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In recent years the innate immune system has been shown to be crucial for the

pathogenesis of postoperative pain. The mediators released by innate immune cells drive

the sensitization of sensory neurons following injury by directly acting on peripheral nerve

terminals at the injury site. The predominate sensitization signaling pathway involves

the proinflammatory cytokine interleukin-1β (IL-1β). IL-1β is known to cause pain by

directly acting on sensory neurons. Evidence demonstrates that blockade of IL-1β

signaling decreases postoperative pain, however complete blockade of IL-1β signaling

increases the risk of infection and decreases effective wound healing. IL-1β requires

activation by an inflammasome; inflammasomes are cytosolic receptors of the innate

immune system. NOD-like receptor protein 3 (NLRP3) is the predominant inflammasome

activated by endogenous molecules that are released by tissue injury such as that which

occurs during neuropathic and inflammatory pain disorders. Given that selective inhibition

of NLRP3 alleviates postoperative mechanical pain, its selective targeting may be a

novel and effective strategy for the treatment of pain that would avoid complications

of global IL-1β inhibition. Moreover, NLRP3 is activated in pain in a sex-dependent and

cell type-dependent manner. Sex differences in the innate immune system have been

shown to drive pain and sensitization through different mechanisms in inflammatory and

neuropathic pain disorders, indicating that it is imperative that both sexes are studied

when researchers investigate and identify new targets for pain therapeutics. This review

will highlight the roles of the innate immune response, the NLRP3 inflammasome, and

sex differences in neuropathic and inflammatory pain.
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INTRODUCTION

A unique combination of molecular and cellular factors can lead to acute and chronic pain
conditions with varying pathologies. Despite this, pain is categorized into the following
broad categories: inflammatory, neuropathic, and syndrome-based (e.g., fibromyalgia).
There is overlap between these generalized categories. For example, inflammation
can result in nerve damage, nerve injury involves inflammation, and syndrome-based
pain can be neuropathic or inflammatory or both. Inflammatory pain occurs with
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peripheral tissue damage and the resulting tissue
inflammation. Alternatively, neuropathic pain results
from direct damage to nerves in the peripheral or
central nervous systems. Postoperative pain has both
inflammatory and neuropathic qualities (1). It is widely
recognized that postoperative pain occurs as a result of
the direct cutting of tissues and peripheral nerves at the
surgical site.

Rodent models of postoperative pain have been consistently
used to study the underlying causes of postoperative pain.
Rodent models of surgical pain are strong preclinical models
because the injury induced in the animal and human is
similar, and therefore, these models likely recapitulate patient
phenotypes and mechanisms (1–3). The most common
postoperative pain model involves cutting through the skin
and underlying muscle (flexor digitorum brevis), which
reliably produces mechanical and heat hyperalgesia at the
incision site (4–9). There is a robust immune response
in this model that includes infiltration of neutrophils,
macrophages, and lymphocytes. The immune response aids
in wound healing, but also results in sensitization of sensory
neurons to mechanical and heat stimuli (1, 10–13). The
immune response begins at the incision site or site of tissue
damage and moves proximally to the dorsal root ganglia and
spinal cord.

There is a rapidly growing body of evidence demonstrating
that the development and maintenance of postoperative pain
are not solely dependent on the increased excitability of sensory
neurons alone at the incision site, but they also depend on
immune cell interactions with sensory neurons and activation
of canonical immune receptors expressed by sensory neurons.
Components of the innate immune system have emerged as
crucial mediators in the development and maintenance of
hypersensitivity following incision. Pattern-recognition receptors
(PRRs) are part of the innate immune system and are among
the first to be activated in response to tissue damage; their
activation is important for the induction of immune responses
leading to pathogen elimination and subsequent tissue repair
(14). PRRs include cytosolic NOD-like receptors (NLRs) which,
when activated, form inflammasomes. The NLR protein 3
(NLRP3) inflammasome is the best characterized NLR and has
been shown to be critical in driving the immune response
to sterile tissue damage (15), the type of inflammation that
occurs with surgical incision. Additionally, NLRP3 is known
to play a role in several painful conditions that arise from
sterile tissue damage (16–30). Since the immune system is
known to be sexually dimorphic, much recent attention has
been given to understanding the sex differences and their
causative factors that underlie painful conditions. However,
little is known about the effects of sex on NLRP3 or
the role of NLRP3 in postoperative pain. Therefore, this
review provides a new insight into the relationship between
NLRP3 and postoperative pain. Here we discuss the current
understanding of sexual dimorphism in the innate immune
system response to tissue injury and the role it plays in
inflammatory and neuropathic pain conditions by focusing on
the NLRP3 inflammasome.

THE IMMUNE RESPONSE TO
INCISIONAL INJURY

Immune Cell Involvement
Surgical incision results in local tissue injury, which destroys
physical barriers between the body and environment, and
increases the risk of exposure to environmental and commensal
microbes. These consequences of surgery all lead to activation of
the innate immune system and local inflammation. Inflammation
occurs immediately following tissue injury as an attempt to clear
debris and initiate healing. Initially immune cells such as mast
cells, neutrophils, and monocytes/macrophages are recruited
to the injury site by mediators that are released in tissues,
by neurons and by tissue-resident immune cells (12, 31–
34). Recruitment and activation of different immune cells
following injury occurs in the same sequence in both sexes.
First, dermal mast cells regulate inflammation immediately
following cutaneous wounding by releasing inflammatory
mediators, thereby increasing vascular permeability and
recruiting neutrophils (35, 36). The neutrophil recruitment is
generally followed by monocyte/macrophage recruitment, which
occurs 1–2 days following injury (12, 34, 37, 38). Macrophages
play a dual role in wound healing, where initially they promote
inflammation and then later, they switch to a reverse role where
they promote the resolution of inflammation (34). Lastly, during
the resolution of inflammation phase, T cells infiltrate the wound
to aid in healing (34, 39).

The NLRP3 Inflammasome and
Interleukin-1β Production
Surgical trauma is aseptic and causes the release of damage-
associated molecular patterns (DAMPs) (40). DAMPs are
endogenous molecules that are released from damaged or dying
cells and serve as a signal for tissue damage (41). Soluble DAMPs
that are released as a result of incision include: heparan sulfate
(42, 43), fibronectin (44, 45), hyaluronan (46–48), β-defensins
(49–51), heat shock protein 70 (Hsp70) (52), and high mobility
group box-1 (HMGB1) (53, 54). These DAMPs then bind to
PRRs such as Toll-like Receptors (TLRs) on innate immune cells
(mast cells, neutrophils, monocytes/macrophages) and sensory
neurons, specifically Toll-like Receptor 4 (TLR4) (18, 49, 55–58).
Stimulation of TLR4 leads to activation of the transcription factor
NF-κB and upregulation of the synthesis of pro-inflammatory
cytokines like interleukin-1β (IL-1β) (59). Stimulation of TLR4
also serves as the priming signal for NLRP3, the activator of
IL-1β (59).

NLRP3 is predominately expressed by cells in lymphoid
organs and tissues that are highly populated by immune cells.
These cells include but are not limited to mast cells, neutrophils,
macrophages, monocytes, dendritic cells, and neurons in both
the peripheral and central nervous systems (29, 60–62). The
expression of NLRP3 in these cell types must be induced by
inflammatory stimuli, which prevents uncontrolled release of
IL-1β. NLRP3 requires two signals for canonical activation
and for IL-1β secretion: the first signal primes the cell to
express NLRP3 and pro-IL-1β, and the second signal induces
inflammasome assembly and activation (41, 63, 64). NLRP3
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forms a scaffold with apoptosis-associated speck-like protein
containing a CARD (ASC) to provide a molecular platform
for activation of pro-caspase-1, which collectively comprises
the inflammasome (65). Activated caspase-1 cleaves pro-IL-
1β into active IL-1β, which is secreted. Several DAMPs that
are present after incision and that can serve as the activation
signal for NLRP3 inflammasome assembly include: ATP (66, 67),
reactive oxygen species (ROS) (68, 69), and low pH (70–72). The
activation cascade for NLRP3 is summarized in Figure 1. Indeed,
the presence of priming and activating DAMPs for NLRP3
activation after aseptic tissue injury implicate a role for NLRP3
in mediating the postoperative pain phenotype. We recently
showed that NLRP3 is upregulated at the surgical site and drives
postoperative mechanical pain-like behaviors in male mice, but
not in female mice (13). This study provided the first evidence
that NLRP3 drives postoperative pain and revealed that the
immune-mediated mechanisms that underlie postoperative pain
are sex-specific.

SEXUAL DIMORPHISM IN THE
IMMUNE RESPONSE

The importance of taking sex into consideration when studying
painful injuries and their underlying mechanisms was recently
highlighted when it was revealed by Sorge et al. that male mice
require microglia and TLR4, whereas female mice require T
cells to mediate chronic neuropathic pain (73, 74). In addition,
hormones significantly contribute to sex-based differences
in the immune response (75). Estradiol, progesterone, and
testosterone are the primary hormones that affect the immune
response. Female vertebrates have higher baseline estrogen and
progesterone levels whereasmale vertebrates have higher baseline
testosterone levels. Estrogen, progesterone, and testosterone
receptors are expressed on both adaptive (T cells and B
cells) and innate (macrophages, dendritic cells, neutrophils, and
natural killer cells) immune cells; the effects of hormones on
these receptors are dose-dependent (76). Consequently, there
are alterations in immune system function during pregnancy,
menses, and menopause. Each of the three hormones mentioned
above affects the immune system during injury or disease states
in different ways, and therefore, the immune response to injury
differs between males and females.

The level of immune cell infiltration and the extent of the
innate immune response at an injury site are both affected
by sex hormones. Estrogen suppresses mast cell release of
histamine and as a result, fewer neutrophils are recruited to
a wound site in females (77, 78). In regards to the effects
of estrogen on the macrophage response to injury, Price et
al. recently showed that a reduced number of macrophages is
recruited to a postoperative tissue site in female mice compared
to male mice (79). Additionally, high estrogen levels skew
macrophages toward the M2 phenotype (anti-inflammatory)
while high testosterone levels promote the M1 phenotype
(proinflammatory). As a consequence of the M1 phenotype,
males have higher expression of TLR4, NLRP3, and produce
more IL-1β than females (75, 80–83). However, chronic estrogen

exposure induces increased TLR4-mediated production of IL-
1β in macrophages (84). Despite the lower levels of immune
cell infiltrate within a wound in females as compared to males,
cytokine levels in females are sustained longer than in males,
and females have more tissue-resident immune cells than males
(75, 78). Furthermore, data from our laboratory demonstrated
that males have more IL-1β protein at the peri-incisional site
than females (13). Whereas, we showed that NLRP3 mRNA was
upregulated by incision to a similar extent in males and females,
global deletion of NLRP3 decreased IL-1β levels and sensitization
to mechanical stimuli only in males. This suggested that NLRP3
may be differentially regulated post-transcriptionally in males
and females following tissue incision, where in females, the IL-
1β production occurs independent of NLRP3. The activation
pathway for NLRP3 has been suggested to differ in macrophages
from male and female Systemic Lupus Erythematosus patients
as well (85). In addition, males and females utilize TLR4 in a
cell-specificmanner. Stimulation of TLR4 onmacrophages drives
pain in male mice whereas stimulation of TLR4 on sensory
neurons drives pain in female mice (86, 87). Furthermore,
fibroblasts which play critical roles in the immune response and
local environment during tissue injury, also produce IL-1β, and
fibroblast IL-1β levels are differentially affected by testosterone
and estrogen treatment (88). Considering all of the evidence
above for sex-driven differences in the immune response to injury
and the resulting differences in sensory neurons, it is imperative
to take the sex of an individual into account when selecting and
assessing the efficacy of pain interventions.

PROINFLAMMATORY IL-1β AND
POSTOPERATIVE PAIN

The primary function of IL-1β is to elicit a pro-inflammatory
response to DAMPs (41). IL-1β is expressed by macrophages,
monocytes, neutrophils, mast cells, glial cells, and sensory
neurons (89–91). Secreted IL-1β exerts its proinflammatory
effects through various mechanisms. These include increasing
production of other inflammatorymediators via rapidly inducing
their mRNA expression, increasing vascular permeability,
recruiting immune cells, directly eliciting pain via binding
of the IL-1β receptor on sensory neurons, and inducing
neurogenic inflammation through sensory neuron sensitization
and increased production of calcitonin gene-related peptide
alpha (CGRPα) (91–94). IL-1β acts through its receptor type I IL-
1 receptor (IL-1R1), which is ubiquitously expressed on neurons
of the peripheral and central nervous systems (95, 96). When
IL-1R1 binds IL-1β, the accessory protein IL-1R3 is recruited
to induce intracellular signaling cascades via association of
their intracellular Toll- and IL-1R-like (TIR) domains with
signaling proteins (97). The cascade begins with the association of
myeloid differentiation primary response gene 88 (MYD88) and
interleukin-1 receptor–activated protein kinase (IRAK) 4 with
the TIR domains. This leads to complex formation of IRAK1,
IRAK2, and tumor necrosis factor–associated factor (TRAF) six
and subsequent activation of transcription factors such as NF-κB
to upregulate inflammatory genes.
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FIGURE 1 | Signals in response to tissue damage activate the NLRP3 inflammasome (signal 1 and signal 2). Hyaluronan fragments, β-defensins, soluble heparan

sulfate, fibronectin, 70 kilodalton heat shock proteins (Hsp70), and high mobility group box 1 (HMGB1) are released following incision and act as signal 1 for NLRP3 by

stimulating TLR4 on the cell membrane (1). Stimulation of TLR4 leads to activation of NF-κB and transcription of proIL-1β and NLRP3 (2). Adenosine Triphosphate

(ATP), reactive oxygen species (ROS), and low pH can then act as signal 2 for NLRP3. ATP acts on purinergic ion channel receptors (P2XR) such as P2X7 or P2X4

which results in potassium (K+) efflux from the cell (3). The decrease in K+ concentration is sensed by NIMA Related Kinase 7 (NEK7). NEK7 associates with inactive

NLRP3, thereby activating it (4). Active NLRP3 then forms a scaffold with caspase-1 and apoptosis-associated speck-like protein containing a CARD (ASC), thus,

forming the inflammasome (5). Caspase-1 is activated by the formation of the inflammasome (6). Activated caspase-1 cleaves proIL- into mature IL-1β that is released

from the cell and subsequently, results in pain and inflammation (7).

Postoperative pain is characterized by persistent acute pain
at the incisional site which is associated with release of
proinflammatory cytokines, including IL-1β. Studies have found
that IL-1β is significantly upregulated at the incision site (12,
13, 32, 98–101). Wolf et al. demonstrated that either systemic
inhibition of IL-1β signaling by its receptor antagonist IL-1ra or
deletion of IL-1R1 prevented the development and maintenance
of postoperative mechanical hypersensitivity at the incision site
(102). Other groups further demonstrated that inhibition of IL-
1β signaling through antagonism of its receptor significantly
decreased postoperative pain-like behavior in rodents (32, 98,
100). Furthermore, additional research has established that

inhibition of the upstream mediators of IL-1β, such as TLR4
(98, 103), NF-κB (103), caspase-1 (104), or NLRP3 (13), decreases
postoperative pain-like behaviors in rodents. General blockade of
IL-1β signaling, like that obtained with FDA approved Anakinra
(IL-1R1 antagonist), increases the rate of infections due to the
necessity of IL-1β for bacterial infection clearance (105, 106).
Whereas, inhibition of TLR4, NF-κB, and caspase-1 is more
ubiquitous, inhibition of one inflammasome is more specific.
Therefore, reduction of IL-1β but not complete depletion,
through inhibition of only NLRP3may avoid these complications
while decreasing postoperative pain. However, inhibition of
NLRP3 alone may only be effective in males but not females
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(13). Not only are sex differences prevalent in mice that received
surgery, but they are present in human postoperative pain as well.
For instance, a predicative factor of chronic postoperative pain
is female sex (107–109). Thus, a therapeutic for the treatment
of postoperative pain in females must target the unique factors
that are required for the development of postoperative pain
in females.

THE ROLE OF NLRP3 IN PAIN DISORDERS

Much is yet to be learned about NLRP3 and postoperative pain,
however a role for NLRP3 in pain disorders is emerging (13).
NLRP3 has been shown to be involved in the pathogenesis of both
inflammatory and neuropathic pain conditions. Inflammatory
pain depends on the sensitization of nociceptive neurons by
proinflammatory mediators such as IL-1β (110, 111). In an acute
model of dural inflammation, the injection of an “inflammatory
soup” (comprised of histamine, serotonin, bradykinin, and
prostaglandin E2 at pH 5.5) resulted in activated NLRP3 and
caspase-1, and increased IL-1β expression in C fiber type neurons
of the trigeminal ganglia (29). The inflammatory soup injection
also resulted in pain-like behaviors which were alleviated by a
caspase-1 inhibitor. In another inflammatory pain model, the
complete Freund’s adjuvant (CFA) model, NLRP3 was shown
to be activated in the skin of rats (28). Electroacupuncture
following CFA injection attenuated the expression of NLRP3 and
ultimately eliminated the pain-like behavior (28). Additionally,
NLRP3 has been demonstrated to be crucial for the pathogenesis
of rheumatoid arthritis in both humans and rodents (27,
112, 113). Further, upregulation of NLRP3 has been shown
to occur in rodent models of gout, and its inhibition or
deletion ameliorated the pathology and pain (24, 25, 114–
116). Collectively, these data point to a key role for NLRP3 in
inflammatory pain.

Neuropathic pain involves direct damage to nerves from
injury or disease. IL-1β significantly contributes to traumatic
neuropathic pain where its expression is upregulated in the
dorsal root ganglia and spinal cord, as well as in damaged
nerves in rodent models of neuropathic pain and in patients
with neuropathic pain (18, 117–119). NLRP3 plays a role in
various rodent models of neuropathic pain. Alleviation of sciatic
nerve ligation neuropathic pain with miR-23a overexpression,
or CXCR4 knockdown results in decreased NLRP3 expression
(16). A study utilizing the chronic constriction sciatic nerve
injury model of neuropathic pain demonstrated that NLRP3 is
upregulated by nerve injury and that treatment with Peptide5,
a Connexin 43 mimetic peptide that blocks hemichannels,
decreased NLRP3 expression and mechanical pain-like behavior
(17). In addition, chemotherapy-induced neuropathy models
of neuropathic pain revealed that NLRP3 is upregulated in
both oxaliplatin-induced nerve injury (19) and paclitaxel-
induced nerve injury (20) models, and inhibition of NLRP3
decreased the mechanical pain-like behaviors in both models.
In contrast to these findings, it was demonstrated that global
knockout of NLRP3 had no effect on neuropathic pain in the
spared nerve injury model of neuropathic pain (120). This

is consistent with discrepant findings that challenge the view
that microglia drive neuropathic pain exclusively in males
(121–123). When compared, these studies demonstrate that
different models of neuropathic pain (spared nerve injury,
spinal nerve transection, spinal nerve ligation, and partial nerve
ligation) do not produce the same findings. Together, these
studies suggest that while NLRP3 contributes to a variety of
etiologies of neuropathic pain it is dependent on the type
of injury and the diverse factors that are likely involved in
different injuries.

Although much remains to be discovered about the
mechanistic causes of body-wide pain syndromes such as
fibromyalgia, several studies have indicated a role for NLRP3
in fibromyalgia-associated pain, and NLRP3 was found to
be upregulated in patients with fibromyalgia (21–23). Further
research is needed in animal models of fibromyalgia and tissues
from patients with fibromyalgia.

CONCLUSION

The discovery of inflammasomes has provided new insights into
themolecular mechanisms underlying the innate immune system
activation in inflammatory and neuropathic pain conditions.
As discussed here, many inflammatory and neuropathic pain
conditions, and specifically postoperative pain, involve the
innate immune system and NLRP3. Therefore, modulators
of NLRP3 may provide a novel, selective, and effective pain
therapeutic target. Notwithstanding, our understanding of the
functional roles and the mechanisms of activation of the NLRP3
inflammasome in pain conditions is in its infancy. Additionally,
it is imperative that further research be conducted on the
effect of the sex of an individual on NLRP3 function since
all of the rodent studies on NLRP3 in the pain conditions
discussed here, except for the report by our group (13), were
performed in males only. In our study we revealed that there
are significant sex differences when NLRP3 is deleted, suggesting
that NLRP3 plays different roles in males and females following
tissue injury (13). Additionally, the literature concerning the
specific immune responses to perioperative incision in males
and females is insufficient and far more studies that include
females must be done. Therefore, we conclude that targeting
NLRP3 may provide a novel approach to control pain, but that
further research needs to uncover themechanistic differences and
roles of NLRP3 in wound healing following surgery in females
and males.
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