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ABSTRACT
Introduction: Vaccines are the agreed upon weapon against the COVID-19 pandemic. This review 
discusses about COVID-19 subunit vaccines adjuvants and their signaling pathways, which could 
provide a glimpse into the selection of appropriate adjuvants for prospective vaccine development 
studies.
Areas covered: In the introduction, a brief background about the SARS-CoV-2 pandemic, the vaccine 
development race and classes of vaccine adjuvants were provided. . The antigen, trial stage, and types 
of adjuvants were extracted from the included articles and thun assimilated. Finally, the pattern 
recognition receptors (PRRs), their classes, cognate adjuvants, and potential signaling pathways were 
comprehended.
Expert opinion: Adjuvants are unsung heroes of subunit vaccines. The in silico studies are very vital in 
avoiding several costly trial errors and save much work times. The majority of the (pre)clinical studies 
are promising. It is encouraging that most of the selected adjuvants are novel. Much emphasis must be 
paid to the optimal paring of antigen-adjuvant-PRRs for obtaining the desired vaccine effect. A good 
subunit vaccine/adjuvant is one that has high efficacy, safety, dose sparing, and rapid seroconversion 
rate and broad spectrum of immune response. In the years to come, COVID-19 adjuvanted subunit 
vaccines are expected to have superior utility than any other vaccines for various reasons.
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1. Introduction

1.1. SARS-CoV-2 and vaccine status

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV- 
2), the etiology of coronavirus disease 2019 (COVID-19), is 
ravaging the human race regardless of political and geo
graphic boundary [1,2]. As of 10 July 2021, with the lowest 
estimate, infection and fatality surpassed 186 million and four 
million, respectively. The pandemic is now broadening its 
target demography and geography through mutations on 
key structural genes [3–5].

Following the SARS-CoV-2 outbreak in Wuhan, China, cen
tury-old containment measures such as lockdown, physical/ 
social distancing, and school closing were applied. However, 
these measures were found to be costly and collaterally 
damage the global economy [6]. Vaccines are the ideal 
weapon against SARS-CoV-2 for bringing back life like the 
pre-pandemic situation [7,8]. As such, several studies investi
gated the aftermath of countries’ routine immunization for 
repurposing existing vaccines [9–14]. However, major biases 
could not be excluded by the majority of the studies [15] and 
are accompanied with conflicting reports [16]. Currently, the 
globe is rolling out mRNA and vector vaccines [17–21]. 
Additionally, several new vaccines are under different stages 

of scrutiny [22]. The complete list of the candidate vaccines 
are available at the WHO website [23]. Of the listed candidate 
vaccines, the subunit protein vaccine shared 34% of the 
COVID-19 vaccine research and is the highest in proportion 
compared with other forms of vaccines [23].

By virtue of the presence of a heterogeneous mixture of 
structures and genetic materials that can function as an intrin
sic adjuvant, live-attenuated vaccines are relatively more effec
tive compared with subunit vaccines [24,25]. Conversely, 
purified subunit vaccines lack pathogen-associated molecular 
patterns (PAMPs) and such types of vaccines are barely immu
nogenic unless supplemented with adjuvants [24,26]. 
Synthetic DNA-based vaccines targeting the S protein of 
SARS-CoV-2 exhibited promising results on animal model 
experiments [27–29]. However, besides safety issues, host- 
related factors in higher animals might delaye its translation 
as can be inferred from other early researches [30,31].

1.2. Vaccine adjuvants and their role

Adjuvants are essential molecules for subunit protein vaccines. 
It is the stimulator of the innate arm of the immune system 
and the modulator to the adaptive arm of the host defense 
system [32,33]. The main role of vaccine adjuvants is to (1) 
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increase the amount of vaccine production using smaller anti
gen, (2) dose sparing, (3) broaden the profile of adaptive 
immune components, and (4) hasten seroconversion rates 
[25,34]. These come through its depot effect, activation of 
PRR-mediated innate immune signaling, enhancing the activ
ities of antigen presenting cells (APC) and activation of inflam
masomes [33,35].

Vaccine adjuvants are classified into (1) mineral salts (exam
ples: aluminum/alum, manganese), (2) emulsions (Freund’s 
complete and incomplete adjuvants, Montanide, Ribi), (3) 
pathogen-associated molecular pattern (Cholera toxin, CpG 
DNA, Escherichia heat labile toxin, Monophosphoryl lipid A: 
MPL, Defensin), (4) hormones and cytokines (granulocyte 
macrophage colony stimulating factor, IFN, IL), and (5) syn
thetic adjuvants (imidazoquinolines, multi-antigen peptide 
system, polymerization of haptenic peptides, peptide linkage 
to epitopes) [36–45].

The immunological function of mineral salts is by their 
depot effect, complement activation, and inflammasome and 
tissue damage for releasing damage-associated molecular pat
terns (DAMPs) [36–38]. Emulsion groups have good antigen 
bioavailability. However, they are relatively toxic and are asso
ciated with delayed-type hypersensitivity. Unlike mineral salts 
that are biased toward Th2 immune response, emulsions 
groups activate the Th1 pathways [36,37,40]. The PAMP, cyto
kine, hormone, and synthetic adjuvants are considered ‘novel 
adjuvants’ by virtue of having cognate receptors for their 
effector function. However, toxicity is the main limitation for 
these classes [41–45]. Despite the attempts made to reduce 
the toxicity issues associated with synthetic adjuvants, they 
are found to be less bioavailable and remain localized to the 

injection site [43–45]. In general, particulate vaccines are easily 
taken up by APCs than soluble vaccine forms. As such, the 
efficacy can be increased by modifying the delivery in parti
culate forms [41].

In situations where measuring clinical correlates of vaccine 
protections (infection, transmission, or diseases) is difficult for 
various reasons, the immunological correlates of protections 
(titer, affinity, isotypes and half-life of the neutralizing anti
body, and CD4+ T cells) are used as surrogate criteria for 
measuring vaccine/adjuvant efficacy [46,47].

Several lines of evidence revealed that each adjuvant has 
limitations on one or more of the desired immunological 
correlates of protection. For instance, alum in the spike protein 
subunit vaccine study induced an increased B cell and long- 
lived neutralizing antibody (NA) production. However, alum-S 
adjuvants failed to induce a remarkable level of cell mediated 
immunity (Th1CD4+ T cell and cytotoxic CD8+ T cells) and are 
linked to eosinophilic associated lung pathology. The CpG 
adjuvant is associated with an increased production of 
CD8+ T cells and IgG and IgA production, but again the half- 
life of the produced antibodies is short and skewed toward 
Th1. Liang and Colleagues considered STimulator of 
INterferon genes (STING), AS01B, delta inulin microparticles, 
and matrix M1 adjuvants to be better in terms of inducing 
long-lived neutralizing antibody and IFN production in the 
mucosal area [48]. In general, despite the several remarkable 
success, we are far from identifying and unlocking the magic 
bullet vaccine adjuvants.

Of note, the year 2020 was the year of human suffering but 
also the year of breakthrough for mRNA vaccine against the 
COVID-19 pandemic. Unfortunately, mRNA vaccines need free
zers for transportations, which is very challenging in resource- 
limited countries [49]. Additionally, mRNA vaccines are expen
sive and unaffordable for nations of the south. Furthermore, 
the existing vaccines cannot satisfy the global need. 
Additionally, due to the continued emergency of ‘variants of 
concern,’ developing a new generation of vaccine is a top 
priority of the global health [50]. Hence, effective and safe 
alternative second and third generation COVID-19 vaccines are 
urgently needed. Adjuvanted subunit vaccines are the best 
alternative, and such vaccines are currently under intense 
research. Thus, the aim of this review is to identify primary 
articles evaluating the efficacy and safety of the adjuvanted 
subunit COVID-19 vaccine, give a glimpse into the landscape 
and immunology of COVID-19 adjuvants, and facilitate the 
subunit vaccine research arena.

2. Literature search methods

A systematic literature search was carried out at the electronic 
database of PubMed and Scopus with 19/05/2021 as the final 
search date. The search was carried out using MeSH terms and 
Boolean operators. The search algorithm at PubMed was 
((‘SARS-CoV-2’[Mesh] OR ‘COVID-19’[Mesh]) AND ‘Vaccines, 
Subunit’[Mesh]) OR ‘Adjuvants, Immunologic’[Mesh]. Similarly, 
the literature search at Scopus was formulated as (Title Abs 
Key (sars cov 2) OR Title Abs Key (covid 19) OR Title Abs Key 
(severe AND acute AND respiratory AND syndrome AND cor
onavirus-2) OR Title-Abs-Key (coronavirus AND disease 2019) 

Article highlights

● Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an 
etiological agent of coronavirus disease-2019 (COVID-19), is ravaging 
the human race regardless of political and geographic boundary.

● Physicochemical characteristics (charge, size, and nature of chemical), 
immunological correlate of protection (the titer, kinship, isotype, dose 
sparing and seroconversion rate, and profile of cellular immune 
components) and safety, reactogenecity, and toxicity are the three- 
dimensional evaluation criteria employed for qualifying vaccines/ 
adjuvants.

● Among the 52 articles identified and examined, 27 distinct types of 
adjuvants were identified.

● Defensin, alum, Matrix-M1, CpG, and MF59 are the top five adjuvants 
on this list. By the same taken, Spike and RBD shared 43.6% and 
33.8% of the candidate vaccine antigens. Spike proteins are more 
immunogenic than RBD.

● Novel COVID-19 vaccine adjuvants ensure host resistance by activat
ing endosomal (Toll-like receptor 3/7/8/9) and cytosolic (RLRs and 
cGAS-STING) receptor signaling pathways.

● Nanoparticulate adjuvants have several important advantages over 
large molecules including antigen/nucleic acid delivery, limiting bioa
vailability, and depot effect.

● The effectiveness of subunit vaccines relies on the art of designing a 
vaccine, which has optimal antigen–adjuvant–PRR synergy pairing.

● Both pre-clinical and clinical trials confirmed the induction of several 
orders of magnitude of higher titer of neutralizing antibody than the 
convalescent sera of recovered people.

● The majority of the second generation COVID-19 vaccines might be 
the subunit vaccine types having the power of protection against the 
SARS-CoV-2, including emerging variants of concern.
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AND Title-Abs-Key (“subunit vaccine”) OR Title-Abs-Key (“vac
cine adjuvant”) OR Title-Abs-Key (“Recombinant Protein 
Vaccine”)) AND (Limit to (Pubyear, 2021) OR limit to (pubyear, 
2020)) AND (Limit-To (Language, “English”)) .The identified 
articles were imported into the EndNote library, and eligible 
articles were filtered out following the Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses (PRISMA) 
flow diagram. The complete article selection strategy is given 
in the supplementary material (S1).

3. Body of the review

3.1. Antigen profile of COVID-19 subunit vaccine trials

The systematic literature search gave a total of 1062 articles 
(S1). After screening of the 1062 articles, 52 were identified, 
which fulfilled the eligibility criteria. Of these, 24 articles were 
in silico experiments, 25 articles were animal model studies, 
and the remaining three articles were clinical trial reports. 
Articles evaluating the efficacy of two or more adjuvants 
were treated as separate studies. Hence, 71 adjuvant experi
ments/evaluations were identified inside 52 included articles; 
38 of the adjuvant evaluations were at pre-clinical, 29 in silico, 
and 4 clinical trials (Figure 1a).

The complete data set of the review including the summary 
of key findings of each study is found in Table S2. The full 
spike protein and its subunits are the leading antigens used by 
SARS-CoV-2 structural immunologists. For instance, out of 71 
adjuvant/vaccine evaluations, 15 (21%) and 14 (19.7%) 
employed the spike protein and receptor binding domain 
(RBD), respectively. However, when derivatives and modifica
tion such as (S1, S2, S-2P, S-Trimer) and (RBD-NG, RBD-mFc, 
RBD-Fc, RBD-NP) are included, their role increased to 31 
(43.6%) and 24 (33.8%), respectively. Similarly, around 15 sub
unit vaccine trials used multi-epitopes (MEs) (Figure 1b). Table 

1 below depicts the antigens, adjuvants, and stages of the 
COVID-19 subunit vaccine trials (Table 1).

3.2. COVID-19 subunit vaccine adjuvants

Overall, our review identified 27 distinct types of adjuvants. 
However, this list might not be comprehensive due to the fact 
that our literature search was limited to two databases. 
Human beta defensin, alum, matrix-M, CpG, and MF59 are 
the common and top five adjuvants employed by COVID-19 
subunit vaccine researchers (Table 1 & Figure 2). As shown in 
Figure 2 below, most of the adjuvants are PAMP and small 
molecules that have known receptors.

The review captured several insightful findings. For 
instance, immunoinformatics-based vaccine construction con
tributed the lion share in vaccine epitope search. This in silco 
strategy helps predict the antigenicity, allergenicity, and toxi
city of the construct. Additionally, it will predict the physical 
properties such as the molecular weight, half-life, and hydro
phobicity nature of the predicted subunit vaccine. These col
lectively save resources and time and reduce the costly trial 
errors [86]. For instance, B-defensin adjuvanted multi-epitope 
(28 epitopes including 3 from replicase, 3 from NSp1, 2 from 
envelope, 5 from membrane, 6 from nucleocapsid, and 9 from 
spikes proteins) subunit vaccines have been constructed. The 
molecular docking demonstrated excellent affinities against 
TLR3 and TLR8 [87]. Such types of vaccines might have 
broad spectrum action including against the emerging var
iants of concern (VOC).

Titan et al using the full S-Matrix-M adjuvanted vaccine 
(NVXCoV2373) elicited high titer anti-S IgG, polyfunctional 
CD4+ and CD8+ T cells, follicular CD4+ Th, and germinal center 
B cells in the spleen of mice [88]. A phase 1 subunit COVID-19 
vaccine (SCB-2019) assessed the safety, efficacy, and tolerabil
ity using S-AS03, S-CpG/alum, and placebo groups at 3, 9, and 
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Figure 1. COVID-19 subunit vaccine trial stages (a) and (b) antigens, 19 May 2021.
S: spike protein; ME: multi-epitope (antigen); RBD: receptor binding domain; s-2p: spike prefusion protein 2; RBD-mFc: RBD-mouse IgG1 Fc domain 
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30 μg doses at 21 days interval. In terms of safety, CpG is 
relatively safe compared with AS03. Both S-AS03 and S-CpG/ 
alum induce neutralizing antibody (NA) production. However, 
rapid neutralizing antibody was produced by S-AS03 than by 
the S-CpG/alum group, showing the distinct qualities of the 
adjuvants. S-protein specific Th-1-biased immune responses 
could be induced in the two adjuvanted groups but none in 
the non-adjuvanted S-trimer COVID-19 vaccine. This dose find
ing study concluded that 9 µg S-trimer-AS03 and 30 µg S- 
trimer- CpG/alum were the preferred candidates [89].

A phase 1 and 2 subunit vaccine study was carried out by 
Yang et al (2021). In both phase 1 and phase 2, adverse events 
were mild to moderate. In phase 2, 14 days after the second 
dose, the seroconversion rates of NA were 76% and 72% in the 
25 μg and 50 μg dose groups, respectively. In the 3rd dose 
schedule, after 14 days, the seroconversion rates reached 97% 
and 93% in the 25 μg and 50 μg groups, respectively. Hence, 
within 14 days intervals, three consecutive shoots of 25 μg 
dose were found to be safe and effective [90]. The adjuvant 
inside this vaccine is alum. From these reports, broad dimen
sions of the adjuvant function can be appreciated. The titer 
and durability of the produced antibody are revealed. 
Moreover, the types of cells in the adaptive immune system 
and dose sparing effect of adjuvants are clearly seen.

Besides finding new adjuvants, researchers are also modify
ing the existing adjuvants for enhancing the immune inducing 
ability and reducing toxicity. For instance, the main limitation 
of alum adjuvants was the inability to induce Th1 cellular 
immunity. As a solution, Peng and colleagues packed alum 
on the squalene–water interface for forming Particulate Alum 
via Pickering Emulsion (PAPE). The finding showed that six times 
higher order of NA and three times more IFN-γ producing T cells 
were produced [91]. By the same fashion, modification at the 
epitope also further increases the immunogenicity of subunit 
vaccines. For instance, fusion of RBD with IgG Fc increased the 
half-life, stability, solubility, and uptake power of APCs, which 
collectively increase the Th1 response [92].

Multiple subunit vaccine reports claimed a higher order 
magnitude of NA production against two dose vaccine shots 
compared with the antibody titer of convalescent sera. For 
instance, according to Keech et al (2020), the geometric mean 
titer (GMT) levels of 5 and 25 µg doses of vaccine are nearly 
four times higher than those in symptomatic COVID-19 
patients [93]. Additionally, two-fold higher convalescent sera 
was induced by single immunization with spike-Helicobacter 
pylori ferritin particles [94]. Collectively, higher titer of NA is 
induced through vaccination than natural infection.

In a phase three trial of a matrix-M1 adjuvanted subunit 
vaccine, the overall efficacy of 96.4% was recorded against 
common SARS-CoV-2 strains, 86.3% efficacy against B.1.1.7 
(alpha), and 51% against B.1.351 (beta) variants [95,96]. 
These variants of concern are now threatening all the first 
generation vaccines [97]. Liu and colleagues did an experi
ment to generate strong and broad NA using a subunit vac
cine of RBD-Fc adjuvanted with FA/FIA. The experimental 
vaccine sera collected from immunized mice effectively neu
tralized seven mutant SARS-CoV-2 strains 35 days post first 
immunization [98].

Table 1. The COVID-19 subunit vaccine epitopes, adjuvants, and stage of the 
trials, 19 May 2021.

Study Vaccine epitope Adjuvant
Stage of the 

trial

[51] RBD 50S R-protein L2 In silico
[90] dRBD Alum Phase 1/2
[108] S-2P Alum Mice
[52] S-2P MF59 Hamster
[87] ME1 ß-defensin In Silico
[53] RBD Mn nano particle Mice
[54] S1 Vs RBD Alum Mice
[88] S Matrix-M Mice
[55] S Vs RBD Addavax Mice
[56] S1-4 Alum Mice
[99] RBD AMP-CpG Mice
[57] RBD Zn-chitosan, Alhydrogel, Adju- 

Phos
Animal

[89] S-Trimer AS03 or CpG/Alum Phase 1
[58] S, N, E, M β-defensin 2 In Silico
[94] SΔC-Ferritin Quil-A MPLA Mice
[59] S Matrix-M Mice & 

Macaques
[60] RBD MF59 Guinea pig
[61] S-2P CpG 1018 and alum Hamster
[62] S-Trimer AS03/CpG 1018 + alum Rhesus 

macaques
[86] S, M, N β-defensin2 2/3 In Silco
[63] S-Trimer IMDQ-PEG-CHOL Mice
[64] RBD Alum Mice
[65] S OmpA In Silico
[66] Struc.& NS 

proteins
β-defensin In Silico

[67] S Matrix-M In Silico
[68] RBD – NP AS03, AS37, TLR7, CpG1018/alum, 

alum
R. macaques

[69] S,E,M β-defensin In Silico
[70] RBD β-defensing 3 In Silico
[71] S, M, E and N 50S rRNA L7/L12 In Silico
[72] S, N, M, ORF3a β-defensin, L7/L12 rRNA & HABA 

protein
In Silico

[73] S,N,M,E β-defensin-3 In Silico
[74] nsp7-12, nsp14 β-defensin In Silico
[92] RBD-mFc Alum, Freund’s adjuvant (FA) Mice
[91] r RBD PAPE Animal
[75] S RS09 In Silico
[76] nsp Β-defensin 3 In Silico
[77] S1 and S2 RS09, TR-433, MTB-Hsp70 In Silico
[98] RBD-Fc FCA and FIA Mice
[78] RBD w/wout 

IgG1-FC
MF59 Mice

[115] S-2P CpG 1018 Mice
[79] S CTB & TTFrC In Silico
[80] S,E,N β-defensin 1 In Silico
[93] S Matrix-M1 Phase1-2
[100] S,N,M β-defensin 1 In Silico
[81] 3CL hydrolase β-defensin-3 In Silico
[109] S1 CoVaccine HT, Alum Mice
[82] S Matrix-M C. macaques
[83] S CTB In Silico
[125] RBD-NG Alum Mice
[84] S2 β-defensin In Silico
[102] S,E,N,M β-defensin In Silico
[85] S Matrix-M In Silico

RBD: receptor binding domain; dRBD: dimeric RBD; s-2p: spike prefusion 
protein 2; ME1: 28 epitopes including 3 replicase, 3 NSp1, 2 envelope, 5 
membrane, 6 nucleocapsid, and 9 spikes; S: spike protein; CAF01: cationic 
liposome-based adjuvant; MnARK: manganese nanoadjuvant; N: nucleocap
sid, E: envelope, M: membrane protein; OmpA: outer membrane protein A; 
RBD-mFc: RBD-mouse IgG1 Fc domain; PAPE: packed, forming an alum- 
stabilized Pickering emulsion; CpG: unmethylated cytidine phosphate guano
sine; IMDQ-PEGCHOL: imidazoquinoline cholesteryl-polyethylene glycol; RBD- 
NG: RBD-nanogel; CTB: cholera toxin subunit-B; TTFrC: tetanus toxin frag
ment-C; FA: Freud’s adjuvant; AMP-CpG: Amphiphile AMP-CpG, NSP: non
structural protein – CoVaccine HT is an oil-in-water (O/W) emulsion of 
hydrophobic, negatively charged sucrose fatty acid sulfate esters with the 
addition of squalane 
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T cell response is the hall mark and preferred immune 
repose than humoral immune response in viral infection. 
Optimal SARS-CoV-2 subunit vaccines must produce mainly 
Th1-skewed immune response across age groups. However, 
achieving this desired outcome is not straightforward and 
innovative approach is required either to the adjuvant, anti
gen, or the delivery system. Steinbuck et al designed a subunit 
vaccine composed of an amphiphile (AMP)-CpG (diacyl lipid 
with modified CpG) mixed with S-RBD. Animal experiments in 
young and aged mice showed greater than 25-fold higher 
epitope-specific and Th1 skewed polyfunctional cell induction. 
The induced NA reached 265-fold higher titers than convales
cent sera, with higher efficiency in terms of neutralization 
capacity. Additionally, higher order of cellular and humoral 
immunity was also induced among aged mice. This is due to 
the art of adjuvant modification; AMP modification adroitly 
distributes CpG to lymph nodes [99]. The summary of the 
key findings of the included articles is given in S2. 

Additionally, a brief account has been given below for some 
of the common adjuvants used in the COVID-19 subunit vac
cine study.

3.2.1. B-defensin
B-defensin is a TLR3 agonist used by several SARS-CoV-2 
subunit vaccine studies [100–102]. Defensins are cationic 
peptides found from human innate and epithelial cells, ser
ving as antimicrobials and signaling molecules [103,104]. 
Among α, β, and θ defensins, β-defensin is the most abun
dant antimicrobial in most cells [103].Three β-defensins; 
human β-defensin-1 (hBD1), hBD2, and hBD3; have been 
identified in human epithelial cells [104]. The hBD3 played 
a role in dendritic cell and T cell activation, migration, and 
polarization [105]. It activates the IFN-γ and plays a role in 
the integration of innate and adaptive immune responses 
[106]. A study evaluated the adjuvant role of hBD2 and 
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demonstrated increased expression levels of antiviral mole
cules [107].

3.2.2. Alum, emulsion, and liposome
Cationic adjuvant formulations (CAF01) are a liposome adju
vant containing a cocktail of dimethyldioctadecyl ammonium 
bromide (DDA) as a delivery vehicle and synthetic mycobac
terial cord factor as an immunomodulator. Worzner et al [108] 
evaluated the efficacy of alum, squalene oil in water emulsion 
system (SE), and CAF01 and spike protein antigen in mice. The 
finding confirmed that CAF01 induced a higher level of B, Th, 
and CD4 + T cells than alum [108]. In a similar study, while 
CAF01 induced higher titer of IFN-γ and IL-17, alum adju
vanted vaccines skewed toward IL-5, IL-10, and IL-13 [108]. 
Studies confirmed that pre-fusion stabilized spike protein (S- 
2P), S1, and RBD based subunit vaccines produced NA regard
less of adjuvants [108,109]. A study using S1 as the antigen 
evaluated the titer of neutralizing antibody and found that 
CoVaccine adjuvanted S1 protein subunit vaccines produced 
more neutralizing IgG antibodies than aluminum adjuvanted 
S1 protein vaccines [109].

3.2.3. CpG adjuvant
Cytosine phosphate guanidine oligodeoxy nucleotides (CpG 
ODNs) are a popular novel adjuvant that contain unmethy
lated CG motifs. This adjuvant activates B lymphocytes and 
plasmacytoid dendritic cells and presents antigens through 
TLR9 [110]. It enhances the production of Th1 and proinflam
matory cytokines. The adjuvant properties of CpG ODNs are 
improved when the vaccine antigen and ODN are in close 
proximity. Structurally, three distinct classes of synthetic CpG 
ODNs have been described [111]; namely, ‘K/B,’ ‘D/A,’ and ‘C’ 
type ODNs. Each class activates distinct immunoglobulin types 
[111–113]. Collectively, CpG ODN is a novel and recommended 
adjuvant that functions through enhancing the TNF-α and IL-6 
production. Additionally, CpG is known to augment the sur
veillance power of antigen presetting cells. The utility of CpG 
ODNs is further increased by their dual abilities of raising 
mucosal and systemic immunity [111–113]. The frequency of 
the CpG motif in the genome of SARS-CoV-2 is rare, and the 
microevolution is toward fewer CpG genomes. The lower CpG 
motif might be associated with the high rate of asymptomatic 
and mild cases. Hence, using CpG ODN as an adjuvant might 
be a good approach for enhancing immunogenicity with 
reduced toxicity [114].

A preclinical COVID-19 subunit vaccine study was carried 
out to determine the efficacy and safety of the SARS-CoV-2 S- 
2P antigen combined with CpG and/or aluminum hydroxide. 
The finding showed that the induction of NA is higher when 
CpG 1018 and aluminum hydroxide are combined than being 
individual adjuvants. Addition of CpG 1018 to alum sup
pressed the expression levels of Th2 cytokines (IL-5 and IL-6). 
However, CpG is associated with liver toxicity, spleen and 
lymph node enlargement, and inflammation [42]. Taken 
together, CpG 1018 is a more potent neutralizing antibody 
and Th1 inducer than the alum adjuvant [115].

3.2.4. Saponin-based matrix M
The matrix is a cocktail of two individually formed saponin 
matrix particles: a highly active saponin adjuvant (Fraction-C 
saponin) and a safe and weak saponin adjuvant (Fraction A). 
The admixture generated a new potent adjuvant with dose 
sparing nature. The matrix M adjuvant is a nanoparticulate 
adjuvant containing a heterogeneous mixture of saponin, 
cholesterol, and phospholipid [116]. This is the adjuvant of 
the potent COVID-19 subunit vaccine recently released [93] 
(Table 1). Matrix M is known to induce high titer and durable 
NA and mutifunctional cell mediated immunity [116].

3.2.5. Nano-adjuvants
Several types of vaccines including COVID-19 mRNA vaccines 
are designed at the nanoscale [117–120]. The architecture and 
application of nano-adjuvants are reviewed elsewhere [121]. 
Nanomaterials have several important functions, including 
antigen/nucleic acid delivery, limiting bioavailability, and 
depot effect among others [122]. For instance, according to 
Sun et al (2020), the nanodepot of manganese is found to be 
effective and safe as treatment and vaccine adjuvants com
pared with free Mn2+. NanoMn treatment increased the CD8 
+ memory T cell population and polarized macrophages into 
M1 types and increased the serum IgG, TNFα, and IFNγ con
centrations. Pharmacokinetic and safety evaluation data 
demonstrated reduced neural inflammation. These collectively 
make nano-manganese as a safe and effective adjuvant for 
COVID-19 [123]. Another experiment was performed for eval
uating the adjuvant nature of cationic nanocarriers: polyethy
leneimine (PEI), DOTAP, and chitosan. The experiment 
compared these candidate cationic nanocarrier adjuvants 
with other anionic and neutral nanocarriers controls. An 
ELISA serum antibody titer showed the PEI adjuvanted subunit 
vaccine induced a significantly higher titer of NA than control 
nanocariers [124]. Nanoparticles are more membrane pene
trating and are able to reach and accumulate inside DC and 
macrophages. These phenomena enhance the innate immune 
response power of DC and macrophages [125]. Contrary to 
these claims, a systematic review by Hoseini et al (2021) con
cluded against the effectiveness of metal nano-adjuvants 
[126]. Several studies in the literature and our synthesis con
firmed the superior value of nano-particulate adjuvants than 
other forms of the same adjuvant.

3.3. Signaling through pattern recognition receptors

The innate immune cells sense the entry of invading patho
gens by targeting PAMP and damage associated molecular 
patterns (DAMP). The nature of the danger is investigated, 
weighted, and immediately confronted by the innate immune 
system. The adaptive immune defense is a learned effector of 
the message encoded by innate immune signaling products 
[127,128]. Thus, it is the strength and type of PRR-PAMP/DAMP 
interaction that determines the nature of downstream signal
ing pathways across the PRR for controlling infection. 
Adjuvants derived from PAMP/DAMP enhance and modulate 
innate immunological signal transduction pathways. Whether 
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the SARS-CoV-2 genome contains potential PAMP adjuvants or 
not is the future area of security. A recent imunoinformatic 
study identified motfis having high affinity to TLR7 and 
TLR8 [129].

Pattern recognition receptors are diverse. These include 
toll-like receptors (TLR), retinoic acid-inducible gene-I (RIG-I)- 
like receptors (RLRs), the family of absent in melanoma 2 
(AIM2)-like receptors (ALRs), cyclic guanosine monophosphate 
(cGMP)-adenosine monophosphate (AMP) (cGAMP) synthase 
(cGAS), complement receptors, scavenger receptors, C-type 
lectin receptors (CLR), nucleotide-binding oligomerization 
domain, leucine-rich repeat-containing protein receptors 
(NLRs), Fc gamma receptors, mannose receptors, and scaven
ger receptors [130–133]. Based on their site of expression in 
the cell, these PRRs are usually classified into cell surface, 
endosomal, and cytosolic PRRs. For instance, TLR 1/2/4/5/6/ 
10 and CLR are cell surface sensors; TLR3/7/8/9/13 are endo
somal receptors; and RLRs, cGAS, and AIM2 are cytosolic sen
sors (Table S3). The different PAMP-PRR complex activates 
common adaptor proteins and downstream signaling path
ways for the production of pro-inflammatory cytokines and 
IFN [134] (Figures 3–4). Cell surface PRRs are mainly important 
for bacterial and fungal resistance, and host innate defense 
against viruses including SARS-CoV-2 mainly activates the 
endosomal and cytosolic PRR signaling pathways. A compre
hensive list of PRR and their cognate PAMP along with expres
sion products (cytokine) is summarized and given in the 
supplementary material, S3 [135–138].

3.3.1. TLR 3/7/8/9
The TLR is the prototype and well-studied PRR [139]. The 
discovery of TLR is considered as one of the turning points 
that brings a paradigm shift in the innate immune system 
biology [135]. Hitherto, 13 mammalian TLRs types have been 
identified. The TLR is a type I transmembrane glycoprotein 
helix containing three domains: an agonist-binding ectodo
main, a transmembrane region, and a cytoplasmic Toll/inter
leukin-1 receptor (TIR) structure [131,138,140,141]. During 
interaction of TLR with their cognate antigen, TLR undergoes 
homo/hetrodimerization. The ecodomain portion of the TLR 
contains leucine reach repeat (LRR) ‘LxxLxLxxN’ motifs of 20– 
30 amino acid length. Binding of PAMP causes rearrangement 
of the TLR-PAMP complexes and calls specific adaptor proteins 
to the cytoplasmic TIR domains [131]. This interaction follows 
two pathways: myeloid differentiation primary-response pro
tein 88 (MYD88) and TIR domain-containing adaptor-inducing 
interferon-β (TRIF) dependent pathways [139]. The MYD88- 
dependent pathways activate the MAL, MYD88, IL-1 R-asso
ciated kinases (IRAKs), and nuclear factor-κB (NF-κB) 
[137,141,142]. Examples to this pathways include TLR7/8/9 
[143]. The TRIF pathways active dendritic cells, NF-kB, and 
induced IFN-β [139]. The TLR3 [143] signaling pathways follow 
the TRIF adaptor signaling pathway (Figure 3).

3.3.2. Retinoic acid-inducible gene-I-like receptors (RLR)
The RLR, melanoma differentiation associated gene 5 (MDA5), 
and laboratory of genetics and physiology 2 (LGP2) are mem
bers of RNA helicase and sensors of RNA of the pathogen 
source in the cytoplasm [130,144]. The interaction of RLR– 

RNA activates type I interferons (IFN-α) and proinflammatory 
cytokines, which are known effectors of the innate immune 
system [144,145]. However, the RLR signaling pathway is very 
prone to overactivate and leads to autoimmunity. Hence, it is 
under strict regulation to keep the immune homeostasis [146] 
(Figure 3). Signaling pathways by RLR are employed by several 
viruses including SARS-CoV-2 [147].

3.3.3. The cGAS-STING signaling axis
Cyclic GMP-AMP (cGAMP) synthase (cGAS) is one of the cyto
plasmic sensors of cytosolic DNA either directly or indirectly 
through second messenger cGAMP [148,149]. The binding of 
cGAMP with STING adaptor protein at the surface of endoplas
mic reticulum (ER) pushed the complex into the Golgi complex 
for further recruiting of the interferon regulatory factor 3 
(IRF3), IKK, and TANK-binding kinase 1 (TBK1) complex. This 
complex formation followed by phosphorylation and dimeri
zation leads to the production of type I interferon (IFN-α) and 
the type I IFN/ NFκ-β dependent proinflammatory cytokines 
[134,148,150,151].

Recent evidences proposed that, besides DNA viruses, RNA 
viral infection could also activate the cGAS-STING signaling 
pathways through DAMPs released from mitochondria. An 
indirect cGAS-STING signaling pathway inhibition experiment 
confirmed the upregulation of this pathways in SARS-CoV-2 
infection [152]. Another study further identified the specific 
cGAS-STING signaling pathways leading to antiviral resistance. 
Based on this study, SARS-CoV-2 antiviral resistance in the 
cGAS-STING pathways is through selective activation of NF- 
κB pathways. The IRF3 pathways are suppressed [153] 
(Figure 4).

4. Conclusions

Several in silico and (pre)clinical studies evaluated different 
types of adjuvanted COVID-19 subunit vaccines. The current 
COVID-19 subunit vaccine development researches included 
several ‘novel adjuvants,’ which have known PRR receptors. Of 
these, defensins, alum, matrix-M, and CpG are the most uti
lized adjuvants. Despite some controversy, nanoparticulate 
adjuvants are found to be superior to larger size/form of 
adjuvants. Novel SARS-CoV-2 adjuvants activate the innate 
immune defense system either through endosomal (TLR3/7/ 
8/9/13) and/or cytosolic (RLRs, cGAS, and AIM2) sensors. The 
effectiveness of subunit vaccine relies on the art of designing 
vaccines, which have optimal antigen–adjuvant–PRR blending. 
As such, like epitopes, in-depth structural and molecular char
acterizations of candidate adjuvants are equally important for 
rational selection of adjuvants. Available evidence showed 
that the world would have several alternative COVID-19 vac
cine adjuvants in the coming few years.

5. Expert opinion

Subunit vaccines are a state of the art and modern biotech
nology products. In the immunoinformatics stage, sequence 
identification from the database, prediction of epitope aller
genicity and toxicity, adjuvant and linker selection, 
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construction, molecular docking, and physico-chemical char
acterization are key upstream research activities. The animal 
model experiment is a dose finding and safety evaluation 
stage. As such, selection of an appropriate lab animal followed 
by inoculation and measurement of the safety and efficacy of 
the vaccine are the key tasks. The clinical trial phase is the 
measure of safety, efficacy, and correlate of protection using 
clinical and immunological variables.

Different types of molecular adjuvants have been applied 
in COVID-19 subunit vaccine development. Across the three 
stages (in silico, pre-clinical, and clinical), safe and effective 
adjuvants (adjuvanted vaccine) have been characterized in 
terms of their physicochemical nature, size, depot and dose 
sparing effect, speed in seroconversion rate, and ability to 
induce broad spectrum immune response. All published 

COVID-19 subunit clinical studies demonstrated excellent 
efficacy and safety profile [89,90,93]. Many more clinical 
trials are running against time and the pandemic 
(NCT04783311, NCT04780035, and NCT04813562) for produ
cing second and third generation vaccines. However, the 
number of clinical trials are a few compared with that of 
upstream experiments. This might be due to failure in 
defining the appropriate immunological product profile 
and subsequent selection of antigens and adjuvants with 
synergistic immunological effect.

Both (pre)clinical trials confirmed the production of several 
orders of magnitude higher antibody than the convalescent 
sera of recovered people. The reason behind this scenario is 
unknown, but it is likely due to the persistent stimulation and 
dose sparing nature of vaccines. Additionally, as immune 

Figure 3. SARS-CoV-2 entry and predicted endosomal TLR and cytoplasmic RLR signaling pathways.
TLR: Toll-like receptor; RLR: retinoic acid inducible gene 1 like receptor. Figure created with BioRender.com 
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evasion mechanisms, pathogens such as the SARS-CoV-2 tend 
to cover their antigen with carbohydrates through glycosyla
tion. This might lower the pathogen immunogenicity and 
subsequent host induction of NA.

The most commonly used COVID-19 adjuvants include β- 
defensin, alum, M1 matrix protein, MF59, and CpG. However, 
this does not guarantee their superiority in terms of efficacy 
and safety. For instance, all β-defensin adjuvanted experi
ments are at in silico stage. Despite that, it is a good step 
that the majority of researches are now using PAMP/small 
molecule adjuvants that have known PRRs. Additionally, sev
eral improved results were obtained through modification of 
the existing classical adjuvants and antigens. Such a strategy 
must be expanded. It is likely that more potent and safe 
adjuvants will be identified from the study of PRR’s signaling 
pathways. Currently, major new fields are also being exploited 
for the identification of metabolic, cell death, and epigenetic 
adjuvants [38].

The finding of safe and effective adjuvants must go down 
to the nanoscale size and nanoparticulate form. This is 
because of the fact that nanomaterials concentrate the anti
gen and display antigens in prolonged patterns and help APCs 
co-localize antigens and adjuvants [154]. The smaller the size, 
the more inflammatory response formation. On the other 
hand, nanoscale materials are associated with toxicity by dif
ferent mechanism than bulky materials. In nanomaterial, the 
toxicity has been thought to originate from nanomaterials’ 
size and surface area, composition, and shapes [155]. 

Summing up, the nanoparticulate adjuvant is the future pro
mising area of vaccine research.

Safety is the single most important issue when we talk 
about adjuvants. The surrogate makers of the correlate of 
protection such as titer, durability, class switching, rate of 
seroconversion, and dose sparing are more common among 
major adjuvants and these differences are as such insignif
icant. Rather, the major differences are with regard to the 
ability of the adjuvant to induce cell-mediated immunity 
(polyfunctional ThCD4+ and CTH8+ cells), the balance of 
Th1/Th2, induction of life-long memory cells, etc. Future 
vaccine research must focus on identifying adjuvants that 
could have the potential of shortening the number of vac
cine shoot/individuals and are able to induce tissue resident 
memory T cells and long lived plasma cells [38]. Taken 
together, adjuvants in subunit COVID-19 are the unsung 
heroes that give the most controlled, efficacious, and safe 
vaccines.

Our review showed that the search for effective and safe 
subunit vaccines is broadening with unprecedented depth 
and speed. The search spans from modification of the existing 
adjuvants to mining of OMICS sciences. The results of new 
formulations of the existing adjuvants are astonishing. The 
continued spillover of pandemic infectious disease is lever
aging the vaccine research arena and is expected to boost 
the biomedical and vaccine research funding. Hence, the 
search for biological adjuvants is an untouched area of 
innovation.

Figure 4. Predicted SARS-CoV-2 cytosolic cGAS-STING signaling pathways.
GMP: guanosine monophosphate; AMP: adenosine monophosphate; cGAMP: cyclic GMP–AMP monophosphate; cGAS: GMP–AMP monophosphate synthase; STING: stimulator of 
interferon genes. Figure created with BioRender.com 
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