation in life history across
species (Montiglio et al. 2018; Polverino et al. 2018). These
traits have evolved to balance fitness given manifold selection
pressures in complex environments where individuals contend
with fitness costs and other selection pressures, such as those
imposed by parasites and pathogens. As a result, functional
traits serve as reliable proxies for complex organismal vari-
ables that are more difficult to measure, such as immune
strategies, which may strongly influence host responses to
pathogens and parasites, and impact disease dynamics in hosts
(Lochmiller & Deerenberg 2000). The idea that differences in
disease equilibria and dynamics (e.g., prevalence, invasibility,
outbreak size) reflect observable differences in host traits has
culminated in a number of paradigm hypotheses: (1) The
pace-of-life hypothesis: Faster living hosts should be more
competent (and therefore have higher intensity and

prevalence) compared to slow-living species (Johnson et al.
2012; Previtali et al. 2012; Huang et al. 2013; Ostfeld et al.
2014); (2) The invasibility hypothesis: The invasibility of some
host populations by infectious pathogens scales with host
behaviors linked to transmission (i.e., R0 is higher, (Han et al.
2015); and (3) The density-outbreak hypothesis: Outbreak size
should vary by host species as a function of longevity and
population density (Dobson 2004; Hily et al. 2014).
Other trait-based hypotheses readily follow. The (4) social

transmissibility hypothesis posits increased opportunities for
contact in social species leading to higher rates of transmis-
sion by directly transmitted microparasites (Han et al. 2015)
but reduced transmission of macroparasites (Bordes et al.
2007) relative to solitary species. Similarly, species that forage
widely may encounter and harbour a higher diversity of para-
sites than species with smaller home ranges (Ezenwa 2004;
Bicca-Marques & Calegaro-Marques 2016). A corollary of this
(5) foraging-diversity hypothesis is that species with broad diets
may exhibit greater tolerance for trophically transmitted para-
sites (Guti�errez et al. 2019). These hypotheses propose mecha-
nisms by which host traits impact infection dynamics, and
identify numerous host traits that may provide insight to the
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ecological processes underpinning pathogen transmission,
which is comparatively difficult to measure across host
species.
Previous analyses have demonstrated the utility of species-

level traits for predicting transmission risk. Machine learn-
ing applied to species-level traits has accurately predicted
the zoonotic reservoir status of mammal hosts (Han et al.
2015b; Han et al. 2019; Plowright et al. 2019), the zoonotic
vector status of mosquitoes and ticks (Evans et al. 2017;
Yang & Han 2018) and potential human-to-human trans-
missibility of zoonotic viruses (Evans et al. 2017; Walker
et al. 2018; Yang & Han 2018; Han et al. 2019; Plowright
et al. 2019). Beyond predictive analytics of zoonotic dis-
eases, machine learning methods have been increasingly
applied to modern ecological questions as the volume of
available digital data has grown (Peters et al. 2014; LaDeau
et al. 2017). This is in part because machine learning algo-
rithms are adept at learning associations among multiple
variables in high dimensional datasets where collinearities
and complex hidden interactions are likely to be present
but difficult to anticipate a priori.
As purely statistical models, machine learning algorithms

identify patterns in host traits directly from the trait data
themselves without assumptions about underlying ecological
processes (Breiman 2001; Hochachka et al. 2007). In contrast,
mean field models of infectious disease dynamics are theoreti-
cal representations of the transmission processes that drive
epidemiologic outcomes. These outcomes are themselves
strongly influenced by traits. For instance, host traits corre-
sponding to a fast life history strategy (e.g., high population
density, short lifespan) are predicted to influence outbreak
size, equilibrium prevalence and infectious period. Such traits
accurately distinguish among host species in ways that may be
consequential for how infection varies through time in their
populations. Thus, by linking models of disease dynamics to
traits, we can generate predictions about disease dynamics
and the risk of disease spillover based on the kinds of hosts
present in a system. Moreover, parameterizing dynamical sys-
tems models in terms of traits may provide unifying explana-
tions for disease transmission phenomena across multiple host
species, such as in the paradigm hypotheses enumerated above
(see Box 1), and may prove particularly useful for emerging
disease for which prior knowledge of pathogen transmission is
often lacking, but for which trait data may be more available.
Here we demonstrate how data mining via machine learning

can be combined with mathematical models to generate quali-
tative predictions of disease dynamics across species. Using
rodents and their zoonotic pathogens and parasites (i.e., those
transmissible from rodents to humans) as an example, we
show how this approach can be applied to trait data to bound
the range of dynamical phenomena associated with particular
host groups. We then examine associations between estimates
of a key epidemiological quantity (equilibrium prevalence)
and empirical data on rodent-borne zoonoses in humans to
generate testable predictions related to zoonotic spillover risk.
To illustrate the generalizability of this data mining-modelling
framework, we present a rubric of transmission models and
parameters that may be empirically informed. These models
cover a range of host-pathogen systems and can be used to

explore mechanisms and paradigm hypotheses about disease
macroecology and spillover epidemiology (Box 1).

Traits of host species

Due to their high species richness and importance as zoonotic
reservoirs (Han et al. 2016a), rodents are remarkably well
studied, with trait data available for a large proportion of spe-
cies (Jones et al. 2009). We therefore use rodents as an exam-
ple to investigate features that reliably distinguish zoonotic
host from non-host species. By parameterizing transmission
models according to traits associated with the propensity to
harbour zoonoses, we examine whether such models generate
patterns of disease dynamics that give comparative estimates
of the risk of human exposure and infection. Specifically, trait
values inform SIR models that return a theoretical prediction
of equilibrium prevalence, a metric which may indicate expo-
sure risk in humans. Outbreak size and R0, closely related
metrics that we do not calculate here, can also be investigated
in the same way. Solving for equilibrium prevalence of a
directly transmitted pathogen allows us to determine whether
differences in host traits lead to higher mean equilibrium
prevalence in some rodent species compared to others. If so,
these species may be expected to pose a greater risk of spil-
lover transmission to humans.
This broad template can be used to explore the range of

possible dynamics that may emerge when multiple species are
affected by the same or similar pathogens. For example, we
can describe the different classes of transmission or disease
dynamics that are possible within a set of constraints set by
species’ intrinsic features (Table 2). We can directly compare
dynamical possibilities among multiple species infected by a
common pathogen (even between species not in the same
clade). We can ascertain invasibility of a population by a
pathogen, or quantify vulnerability of different species suscep-
tible to fatal infection, prior to an empirical challenge. We
can also draw testable/verifiable predictions to human spil-
lover infection, for instance, which species are responsible for
most of the human transmission; or conversely, when some
species have high equilibrium prevalence but are clearly not
responsible for the majority of spillover transmission due to
extrinsic factors (for example, mismatched phenology, or
diluting effects of host community composition (Civitello
et al. 2015; Keesing & Ostfeld 2015)). In the analyses that fol-
low, we test model predictions directly by mapping the geo-
graphic ranges of rodents in the top 10 percent of equilibrium
prevalence. We then compared their global distributions with
human emerging zoonoses fitting our criteria.

Parameterizing models with host traits

It is well known that certain intrinsic features such as life his-
tory traits influence infection dynamics in host populations, as
represented by their effects in mechanistic models of disease
dynamics. For example, in mammals, birth rates change pre-
dictably with litter size and number of litters per year; and
natural mortality is the reciprocal of lifespan. Transmission
rates depend on contact, which is likely to be affected by
traits such as social group size and home range size (Carslake
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et al. 2005; Han et al. 2015). Mechanistic models also predict
that infectious disease prevalence and the basic reproduction
number are functions of contact rate and life history parame-
ters such as per capita birth rate, per capita mortality and
population density. Thus, statistically identified differences in
species traits have dynamical consequences for disease trans-
mission in population models. Directly incorporating features
identified from host data into compartmental disease models
accounts for the combined effects of these traits on compara-
tive disease dynamics among species (Fig. 1).
We considered the diversity of pathogens found among

rodents (N = 2276) and identified the transmission modes
among rodent-borne zoonoses (Fig. 2, Table S1). In addition
to zoonoses transmitted by arthropod vectors, many rodent-
borne zoonoses are caused by pathogens that are transmitted
environmentally (e.g., via contact with infectious fomites such
as aerosolized excreta), or directly via close contact with an
infected individual. Since the dynamics of many environmen-
tally transmitted pathogens are well-approximated by models
assuming direct transmission ((May & Anderson 1979);
Appendix), we consider a system of ordinary differential equa-
tions that assumes a density-dependent direct transmission
process.
Our model is a mechanistic SIR model for microparasite

infections with density-dependent transmission,

dS
dt ¼ b0 Sþ Iþ Rð Þ � b1ðSþ Iþ RÞ2 � bSI� lS;
dI
dt ¼ bSI� cþ lð ÞI;
dR
dt ¼ cI� lR;

ð1Þ

where N ¼ Sþ Iþ R; b0 is the per -individual birth rate, l is
the per-individual natural mortality rate,
r ¼ b0 � l; K is the carrying capacity, b1 ¼ r=K is the

strength of density dependence, b is the per-individual trans-
mission rate and c is the per-individual recovery rate. In reser-
voir hosts, the disease-induced mortality rate is assumed to
equal zero, and therefore, at equilibrium, the population size
N is equal to the carrying capacity, K: When solving dS

dt ¼ 0
for the number of infectious individuals at the endemic steady
state I�, we therefore assume Sþ Iþ R ¼ K and then obtain
equilibrium prevalence by dividing I� by K; provided

R0 ¼ bK
cþ lð Þ [ 1;

I�=K ¼ l
1

cþ l
� 1

bK

� �
: ð2Þ

We next examined how equilibrium prevalence (eqn (2)) var-
ies over trait-dependent parameter values that are bounded
according to real data. In what follows, we distinguish between
the mechanistic parameters defined above, and m measurable
quantities represented by h1; h2; . . .hm. For example, the per-

Box 1. Exploring paradigm hypotheses in disease ecology

In addition to identifying likely reservoirs and regions of human spillover through trait-based dynamics, model parameters can
be recast to explore paradigm hypotheses in disease ecology. For example, the pace-of-life hypothesis recognizes tradeoffs in spe-
cies along a life history continuum ranging from fast- to slow-living species (Montiglio et al. 2018). Host traits capturing ‘pace
of life’ include those controlling host demography, which reflect fitness tradeoffs between reproduction (e.g., birth rates) and
longevity and immune defense strategies. Trait patterns are postulated to influence the likelihood that a parasite successfully
invades a susceptible host population (Johnson et al. 2012; Han et al. 2015, 2016b), the rate of pathogenesis in individual hosts
(Cable et al. 2007) and the likelihood of population recovery from an outbreak (Cross et al. 2005). SIR models parameterized
by life history traits suggest that species that live fast (ie, produce more litters per year than others) and die young (ie, are
shorter lived than others) have the highest equilibrium prevalence.
In more tailored models, we may also test for differences among host species in their response to warming climates. Recent

debate centres on the role warming is playing in the dynamics of human and wildlife diseases whose ranges are postulated to
either expand or contract with climate change. Climate effects on disease dynamics may be mediated by many factors. As exam-
ples, warming may alter parasite abundance (Gehman et al. 2018), shorten parasite developmental periods (Kutz et al. 2005),
lead to changes in the timing of host and parasite overlap (Altizer et al. 2011), alter contact between human hosts and vectors
(Pascual & Bouma 2009; Ryan et al. 2019) and affect host ability to cope physiologically with infection (Harvell et al. 1999).
Mining zoonotic pathogen and parasite trait data combined with host traits and mechanistic models, provides a comparative
means for testing climate-related hypotheses about infectious diseases (Lafferty & Mordecai 2016), such as the warmer-means-
sicker hypothesis, across hundreds of host-pathogen pairs.
The rubric in Table 2 identifies a large space of possible models to be parameterized to investigate these and other specific

hypotheses. The detailed mechanics of these theoretical models will necessarily depend on which features are most important
statistically. Each row corresponds to a transmission mode; quantitative dynamics for each mode are expressed by compartmen-
tal models of different classes, e.g., SIR, Ross-MacDonald and ‘contaminated environment’ transmission systems (column 1).
Terms in these equations, such as the birth rate (b(N)), force-of-infection (k) and infectious period (1/c), among others, are
hypothesized to be mechanistically influenced by traits of hosts (column 2), parasite traits (column 3) or environmental factors
(column 4). To generate testable predictions, these terms can be re-written as functions of measurable traits. For instance, birth
rate may be written as a function of body size (in keeping with known allometric relations (Peters 1986)) or virulence may be
written as a function of case fatality rates (e.g., (Li et al. 2008)). These highly parameterized models can then be used to study
how R0, epidemic period, critical community size and related epidemiological properties are affected by underlying traits.
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individual birth rate b0 for each species is the product of litter
size h1 and number of litters per year h2. The natural mortality
rate l is given by the reciprocal of longevity h3 (in years) and
the carrying capacity, K, is defined as the population density
per sq. km, h4. The strength of density dependence b1 is a
function of life history traits h1; h2; h3; h4 (Table 1). For the
purposes of this analysis, the per-individual transmission rate
b and recovery rate c are assumed to be parasite-dependent
tuning parameters. To account for the variability inherent in
transmission and recovery, we computed equilibrium preva-
lence for each species j over a species-specific grid of 100 b; cð Þ
values. The per-individual transmission rate b is defined as

jh5; where social group size h5 is a proxy for the number of
contacts made with conspecifics, and j is the probability of
transmission given contact. Since j is likely to depend on the
parasite, we varied j between 0.01 and 1 in increments of 0.1,
yielding ten notional values for each species. Recovery time c
was defined as the reciprocal of recovery rate. To capture
infections across a spectrum of recovery times, we assumed
recovery times varied between a minimum of ½ year and the
maximum longevity, h3; of each host species (i.e., lifelong
infection). Ten equally spaced values between 2 and 1/h3 were
used for c for each species j. Trait-dependent model parame-
ters are summarized in Table 1.

Figure 1 Model parametrization from observable trait data. An incomplete data matrix of species traits (1) is imputed using machine learning to predict the

most probable values (2). Species traits determine key parameters of mechanistic models (3) that then inform dynamical models (4), in this case, an

epidemiological SIR model is parameterized for each species. Model outputs for all species (5) are compared against relevant empirical data (e.g., human

outbreak data, approximating zoonotic spillover events from reservoir species) (6). Model outputs can be visualized by generating a heatmap of values

(e.g., R0, equilibrium prevalence) for overlapping species range polygons and overlaying known human zoonotic outbreak locations (7) to generate

hypotheses about the macroecology of zoonotic disease and the geographic risk of human spillover transmission.
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To calculate mean SIR equilibrium prevalence Pj using the
trait profile of each species j, we put each of the 100 b; cð Þ
pairs together with the fixed species-specific traits
hi; i ¼ 1; ::; 5 into the SIR equilibrium prevalence formula (2),
producing an array of 100 prevalence values Ii=Kj. We then
calculated the mean equilibrium prevalence over each species
array,

Pj ¼
P100

i¼1
Ii
Kj

100
; j ¼ 1; :::; 2276:

Missing data for the five key traits (litter size, litters per
year, maximum longevity, population density, social group
size) were imputed using the function missForest (Stekhoven
& B€uhlmann 2012) in the R package of the same name

(Stekhoven & B€uhlmann 2012). The missForest algorithm uses
a random forest trained on the observed values of a data
matrix to predict the missing values. The algorithm incorpo-
rates complex interactions and nonlinear relations, and yields
an out-of-bag imputation error estimate by comparing, at
each iteration, model predictions to empirical values for data
not included to train the model. Here, error values were litter
size (RMSE = 0.04), litters/yr (RMSE = 0.069), max longevity
(RMSE = 2.63 months), population density (RMSE = 0.07
individuals/km2) and social group size (RMSE = 0.12 individ-
uals). For all 2,276 species, life history traits hi; i ¼ 1; ::; 5
were fixed at the values obtained from the data or from impu-
tation.

Rodent-borne zoonoses

To a first approximation, for a pathogen that is density
dependent and transmitted via direct contact between animal
reservoirs to humans, the risk of human infection is likely to
scale with host prevalence (Plowright et al. 2017). To investi-
gate this, we cross-examined species with high equilibrium
prevalence from our model with zoonotic disease data col-
lected from wild rodent species. Specifically, we identified
directly transmitted rodent-borne zoonoses and their rodent
host species from the primary literature and from the
GIDEON data repository (Berger 2005).
Among 2276 rodents, 156 species did not have geographic

ranges that could be assigned to ecozones due to data defi-
ciency or recent extinction, and three species were subse-
quently found to be reassigned as other species due to
changing taxonomic standards (N = 2117). There were many
unique species whose features generated high values of mean
equilibrium prevalence (537 in the top quartile of prevalence,
212 in the 90th percentile; Table S2). These species are geo-
graphically widespread, ranging across all major ecozones
except Antarctica (Fig. 3). For example, in the top 10 percent
of ‘high prevalence’ species, 29 species are confirmed hosts
associated with 22 unique zoonoses. Of these zoonoses, seven
are caused by pathogens that are directly or environmentally
transmitted (Table S3). The majority of rodent reservoir spe-
cies whose features generated high equilibrium prevalence
(N = 23/29) carry at least one of these seven zoonoses.
Wild reservoirs whose traits suggest an intrinsic capacity to

generate high equilibrium prevalence represent surveillance
targets for pathogen discovery, particularly for directly trans-
mitted pathogens including zoonotic viruses and their strain
diversity in shared human environments. Among species in
the 90th percentile prevalence, there were two species that are
currently not known to carry any zoonoses (e.g., Myopus
schistocolor and Eligmondontia typus, Fig. 3). In contrast,
other ‘high prevalence’ species are known to harbour zoo-
noses, but none that are directly transmitted. For example,
traits of Abrothrix olivaceus, Microtus pennsylvanicus and Per-
omyscus gossypinus generated among the highest equilibrium
prevalence values, but only P. gossypinus is associated with a
directly transmitted zoonosis (Hantavirus pulmonary syn-
drome) while the other two species are only known to carry
zoonoses caused by macroparasites, or pathogens transmitted

117 16

67 32

27 94 17

Bacteria

Protozoa

Virus

0 50 100

Direct Environmental Vector

Figure 2 Transmission modes of pathogens and parasites causing 370

rodent-borne zoonoses in 202 host species (of 2276 total rodent species).

Table 1 Trait-dependent mechanistic parameters used in SIR model.

Mechanistic parameters depend on measurable quantities obtained hi,
i = 1,. . ., 5, from table of traits for all rodent species

Parameter Function of Traits hi Source

Per-individual

birth rate

b0(h1, h2)

Litter size 9

Litters per year

h1 9 h2

h1 and h2 from Data/Imputed

data

Per-individual

mortality rate

l(h3)

1/Max Longevity

(years�1)

1/h3

h3 from Data/Imputed data

Carrying

capacity K(h4)
Population density

per sq. km

h4

h4 from Data/Imputed data

Strength of density

dependence

b1(h1, h2, h3, h4)

b0�l
K ¼ h1�h2�1=h3

h4
per year density

per sq. km

h1, h2, h3 and h4 from
Data/Imputed data

Per-individual

transmission

rate b(h5)

Probability of

transmission given

contact 9 social

group size j 9 h5

j varied between 0.01

and 1. h5 from
Data/Imputed data

Per-individual

recovery rate

c(h3)

1/(recovery time)

(years�1)

1/D, 1/2 ≤ D ≤ h3

Recovery time D varied

between

1/2 year and max longevity h3
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primarily through water (cryptosporidiosis, multilocular
echinococcosis, American trypanosomiasis) (Fig. 3).
Global maps of species in the top quartile of equilibrium

prevalence reveal regions of co-occurrence (geographical range
overlap) that overlap with outbreaks of several directly trans-
mitted rodent-borne zoonoses observed in humans since the
1950s (Fig. 4), with some variation in the range of equilibrium
prevalence values exhibited by overlapping species (Fig. 5).
There are several rodent-borne zoonoses found in South
America, where rodent species richness is particularly high
and where we also see the highest numbers of high prevalence
(top quartile) species. We also observe places where there are
no rodent species in the top quartile of mean prevalence (i.e.,
the highest observed prevalence values are still relatively low)
- South Asia, most of Australia and New Zealand, the Philip-
pines, the Arabian peninsula, Madagascar and much of Saha-
ran and southern Africa. These locations also have few
outbreaks. Most of the locations where we observe outbreaks
of rodent-borne zoonoses show four or more rodent species in
the top quartile of mean equilibrium prevalence. The excep-
tion to this is central Africa where monkeypox appears to
spillover in the absence of multiple high prevalence species.
Comparison of our maps with GBIF records suggests that the
IUCN range map for Lemniscomys striatus should be
extended to include all monkeypox outbreaks and may reflect
a more general need for updated species range maps, particu-
larly for the African subcontinent whose rodent biogeography
is not as well studied.
Human disease outbreaks caused by rodent-borne patho-

gens include Argentine, Brazilian, Bolivian, Venezuelan, and
Whitewater Arroyo haemorrhagic fevers; hantaviruses (Old
World, and hantavirus pulmonary syndrome); and Monkey-
pox (incidentally, all of these pathogens are viruses). To calcu-
late the degree of concordance between equilibrium prevalence
predictions and outbreak occurrence, we conducted nonpara-
metric Wilcoxon rank sum tests comparing the highest value

of equilibrium prevalence and the richness of high prevalence
species at each georeferenced outbreak location. We compared
these values to the same measures at an equal number of
background locations (n = 114) that were randomly generated
across the global distribution of rodents. The highest value of
estimated mean prevalence (P = 0.0094) and the number of
species in the top quartile of estimated mean prevalence
(P = 0.00029) were both significantly greater at outbreak loca-
tions than at background points. To check that these differ-
ences are robust to choice of background locations, we
repeated tests for each of 1000 random sets of background
points. Outbreak locations were significantly greater
(P < 0.05) in 99% of comparisons of number of top quartile
species and in 91% of comparisons of highest prevalence
value (Fig. S1).

Targeting surveillance

As none of these viruses is known to have sustained human-
to-human transmission, repeated human outbreaks likely rep-
resent spillover events from sylvatic reservoirs (Fine et al.
1988; Hutin et al. 2001). For example, rodent species exhibit-
ing traits leading to high equilibrium prevalence and that
overlap geographically with hantavirus outbreaks in humans
(New World) should receive enhanced surveillance for han-
tavirus. In this context, P. gossypinus could be a focal species.
In addition to exhibiting high equilibrium prevalence, it is an
important reservoir in the nearctic region (primarily in the
United States) where seasonal population dynamics, especially
in response to heavy rainfall and ephemeral flooding, may
temporarily displace Peromyscus leucopus as the main reser-
voir of hantavirus spillover to humans in some areas (Barko
& Feldhamer 2002; Tian & Stenseth 2019). In the neotropics,
surveillance might centre on Abrothrix olivaceus and Eligmod-
ontia typus as potential reservoirs for hantavirus given their
high equilibrium prevalence for directly transmitted pathogens

Figure 3 Mean equilibrium prevalence values

generated by an SIR density-dependent transmission

model parameterized according to intrinsic traits of

rodents. The jittered margin rugs represent the

distribution of equilibrium prevalence values for all

rodent species in each ecozone (jitter width = 0.02).

Species whose geographic ranges spanning multiple

ecozones are included in the plots for every ecozone

in which they occur. Circles identify particular species

whose traits generated the highest mean equilibrium

prevalence values, with red circles indicating

confirmed reservoir species and blue circles indicating

species not currently known to carry any zoonoses.
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and geographic overlap with human hantavirus outbreaks
(particularly in Chile, (Astorga et al. 2018). In addition to
understanding reservoir diversity, trait-based model results
could also support the design of surveys for hantavirus diver-
sity by prioritizing the subset of species with traits predicting
high equilibrium prevalence (Luong et al. 2011). Similarly,
surveillance for novel directly transmitted zoonotic pathogens
might focus on Myopus schistocolor, Eligmondontia typus,

Abrothrix olivaceus and Microtus pennsylvanicus (Fig. 3) in
ecozones in which they are synanthropic or exhibit seasonal
or increasing contact with humans due to patterns of land use
change.
In the Afrotropical ecozone, monkeypox is a major directly

transmitted zoonosis. Monkeypox outbreaks are most com-
mon in the Democratic Republic of Congo, but are increasing
in frequency across the Afrotropical ecozone (Durski et al.

Argentine hemorrhagic fever

Bolivian hemorrhagic fever

Brazilian hemorrhagic fever

Hantavirus - Old World

Hantavirus pulmonary syndrome

Monkeypox

Venezuelan hemorrhagic fever

Whitewater Arroyo hemorrhagic fever

Number of co-occuring rodent species in the top quartile
of modeled mean prevalence

1 – 4

5

6

7

18 – 22

23 – 31

11 – 13

14 – 179 – 10

Figure 4 Colour bands show the richness of rodent species (n = 537) whose traits generate high equilibrium prevalence (top quartile) of density dependent,

directly transmitted zoonoses. Points represent the locations of human outbreaks of eight zoonoses that have been recently recorded.

Argentine hemorrhagic fever

Bolivian hemorrhagic fever

Brazilian hemorrhagic fever

Hantavirus - Old World

Hantavirus pulmonary syndrome

Monkeypox

Venezuelan hemorrhagic fever

Whitewater Arroyo hemorrhagic fever

0.322 – 0.4170.066 – 0.162

Highest mean prevalence among co-occuring rodent species

0.162 – 0.206

0.206 – 0.227

0.227 – 0.237

0.237 – 0.242

0.242 – 0.246

0.246 – 0.256

0.256 – 0.277

0.277 – 0.322

Figure 5 Mean equilibrium prevalence of the rodent species with the highest model-generated value at a given location. Globally, of 2117 species for which

IUCN geographic range maps were available, 866 rodent species had the highest value of modelled mean equilibrium prevalence among co-occurring

rodent species. Mean equilibrium prevalence values were generated by parameterizing a density dependent, directly transmitted model of rodent zoonoses

using empirical and imputed traits of each species
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2018) (Fig. 4). Although sylvatic reservoirs have not been con-
firmed for monkeypox, direct contact with infected mammals,
especially rodents in peridomestic settings, is suspected as the
dominant mode of spillover transmission to humans (Kho-
dakevich et al. 1988; Hutin et al. 2001). In the Afrotropics, of
the three rodent species whose traits generated equilibrium
prevalence in the 90th percentile (and the 29 species in the
80th percentile) from trait-based SIR models, none are cur-
rently known to be reservoirs of directly transmitted human
pathogens. However, among these high prevalence species,
those whose geographic ranges overlap recent human out-
breaks of monkeypox include Lemniscomys striatus, which is
geographically widespread and comprised of several subtaxa
across sub-Saharan Africa (Nicolas et al. 2008). It is also a
common source of food in some countries (Assogbadjo et al.
2005), raising the possibility of human transmission through
direct contact via hunting or the bushmeat trade. Negative
publication bias notwithstanding, monkeypox surveillance
efforts do not seem to have focused on rodent species, either
based on risk or range overlap with human monkeypox cases
(Table S4). While there appears to be a gap in the range area
of this species across parts of the Congo Basin and Central
Africa (Fig. 4), recent occurrence records confirm that L.
striatus occurs throughout West and Central Africa (https://
www.gbif.org/species/2438204), including Equatorial Guinea,
Gabon, the Republic of Congo and the Democratic Republic
of Congo where monkeypox is emerging (Thomassen et al.
2013).

Similarly, focusing surveillance on high prevalence rodent
species that overlap geographically with haemorrhagic fever
outbreaks (Figs 4 and 5) may confirm suspected rodent reser-
voirs, identify additional reservoirs or determine surveillance
priorities for viral haemorrhagic fevers whose sylvatic reser-
voirs have yet to be identified (e.g., Bolivian and Brazilian
haemorrhagic fevers). In general, when reservoir hosts for
zoonoses are unknown, applying a comparative, macroecolog-
ical trait-based approach may help to distinguish among many
potential reservoir species.

Testing model predictions

Predictions about individual reservoir species and their role in
human spillover transmission may be directly tested with tar-
geted field data. These data should be collected at frequencies
high enough to ensure capture of transient viral shedding
often exhibited by wild reservoirs (Peel et al. 2019). Beyond
validating predictions, if a rodent with low equilibrium preva-
lence in our model is found to have high prevalence in the
field, or if it is otherwise confirmed as a major source of
human spillover infection, such findings would suggest that
our assumptions about the functional form of transmission,
or some other parameters in our model, require updating (for
example, longevity or reproductive output). Patterns emerging
from empirical trait data thus initiate hypothesis generation
through data mining, hypotheses which are then concretely
encoded in dynamical models of infectious disease.

Table 2 A rubric for classifying models of disease transmission. Susceptible hosts are denoted by infectious S, hosts by I. In the vector-borne model we dis-

tinguish between susceptible/infectious hosts ( SH/ IH) and susceptible/infectious vectors ( SV/ IV). Each transmission model can be parameterized using

host, parasite and/or environmental features (traits)

Transmission mode Host traits Parasite traits ENV. traits

Direct

dS

dt
¼ bðSþ IÞ � bSI� lSþ cI

dI

dt
¼ bSI� ðcþ lÞI

• Transmission rate, b
• Susceptibility to infection

• Probability of successful transmission

• Infectious period, 1/c
• Host longevity, 1/l
• Host reproductive rate, b(S + I)

• Host carrying capacity

• Parasite load required for

successful transmission

• Lethality to host (infection

intensity, case-fatality rates)

• Ability to evade host

immune response

• Temperature

• Precipitation

• Changes affecting

host resource

abundance

Vector-borne
dSH

dt
¼ bHðSH þ IHÞ½SH þ IH�
� kpIVSH=ðSH þ IHÞ � lHSH þ cIH

dIH
dt

¼ kpIVSH=ðSH þ IHÞ � ðcH þ lHÞIH
dSV

dt
¼ bVðSV þ IVÞ½SV þ IV�
� kqSVIH=ðSH þ IHÞ � lVSV

dIV
dt

¼ kqSVIH=ðSH þ IHÞ � ðcV þ lVÞIV

• Per-individual biting rate per host k

• Transmission efficiency from vector to

host, and host to vector p, q

• Host & vector lifespan, 1/lH , 1/lv
• Infectious period of the host and vector,

1/cH, 1/cV
• Vector & host reproductive rates,

bH(SH + IH ), bV (SV + IV )

• Parasite load required for

successful transmission

• Lethality to host (infection

intensity, case-fatality rates)

• Ability to evade host

immune response

• Temperature,

precipitation

changes affecting

breeding habitat

for the vector

Environmental

dS

dt
¼ bðSþ IÞ½Sþ I� � ~bSV� lSþ cI

dI

dt
¼ ~bSV� ðcþ lÞI

dV

dt
¼ xI� dV

• Per-individual shedding rate into

environment x
• Transmission rate upon contact with free

living stage, ~b
• Probability that contact with free-living

pathogen results in infection

• Durability in the

environment, 1/d
• Change to

properties of the

environment that

make it a

reservoir
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There are limitations to the approach we have explored
here. Georeferencing human cases can be difficult and impre-
cise for diseases that take several days or weeks to present
clinically (such as hantavirus; (Astorga et al. 2018)). For ani-
mal hosts, species with traits predicting higher equilibrium
prevalence (or R0, or outbreak sizes) via transmission models
may exhibit seasonal shifts in behaviour or population cycles
that reduce contact (and therefore spillover risk) to humans
(Davis & Calvet 2005). These caveats notwithstanding, testing
model predictions with field data can target the collection of
additional data to refine model structure (i.e., our understand-
ing of the transmission process), and ultimately, to improve
model predictions of likely host species and transmission
dynamics within these species.
Theoretical conditions suggested by these models can be

explicitly tested with empirical data. For example, empirical
data can assist in identifying when assumptions about the
functional form of transmission are too simplistic (e.g., (Bor-
remans et al. 2017); or when presumed knowledge of host spe-
cies is inconsistent with observed dynamics (i.e., when latent
(unobserved) variables are at play, or when models do not
match reality). Trait-based models can be further refined
through parameter estimation methods that select values that
best fit observations (e.g., maximum likelihood (Bret�o 2018),
plausible parameter sets (Drake et al. 2015; Kramer et al.
2019), Markov chain Monte Carlo (MCMC; Streftaris & Gib-
son 2004) and others (Beaumont 2010; Ionides et al. 2015)).
This mining-modelling approach compares possible disease
dynamics and equilibria across numerous candidate host spe-
cies by parameterizing models based on central tendencies of
observable traits at the species level. Thus, this approach iden-
tifies species that are intrinsically more likely to generate par-
ticular disease dynamics. For zoonotic pathogens carried by
multiple host species, applying a trait-based approach to
transmission modelling may illuminate the network topology
of interacting host species (Truitt et al. 2019) and may better
predict when species diversity leads to dilution or amplifica-
tion effects (Dobson 2004; Dizney & Dearing 2016; Faust
et al. 2017).

Generalizing to other ecological processes

Beyond infectious disease dynamics, combining data mining
with process modelling offers a comparative dimension to
model-guided fieldwork (Restif et al. 2012) and may also be
useful across a wide range of scenarios where ecological pro-
cess knowledge is sparse (Hochachka et al. 2007; Kelling et al.
2009). For example, previous studies suggest that there are
predictable differences in the traits of invasive vs. noninvasive
plants (Schmidt & Drake 2011; Schmidt et al. 2012), threat-
ened vs. non-threatened mammals (Davidson et al. 2009) or
populations with extreme variations in key behaviours impact-
ing fitness (e.g., (Dingle 2006; Sih et al. 2012)). Thus, features
that distinguish between organisms may also represent fea-
tures that drive ecological processes. Updating or building
process models to directly incorporate such features consti-
tutes a powerful new means for generating hypotheses to
explain and predict ecological dynamics across distinct func-
tional groups in nature.
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