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Objective. In this study, we investigated the mechanism of Qing-Gan Li-Shui formulation (QGLSF) in treating primary open
glaucoma (POAG) by network pharmacology and in vitro experiments. Methods. The active pharmaceutical ingredients (APIs) of
GLQSF (prepared with Prunella vulgaris, Kudzu root, Plantago asiatica, and Lycium barbarum) were obtained from the Tra-
ditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and Yet Another Traditional
Chinese Medicine database (YATCM). The targets of POAG were screened out with GeneCards, OMIM, PharmGKB, Therapeutic
Target Database (TTD), and DrugBank databases. The Venny platform was used to summarize the core targets. Topological
analysis was performed using Cytoscape3.8.0. A protein-protein interaction network was plotted by STRING online. The key
targets were subjected to GO and KEGG enrichment analyses. Finally, the effects of APIs were verified by a model of chloride
hexahydrate (CoCl,)-induced retinal ganglion cells-5 (RGC-5). Results. The main APIs were selected as quercetin (Que) by
network pharmacology. Nine clusters of QGLSF targets were obtained by the PPI network analysis, including AKT-1, TP53, and
JUN. KEGG enrichment analysis showed that these targets were mainly involved in the AGE-RAGE signaling pathway. By in vitro
experiments, Que promoted cell proliferation. The secretion of AKT-1, TP53, JUN, AGE, and RAGE in the cell culture su-
pernatant decreased, as shown by ELISA. The mRNA levels of AKT-1, TP53, JUN, and RAGE decreased, as shown by RT-PCR.
QGLSF may employ the AGE-RAGE signaling pathway to counter POAG. Conclusion. This study preliminarily elucidates the

efficacy and mechanism of QGLSF in the treatment of POAG.

1. Introduction

Primary open glaucoma (POAG) is a leading cause of ir-
reversible blindness worldwide [1]. In its early phase, in-
traocular pressure rises, resulting in atrophy of optic nerve
axons, blockade of axoplasmic flow, insufficient nutrient
supply to retinal ganglion cells (RGCs), and even subsequent
injury of optic nerve fibers [2]. At present, POAG can be
controlled through reducing intraocular pressure [3]. If
intraocular pressure control is unsatisfactory, surgical
treatments are required, such as laser plasty and resection
[4]. Despite these efforts, many patients still experience
progressive visual field loss.

Traditional Chinese medicine (TCM) has shown clinical
efficacy against POAG [5]. Qing-Gan Li-Shui formulation

(QGLSF) is composed of Prumella vulgaris, Kudzu root,
Plantago asiatica, and Lycium barbarum. Experimental
studies have shown that QGLSF can reduce intraocular
pressure and inhibit the apoptosis of retinal ganglion cells
(RGCs) in a rat model of microbead-induced chronic in-
traocular hypertension [6]. Network pharmacology can be
adopted to analyze the active pharmaceutical ingredients
(APIs) and targets of TCM formulations, thus providing
insight into the therapeutic mechanisms of TCM from a
systemic perspective [7, 8].

RGC-5 was first regarded as a cell line derived from rat
retinal ganglion cells, but recent studies have shown that it
corresponds to the mouse photoreceptor cell line 661W [9].
Despite such contamination, studies have shown that RGC-5
can still be used to test hypotheses about neural cells derived
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from retinal cell lines [10-12]. An in vitro model of chloride
hexahydrate (CoCl,)-induced hypoxic damage in retinal
ganglion cells-5 (RGC-5) reveals the pathological mecha-
nism of glaucoma [13, 14]. It has been found that CoCl,
regulates specific genes to induce hypoxia [15].

In this study, we used the network pharmacology
method to explore the potential APIs and targets of QGLSF
in the treatment of POAG. The RGC-5 hypoxia injury model
was established to validate the functions of key APIs and
their targets.

2. Materials and Methods

2.1. Screening APIs and Targets of QGLSF. Based on the
TCMSP database (https://old.tcmsp-e.com/tcmsp.php) and
the YATCM database (https://cadd.pharmacy.nankai.edu.
cn/yatcm/home), the APIs in QGLSF were searched
according to oral bioavailability (OB) >30% and drug
likeness (DL) >0.18. The targets of QGLSF were screened out
of the TCMSP. UniProt database (https://www.uniprot.org).

2.2. Screening Genes Related to POAD. The key words
“primary open angle glaucoma” were searched in GeneCards
database (https://www.genecards.org), OMIM database
(https://omim.org), PharmGKB database (https://www.
pharmgkb.org), TTD database (https://db.idrblab.net/ttd)
and Drugbank database (https://go.drugbank.com) data-
bases for the genes related to POAG. All relevant data were
downloaded, and duplicates were eliminated.

2.3. Predicting the APIs, Targets, and Pathways of QGLSF.
The genes targeted by POAG and QGLSF were imported
into the VEENY 2.1.0 database (https://bioinfogp.cnb.csic.
es/tools/venny/index.html). The PPI network of these genes
was constructed by STRING 2.1.0 (https://bioinfogp.cnb.
csic.es/tools/venny/index.html). Hub genes were deter-
mined by CytoNCA plugin. Topological analysis was per-
formed using Cytoscape3.8.0 to visualize the regulatory
network of the APIs. GO and KEGG enrichment analyses
were performed by R (version4.0.2).

2.4. Drugs and Reagents. Quercetin was purchased from
Absin Biosciences Co., Ltd (Shanghai, China); fetal bovine
serum and penicillin-streptomycin from Gibco (Carlsbad,
USA); Dulbecco’s modified eagle’s medium (DMEM) high
glucose medium and trypsin solution from Cytiva HyClone
(USA); dimethyl sulfoxide (DMSO) and cobalt (II) chloride
hexahydrate (CoCl,) from Sigma Chemicals (St.Louis,
USA); Cell Counting Kit-8 from Dojindo (Kumamoto, Ja-
pan); FITC Annexin V Apoptosis Detection Kitl from
ThermoFisher Scientific (Waltham, USA); MitoTracker Red
CMXRos from Cell Signaling Technology (Danvers, USA);
RAT AGEs, RAGE, JUN, AKT1, and TP53 ELISA KIT from
Shanghai Lengton Biosciences Co., Ltd (Shanghai, China);
DAPI and TriQuick reagent from Beijing Solarbio Scien-
ceamp Technology Co., Ltd. (Beijing, China); TRIzol reagent
from Invitrogen (Carlsbad, USA); Prime Script™
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RTMasterMix from TaKaRa (DalLian, China); and SYBR
Qpcr Master Mix from Vazyme (NanJing, China).

2.5. Cell Culture. Rat retinal ganglion cells (RGC-5) were
purchased from the American Type Culture Collection
(Manassas, USA). The cell culture medium consisted of 10%
fetal bovine serum, 1% penicillin-streptomycin, and DMEM.
Cells were grown at 37°C in an incubator with 5% CO, and
95% air, and passaged once having grown to 70-80%
confluence.

2.6. Cell Modeling and Treatment. Quercetin (Que) was
completely dissolved in DMSO and diluted with cell culture
medium at different concentrations for later use. CoCl, was
completely dissolved in DMSO. The CoCl, solution was
prepared at a final concentration of 600 uM, based on the
dose of CoCl, used in previous studies [16]. As a vehicle, the
final level of DMSO in the culture medium was 0.05% (v/v).
RGC-5 cells at passages 10-25 were selected and seeded at
2x105/ml in six-well plates for 24 h. Afterwards, the me-
dium containing Que (25 yM) was added and incubated for
24 h, followed by an incubation for 24 h containing CoCl, to
induce hypoxic injury.

2.7. Cell Viability Assay. The cells were seeded in 96-well
plates (1 x 104/ml) for 24 h. After drug intervention, 10 yl of
CCK-8 solution was added to each well and incubated for 1 h
at 37°C in the dark. Absorbance was measured at 450 nm
using a microplate reader.

2.8. Apoptosis Assay. After cell modeling, the cells were
washed with PBS and resuspended in 200l of binding
buffer. Then, 54l of Annexin V-FITC was added and in-
cubated for 10 min at room temperature. After the cells were
washed with binding buffer and resuspended, 10ul of
propidium iodide staining solution was added for 5min.
Flow cytometry was used to detect the apoptosis of cells.

2.9. Cell Supernatant. After cell modeling, the cell culture
supernatant was collected and centrifuged at 3000 rpm/min
for 20 min. Next, 50 ul of cell culture supernatant and 50 yl of
biotin antigen were added to each enzyme-labeled coated
well and incubated at 37°C for 30 min. After washing for five
times with washing solution, 50 ul of avidin-HRP was added
to each well, incubated at 37°C for 30 min, and washed for
another five times. The developer solution was added to each
well and incubated at 37°C in the dark for 10 min before the
addition of the stop solution. The absorbance was detected
by a microplate reader at a wavelength of 450 nm.

2.10. mRNA Detection. The TRIzol method was used to
extract RNA from samples. RNA was reverse-transcribed
into cDNA with PrimeScript RT, followed by PCR ampli-
fication with gene-specific primers. Primer sequences and
product lengths are shown in Table 1. The GAPDH was used
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TasLE 1: RT-PCR primer sequences and product lengths.

Gene Product length Forward primer (5’ — 3') Reverser primer (5' — 3')

Gapdh 74 GCATCTTCTTGTGCAGTGCC TACGGCCAAATCCGTTCACA
JUN 130 TGGGCACATCACCACTACAC GGGCAGCGTATTCTGGCTAT
TP53 75 CCCCTGAAGACTGGATAACTGT TCTCCTGACTCAGAGGGAGC
AKT1 101 GAACGACGTAGCCATTGTGA AGGTGCCATCATTCTTGAGG
RAGE 140 ACAGAAACCGGTGATGAAGGA TGTCGTTTTCGCCACAGGAT

(a)

GeneCards Drug Disease

DrugBank

OMIM

PharmGkb
(b) (c)

FIGURE 1: Screening of POAG and QGLSF-related targets and APIs. (a) API-target network. Red icons are targets and yellow icons are
APIs. (b) Intersections in the venny diagram of POAG-related targets from Genecards, OMIM, PharmGKB, TTD, and Drugbank
databases. (c) Intersections in the venny diagram of QGLSF and POAG targets.
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FIGURE 2: The API-target-POAG network. Rectangles represent targets and circles represent active ingredients. Different colors in the circle
represent different herbs (red represents Plantago asiatica, purple represents Kudzuvine root, orange represents Lycium barbarum, and

green represents Prunella vulgaris).

as a control for unification and the results were calculated
using the 274 method.

2.11. Statistical Analysis. Statistical analysis was performed
using GraphPad8. Multiple-group comparison was per-
formed through one-way analysis of variance. A between-
group comparison was performed through t-tests. All ex-
perimental data were expressed as mean+ SD. Statistical
significance was considered when p <0.05.

3. Results

3.1. APIs and Targets of QGLSF. QGLSF was mainly com-
posed of Prunella vulgaris, Kudzu root, Plantago asiatica,
and Lycium barbarum. A total of 52 APIs were searched
from the databases. The API-target network was constructed
using Cytoscape3.8.0 (Figure 1(a)). Que, beta-sitosterol, and
Kaempferol were the most connected targets in the network.
After eliminating the duplicates, 2081 POAG-associated
targets were identified in 5 databases (Figure 1(b)). From the
comparative analysis between the POAG and QGLSF tar-
gets, 100 were obtained as QGLSF targets for the treatment
of POAG (Figure 1(c)).

3.2. API-Target-POAG Network. The API-target-POAG
network was constructed using Cytoscape3.8.0 (Figure 2).

Analysis of the network revealed that 52 compounds and 100
targets played an important role in QGLSF’s treatment of
POAG. Plantago asiatica contained the most compounds in
the network (Table 2). Among them, Que (Prunella vulgaris,
Plantago asiatica, and Lycium barbarum) had the most
intersections.

3.3. Hub Genes in PPI Networks. The PPI network was
generated using STRING, showing a total of 308 nodes
(Figure 3). Hub genes were filtered by median values of Be-
tweenness, Closeness, Degree, Eigenvector, LAC, and Network
scores using the CytoNCA plugin. After two rounds of
screening, 9 hub genes were obtained, including ESRI,
MAPK14, MYC, MAPK1, AKTI, JUN, RELA, FOS, and TP53.

3.4. KEGG and GO Enrichment Analyses. In the GO en-
richment analysis, 2276 terms were obtained. As shown in
Figure 4(a), the most involved biological processes mainly
included the response to lipopolysaccharide, the response to
molecules of bacterial origin, and the cellular response to
chemical stress. The most involved cellular compositions
included membrane rafts, membrane microdomains, and
membrane domains. The most involved molecular functions
included DNA-binding transcription factor binding, heme
binding, and RNA polymerase II specific DNA-binding
transcription factor binding.
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TaBLE 2: List of the top 10 genes and APIs.
Number Gene name Degree MOL ID Compound name Degree
No. 1 PGR 31 MOL000098 Quercetin 84
No. 2 PTGS2 21 MOL000006 Luteolin 35
No. 3 PTGS1 17 MOL000422 Kaempferol 31
No. 4 NR3C2 16 MOL005406 Atropine 25
No. 5 NOS2 10 MOL000392 Formononetin 20
No. 6 AR 10 MOL009637 4-((Z,1R)-3-(4-Methoxyphenyl)-1-vinylprop-2-enyl) phenol 19
No. 7 ADRB2 8 MOL000358 Beta-sitosterol 18
No. 8 CHRM1 8 MOL000449 Stigmasterol 16
No. 9 DPP4 8 MOL008400 Glycitein 13
No. 10 PPARG 8 MOL002959 3'-Methoxydaidzein 11

(a)

ESR1

FIGURE 3: PPI networks. (a) Initial PPI network; (b) secondary PPI network; (c) PPI network after final screening.

KEGG enrichment analysis revealed 155 enriched sig-
naling pathways, mainly including AGE-RAGE signaling
pathway, fluid shear stress and atherosclerosis and prostate
cancer (Figure 4(b)). The most significantly enriched
pathway was the AGE-RAGE signaling pathway, which
involved 25 hub genes, AKT1, VEGFA, BCL2, BAX, MMP2,
and MAPK]1 (Figure 5(b)). Using Cytoscape, a combination
network was constructed with the top five pathways and the
core targets (Figure 5(a)).

3.5. Que Enhanced the Activity of RGC-5 Cells Induced by
CoCl,. To investigate the effect of Que on the viability of

RGC-5, RGC-5 cells were pretreated with different doses of
Que (0, 5, 12.5, 25, 50 uM) for 24 h. The results showed that
Queat 5, 12.5, 25, and 50 uM enhanced the activity of RGC-5
cells (p<0.05). Que at 25uM showed the strongest effect
(p <0.01) (Figure 6(a)). When the Que concentration rose to
50 uM, the cell viability began to decrease. Therefore, Que
concentrations of 12.5 and 25uM were chosen for subse-
quent experiments.

To confirm whether Que alleviated CoCl,-induced RGC-
5 cell damage, CCK-8, and Annexin V-FITC assays were
used to assess cell viability and apoptosis after pretreatment
with Que and CoCl,. The results showed that CoCl, sig-
nificantly decreased the viability and increased the apoptosis
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of RGCs. However, after treatment with Que, the cell via-
bility increased, with a peak at a concentration of 25uM
(p <0.01) (Figures 6(b) and 6(c)). However, the cell viability
increased after the Que concentration reached 25uM
(p<0.05).

3.6. Que Inhibited Protein Secretion of Hub Genes. To validate
the results of network pharmacology, we examined the
expression of the proteins most enriched in the AGE-RAGE
signaling pathway and some hub genes by ELISA. The results
showed that CoCl, increased the secretion of AGEs, RAGE,
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JUN, AKT-1, and TP53 in the cell supernatant. However, the
secretion of AGEs, RAGE, JUN, AKT-1, and TP53 in the cell
supernatant decreased significantly after treatment with
Que, especially at the concentration of 25 M (Figure 7).

3.7. Que Inhibited mRNA Expression of Hub Genes. To fur-
ther validate whether Que acts through targets and AGE-
RAGE signaling pathway acquired by the network phar-
macology, total RN A was extracted and mRNA expression of
core genes was measured by RT-PCR. Since AGEs are a
general term for a variety of proteins, their mRNA contents
were measured in this study. The results showed that the
mRNA expression of RAGE, AKT-1, JUN, and TP53 in-
creased significantly after CoCl, treatment, and the mRNA
expression of RAGE, AKTI, JUN, and TP53 decreased
significantly after Que treatment, especially at the concen-
tration of 25 uM (Figure 8).

4. Discussion

In this study, we validated the therapeutic mechanisms of
QGLSF for POAG by means of network pharmacology and

in vitro experiments. The network pharmacology analysis
showed that the main API in QGLSF was Que. Que is a
common flavonoid found in a variety of vegetables and fruits
[17]. Owing to its strong antioxidative, anti-inflammatory,
immunomodulatory, vascular-protective, and other bio-
logical activities, Que has been widely studied in the field of
ophthalmology [18-20]. Que can penetrate the blood-brain
barrier to exert its effects of antioxidation and neuro-
protection [21, 22]. It has been found that Que can enhance
the mitochondrial function of RGCs and inhibit mito-
chondria-induced apoptosis in vivo in a rat model of chronic
ocular hypertension, thereby promoting the survival of
RGCs [23]. In our study, Que significantly increased the
viability and inhibited the apoptosis of RGC-5 cells treated
with CoCl,. However, this efficacy should be warranted in
clinical trials.

Through the PPI network, we obtained 9 hub genes
targeted by QGLSEF. These targets were mainly associated
with inflammation and apoptosis. In the pathogenesis of
POAG, RGC apoptosis can be caused by persistent high
intraocular pressure [24]. The proapoptotic transcription
factor JUN has been demonstrated to induce POAG-related
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FIGURE 8: Que regulated the mRNA expression of core targets. (a) mRNA expression of RAG. (b) mRNA expression of TP53. (¢) mRNA
expression of JUN. (d) mRNA expression of AKT-1. Values are represented as mean = S.D. *p < 0.05 versus control group. * p < 0.05 versus

CoCl, group. **p <0.01 versus CoCl, group.

neurodegeneration [25, 26]. JUN is a typical target of the
JNK signaling pathway. Through this pathway, JNK phos-
phorylates and activates its canonical target, JUN, which in
turn acts as a proapoptotic transcription factor by promoting
the transcription of prodeath genes [27, 28]. In addition,
JUN also acts on downstream EDN receptors to enhance ER
stress response and mediate RGC death. Therefore, JUN may
mediate RGC death as a response to EDN [29].

Protein kinase (AKT) is a human serine-threonine Kki-
nase and an AGC protein kinase with three highly ho-
mologous isoforms (AKT1, AKT2, and AKT3). AKTI is
expressed in a wide range of tissues [30, 31]. AKT1 is a key
component of the phosphoinositide 3 kinase (PI3K)/AKT1
signaling cascade that can regulate cell growth and survival
[32]. AKT mediates cell apoptosis via BCI2 and MDM?2
pathways [33]. Recent studies have found that with primary
cilia acting as sensors, AKT-1 interacts with SMAD2/3 to
regulate the autophagy induced by mechanical stretch in
trabecular meshwork cells [34]. Besides, the CD9/ITGA4/

PI3K-Akt axis can mediate glaucomatous trabecular cell
apoptosis through comprehensive transcriptional and pro-
teomic analysis [35].

Tp53 is an inducible apoptotic nuclear transcription
factor capable of inducing neuronal death and has
demonstrated its implication in a variety of neurode-
generative diseases [36]. Studies have shown that the
apoptosis-stimulating protein ASPP1/2 is abundantly
expressed and promotes the expression of P53 in injured
frontal RGC cells, which in turn induces apoptosis [37]. In
the present study, we found that the expression levels of
AKT-1, TP53, and JUN were all significantly increased in
CoCl,-induced RGC-5 cells, but decreased after Que
treatment. We speculate that Que may reduce the apo-
ptosis of RGC-5 cells by inhibiting the expression of AKT-
1, TP53, and JUN.

As shown in GO enrichment analysis, the response to
lipopolysaccharide was the most significantly enriched. Li-
popolysaccharide, as a potent endotoxin, can arouse
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systemic inflammation in many neurodegenerative diseases
[38, 39]. The mechanism may involve the activation of the
TLR-4 signaling pathways that increase the level of proin-
flammatory cytokines [40]. Excess lipopolysaccharide is
deleterious to RGCs by inducing microglial activation, thus
facilitating the progression of glaucoma [41]. Besides,
stimulating microglia with lipopolysaccharide exacerbates
optic nerve damage in rats with experimental glaucoma [42].

KEGG pathway enrichment analysis suggested that the
hub genes were mostly involved in the AGE-RAGE signaling
pathway. POAG is a multifactorial disease in which oxi-
dative stress may play a major pathophysiological role.
Meanwhile, oxidative stress is regulated by the AGE/RAGE
signaling pathway [43, 44]. Studies have shown that AGEs
can promote oxidative stress and mitochondrial dysfunction
in ARPE-19 cells by interacting with RAGE, which in turn
leads to apoptosis [45]. Moreover, the accumulation of AGEs
and the activation of RAGEs sustain oxidative stress in
vascular tissues [46]. The oxidative stress due to hypergly-
cemia promotes the formation of AGEs and the expression
of RAGEs [47]. In addition, AGEs and RAGEs can activate
PI3K/AKT signaling through HPA proteins [48, 49].

Through in vitro studies, we found that Que could reduce
the levels of AGEs and RAGEs secreted by RGC-5 cells
induced by CoCl,. It was found by RT-PCR that Que could
similarly reduce the mRNA level of RAGEs induced by
CoCl, in RGC-5 cells, suggesting that Que may ameliorate
CoCl,-induced RGC-5 cell damage through the AGE-RAGE
signaling pathway.

There are some limitations in this study. First, we used the
RGC-5 cell line to investigate the functional mechanism of
glaucoma. Although commonly used in glaucoma-related
research, this cell line may still lead to inaccurate results of
experimental studies because of the possibility of contami-
nation of the mouse photoreceptor cell line. Besides, we did not
perform validation of APIs obtained in network pharmacol-
ogy. Future validation of APIs by LC-MS/MS is still needed.

5. Conclusion

In this study, our network pharmacology analysis showed
that Que may be the main API in QGLSF in treating POAG.
In vitro experiments revealed that Que can significantly
relieve CoCl,-induced RGC-5 cell injury. This mechanism
may be that Que inhibits the expression of apoptosis-related
genes (JUN, TP53, AKT1) through the AGE-RAGE signaling
pathway. This study provides theoretical evidence for the
efficacy of QGLSF in the treatment of POAG. However,
clinical studies should be carried out to determine its dose
and validate its efficacy in real-time settings.
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