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P H Y S I C S

Probing the in-plane liquid-like behavior of liquid 
crystal elastomers
Haruki Tokumoto1†, Hao Zhou2†, Asaka Takebe1, Kazutaka Kamitani3, Ken Kojio3, 
Atsushi Takahara3, Kaushik Bhattacharya2*, Kenji Urayama1*

When isotropic solids are unequally stretched in two orthogonal directions, the true stress (force per actual 
cross-sectional area) in the larger strain direction is typically higher than that in the smaller one. We show that 
thiol-acrylate liquid crystal elastomers with polydomain texture exhibit an unusual tendency: The true stresses in 
the two directions are always identical and governed only by the area change in the loading plane, independently 
of the combination of imposed strains in the two directions. This feature proves a previously unidentified state of 
matter that can vary its shape freely with no extra mechanical energy like liquids when deformed in the plane. The 
theory and simulation that explain the unique behavior are also provided. The in-plane liquid-like behavior opens 
doors for manifold applications, including wrinkle-free membranes and adaptable materials.

INTRODUCTION
Rubbers (elastomers) have high reversible extensibility and very 
low elastic modulus that originate from the entropic elasticity of 
polymer chains (1–3). Introducing liquid crystallinity to elastomers 
results in a unique class of soft solid material called liquid crystal 
elastomer (LCE) (4). LCE is obtained by loosely cross-linking the 
main-chain LC polymers with the mesogens being part of the linear 
chains or the side-chain LC polymers with the mesogens in the 
parts dangling from a nonmesogenic polymer backbone (5, 6). Both 
types of LCE exhibit a fascinating stimulus-response property 
owing to the coupling of LC order and rubber elasticity: The LCEs 
deform in response to a variation in the LC order as the LC order 
induces the orientation of polymer network strands along the direc-
tor (principal direction of LC anisotropy). This property enables the 
actuation of the elastomers by various types of stimulus such as 
temperature change and electric, magnetic, and optical fields, each 
of which can drive a variation in the LC order. Various complex 
deformations can also be programmed by spatially controlling the 
director configuration in LCEs (7). LCEs are therefore attracting 
considerable attention as a promising material for soft actuator and 
bioinspired mechanical devices.

The coupling of LC order and rubber elasticity also results in an 
unusual mechanical property that is called “soft elasticity.” In this 
well-studied phenomenon, a nematic elastomer (NE) subjected to 
uniaxial extension deforms without (or with minimal) additional 
stress up to a certain stretch (8–11). Ideally, the coupling between 
the nematic order and elasticity implies that the elastomer deforms 
spontaneously (i.e., in the absence of stress) when the director ro-
tates in the material frame. This may be understood as a Goldstone 
mode because of symmetry breaking at the isotropic to nematic 
phase transition. Briefly, an NE elongates along the director as it 
undergoes the isotropic to nematic transition. Therefore, changing 

the director changes the direction of elongation, manifesting itself 
as a spontaneous deformation. Consequently, when an NE is sub-
jected to a uniaxial extension perpendicular to the director, it 
accommodates the imposed extension to the extent it can by rotat-
ing the director, resulting in soft elasticity. NEs are categorized into 
aligned monodomain NEs (MNEs) and macroscopically nonaligned 
polydomain NEs (PNEs), according to the director field. Soft elas-
ticity is observed in both MNEs (when stretched perpendicular to 
the director), as explained above, and in PNEs. Uniaxial stretching 
of PNEs with a randomly disordered director field drives a transi-
tion to the monodomain state with the global director aligned with 
the stretching direction (12–18). This polydomain-to-monodomain 
transition (PMT) occurs in a finite range of stretch at a small con-
stant force via the local Goldstone-like soft modes. The soft elasticity 
in the PMT is more pronounced in PNEs with isotropic genesis 
(I-PNEs) than those with nematic genesis (N-PNEs): I-PNEs and 
N-PNEs are obtained by cross-linking the mesogens in the high-
temperature isotropic state and the low-temperature polydomain 
nematic state, respectively (14, 16). The cross-linking in the dis-
ordered isotropic state for I-PNEs leads to no inherent memory of 
the initial director field, which is characterized by the texture com-
posed of randomly aligned local domains with fine and uniform 
sizes (14, 19). Therefore, the local directors in I-PNEs have the great 
freedom for local directors to rotate. The extremely soft mechanical 
response of I-PNEs, which is also referred to as “supersoft elasticity,” 
was explained theoretically (20, 21) and demonstrated by simula-
tions (22, 23). The supersoft elasticity effect in I-PNEs was also ob-
served as a large electromechanical effect (24).

Previous experimental studies have used uniaxial stretching for 
the characterization of the nonlinear elasticity of LCEs. Uniaxial 
stretching, however, is only a particular one among all admissible 
deformations of elastomers. General biaxial strain, in which the two 
orthogonal strains are varied independently, covers the whole range 
of accessible homogeneous deformation of incompressible, isotro-
pic materials such as elastomers (2). The general biaxial stress-strain 
data provide a definite basis for a full understanding of the large 
deformation behavior of elastomeric materials (25). Using general 
biaxial stretching experiments, the present study reveals a new and 
unusual in-plane liquid-like mechanical behavior in I-PNEs: The 
true stresses in the two directions are equal even if the imposed 
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strains in the two directions are unequal. In addition, the true 
stresses are dictated only by the area variation in the loading plane. 
We explain that this observed in-plane liquid-like behavior is a gen-
eralization of the soft elasticity observed in uniaxial extension or the 
uniaxial soft elasticity may be understood as a particular manifesta-
tion of the in-plane liquid-like behavior.

The wide-angle x-ray scattering (WAXS) measurements charac-
terize the director field in the biaxially stretched I-PNEs. We explain 
this unique in-plane liquid-like mechanical behavior by theory and 
full-field three-dimensional (3D) simulations. We foresee that the 
findings will extend further the potential applications of LCEs.

RESULTS AND DISCUSSION
When conventional elastomers are uniaxially stretched, the tensile 
stress increases with imposed strain. In LCEs, moderate stretching 
requires a very low and constant stress that is accompanied by the 
director rotation (4). Figure  1A shows the uniaxial stress (tx)–
stretch (x) curve for an isotropic-genesis main-chain–type PNE 
(I-MCPNE) with randomly disordered texture. Two types of stress, 
i.e., true stress (t) and nominal stress () (force per cross section in 
the deformed and undeformed states, respectively), are used in the 
figure. The I-MCPNE was fabricated using a thiol-acrylate Michael 
addition reaction between diacrylate mesogen, di-thiol chain ex-
tender, and tetra-thiol cross-linker (Fig.  1B; see Materials and 
Methods) (26). The cross section in the deformed state is estimated 
assuming volume conservation (xyz  =  1) during deformation, 
which is confirmed by a separate experiment (fig. S1), resulting in 
tx = x/(yz) = xx. The I-MCPNE before stretching is opaque be-
cause of the strong light scattering of disordered birefringent 
domains. Stretching drives the transition from polydomain to 
monodomain alignment along the stretching axis, and the mono-
domain alignment is readily confirmed by a fully transparent ap-
pearance. The process of the PMT is characterized by a plateau 

stress with very low magnitude over a finite range of strain, which 
has been observed for many types of NEs (12–18). For the present 
specimen, PMT ends at x  ≈  2, and the stress monotonically in-
creases with x in the monodomain regime (x > 2). Similar types of 
stress-strain behavior are also observed for the MNEs when stretched 
normally to the initial global director (4, 27–34). In NEs, the defor-
mation accompanied by director rotation requires extremely small 
mechanical work because of the coupling of LC alignment and mac-
roscopic shape (or deformation). This unique mechanical property 
of NEs has been explained by the concept of (ideal) soft elasticity, 
which allows the elastomers to deform with no mechanical work by 
director rotation (4, 9–11). Small but nonzero mechanical work 
observed in real NEs has been interpreted by introducing some 
non-ideality and viscosity to the original soft elasticity theory 
(20, 21, 23, 35–37).

Biaxial stretching reveals new aspects of soft elasticity in NEs. 
Figure 2 (A and B) displays the stress-stretch (x) relations in planar 
extension (PE) for a conventional rubber [styrene-butadiene rubber 
(SBR)] and I-MCPNE. In PE, the elastomers are stretched in the 
x direction while keeping the dimension in the y direction un-
changed (i.e., y = 1). As expected quite naturally, in conventional 
elastomers, the true and nominal stress along the stretching (x) axis 
is always larger than that along the constraint (y) axis (Fig.  2A). 
I-MCPNE shows peculiar behavior (Fig.  2B): Nominal stress (), 
which is simply proportional to tensile force, in the constraint (y) 
direction exceeds that in the stretching (x) direction at x ≈ 1.3. As 
x increases further, y becomes considerably higher than x. The 
essence of this unusual behavior becomes evident in true stress (t): 
Although tx is always larger than ty in conventional elastomers, tx 
and ty in I-MCPNE are equal until x reaches about 2.5. In the cor-
responding strain regime, the specimen has a polydomain texture 
characterized by the turbid appearance. At further stretching at 
x > 2.5, tx becomes higher than ty, and the difference becomes larger 
as x increases. The specimen at x > 2.5 is considerably transparent, 
indicating the monodomain alignment along the x axis.

Figure 3 (A and B) shows the results in other types of unequal 
biaxial (UB) stretching with a nominal strain ratio [x/y; x/y = (x − 1)/
(y − 1)] of (5/1) and (5/2), respectively. In these biaxial stretching, 
the feature tx = ty in the polydomain regime is also observed. A 
similar feature is also confirmed for x/y = (5/3) (fig. S2A). For the 
stretching of x/y = 5/1, the PMT completes at x ≈ 2.8, and the in-
equality tx > ty in the monodomain regime appears at x > 2.8. The 
end of the PMT is not confirmed for x/y = 5/2 and 5/3, and it will 
require further stretch exceeding the maximum stretch in the fig-
ures. The preliminary experiments, however, observed that further 
stretching resulted in the fracture of the specimen. In equibiaxial 
(EB) extension, the stresses in the two directions are equal in the 
whole range of strain (fig. S2B), ensuring no inherent mechanical 
anisotropy in I-MCPNE. The results in Figs. 2 and 3 indicate that 
the stretch x required for PMT increases with decreasing the ratio 
x/y. This signifies that the constraint in the y direction hinders the 
director realignment along the larger stretching (x) axis.

The relation tx = ty in the polydomain regime is independent of 
the history of the imposed biaxial strain. This is confirmed by the 
two-step sequential PE (TPE; Fig. 3C): First, the specimen is stretched 
along the x axis to x = 1.4, and second, it is stretched along the 
y axis to y = 1.8 from y = 1 with keeping x = 1.4. The relation 
tx = ty is observed throughout the deformation process, even when 
the regime of x > y shifts to that of y > x.

Fig. 1. Uniaxial extension of I-MCPNE. (A) Uniaxial extension drives PMT with a 
small constant stress of about 20 kPa. The initial polydomain is characterized by the 
turbid appearance reflecting the randomly disordered birefringent domains. The 
monodomain texture is characterized by the transparent appearance. (B) Chemical 
structures of the compounds.
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As can be seen in the photographs of deformed LCEs (Figs. 2 and 
3), the portions near the clamps tend to be transparent while the 
main (middle) part remains turbid, indicating that the strain field is 
not uniform in the whole area. The detected force is mainly gov-
erned by the area subjected to the uniform strain field because the 
area around the clamps is considerably smaller. It was confirmed 
for conventional elastomers and gels that the effect around the 
clamps was negligibly small in the present biaxial tester using suffi-
ciently large specimens (38).

The crosshead speed in uniaxial extension (U), EB, PE, and TPE 
was 0.5 mm/s (corresponding to an initial strain rate of 7.7 × 10−3 s−1). 
In UB, the crosshead speed in the x direction was 0.5 mm/s, whereas 
that in the y direction was 0.1, 0.2, or 0.3 mm/s for a strain ratio of 
5/1, 5/2, or 5/3, respectively. The strain rate has a considerable effect 
on stress in I-MCPNE due to viscoelasticity. Figure S3 shows the 
stress-stretch relationships in PE at various values of crosshead 
speed (v). Even at relatively high crosshead speeds (v = 5 mm/s), the 
specimen exhibit the unusual characteristic, i.e., y in the constraint 
direction considerably exceeds x in the stretching direction at 
x > 1.5. The most characteristic feature, i.e., the equality of tx ≈ ty in 
the polydomain regime (x < 2.5), is observed at sufficiently slow 
crosshead speeds at v < 0.5 mm/s, and the magnitude of the stresses 
still decreases with a reduction in v. The true equilibration requires 
even slower but practically inaccessible crosshead speed of the order 
of 0.001 mm/s (18). The data at v = 0.5 and 0.1 mm/s capture the 
essential feature of interest, although the stress still includes finite 
time effect. For the comparison with the theoretical predictions, we 
used the data at vx = 0.5 mm/s for all types of biaxial stretching be-
cause the minimum crosshead vy = 0.1 mm/s in the instrument was 
used in the y direction for UB with a strain ratio of 5/1. The inequal-
ity of tx > ty at high crosshead speeds (v = 5 mm/s) suggests that the 
specimen does not have enough time to attain the equilibrium poly-
domain texture during stretching. The dynamics of the texture 

evolution and stress relaxation under biaxial loading is intriguing, 
but it is beyond the scope of the present work.

A further prominent characteristic in the polydomain regime is 
revealed by plotting tx and ty against the stretch in the stress-free 
direction (z) using the data in various types of stretching (Figs. 2B 
and 3, A and B, and fig. S2A) including EB stretching (fig. S2B). In 
conventional elastomers (Fig. 4A), the tx-z and ty-z curves depend 
on the type of biaxial stretching because tx and ty are a function of 
both x and y, not a function of only z. In I-MCPNE (Fig. 4B), 
the tx-z and ty-z curves in all types of biaxial stretching in the poly-
domain regime collapse into a single curve. Parts of individual load 
curves that deviate from the master curve correspond to the data in 
the monodomain regime. The master curve obviously indicates the 
unique feature that tx (= ty) is a function of only z, independent of 
x and y. Since the I-MCPNE is incompressible (fig. S1), x-
yz = 1 or z = 1/xy, so that z is inversely proportional to the 
change of area xy in the loading plane. Thus, equivalently, the true 
stress only depends on the change of area (fig. S4 B). This result means 
that the PNEs can vary their shape freely with no extra mechanical 
energy when subjected to deformation in the plane: They behave 
like a liquid in the plane, but like a solid out of the plane. This can 
be proved by the following argument. The mechanical work re-
quired for changing x and y (W) in incompressible elastomers 
under the condition of the constant area of the loading plane (x 
dy + y dx = 0) is given by

	​​ 
W  = ​ ​ x​​ d ​​ x​​ + ​​ y​​ d ​​ y​​​  

       = (​t​ x​​ − ​t​ y​​ ) ​​ y​​ ​​ z​​ d ​​ x​​
​​	 (1)

Evidently, the equality of true stress (tx = ty) results in W = 0.
The mechanism for the liquid-like behavior where the true 

stresses in the two orthogonal directions are equalized in any type 
of biaxial strain is revealed by the 2D WAXS patterns shown in 
Fig. 5A. The patterns with a diffuse peak arising from intermesogen 

Fig. 2. PE of a conventional elastomer and I-MCPNE. (A) When stretched in the x direction with keeping the dimension in the y direction (PE), conventional elastomers 
such as SBR always exhibit a larger stress along the stretching (x) axis than that along the constraint (y) axis. (B) I-MCPNE shows the peculiar behavior in PE. Nominal stress 
in the y direction becomes larger than that in the x direction at x > 1.3. Characteristically, the true stresses in the two directions are equal (tx ≈ ty) until the end of PMT 
(x ≈ 2.5) despite the inequality of x > y. In the monodomain regime (x > 2.5), tx becomes larger than ty as in the case of conventional elastomers.
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distance (about 0.43 nm) are typical for nematic LCs (39), and the 
isotropic pattern in the undeformed state reflects the randomly 
disordered polydomain alignment. In EB stretching, the pattern 
remains almost isotropic regardless of strain, exhibiting that the 
local nematic director stays nearly random in the x-y plane. In UB 
stretching including PE, the azimuthal redistribution of intensity of 
the pronounced scattering ring proceeds with stretching (an in-
crease in x), indicating an increase in the mean orientational order 
parameter (Sm) of the local nematic director in the larger strain (x) 
direction. When compared at the same z, Sm becomes higher as the 
anisotropy of biaxial strain field (characterized by x/y) becomes 
larger (Fig. 5B): Sm (PE) > Sm [UB(5/1)] > Sm [UB(5/2)] > Sm (EB). 
Furthermore, we expect Sm = 2Q/3 for uniform distribution and 
Sm = Q/6 for planar EB orientation, where Q is the microscopic 
orientation order parameter (see Materials and Methods). Our 

observations for Sm = 0.4 for the monodomain in U are consistent 
with Q = 0.6, which is in the expected range for LCEs (4).

The distributions show symmetry about the horizontal loading 
axis, indicating that the directors arrange themselves on average to 
cancel any shear. Thus, the director distribution follows imposed 
strain to relieve the difference between the true stress. This suggests 
that liquid-like behavior emerges at the mesoscale, whereas it re-
mains a solid at small scales (Fig. 6). The equal true stress dictated 
by only z is independent of the director field (Sm). Note that the 
biaxial strain fields in tensile and WAXS measurements with 
the same values of x and y will not be exactly identical because of 
the difference in the clamping and stretching mechanism (see 
Materials and Methods). The difference, however, does not affect 
the essential feature revealed here, i.e., the independency of the 
equal true stress on Sm.

Fig. 3. Equalization of the true stresses in the two directions for various types of biaxial extension of I-MCPNE. (A to C) True stresses in the two directions are equal 
in the polydomain regime for the UB stretching with a nominal strain ratio (x/y) of (5/1) (A) or (5/2) (B) and for the TPE (C). In (A), tx becomes larger at x > 2.8 in the 
monodomain regime. In (B) and (C), the specimens remain polydomain (turbid) in the entire strain range examined, since the transition to the monodomain requires the 
stretch exceeding the accessible strain in the experiments. In (C), the equality tx ≈ ty continues throughout the stretching process, despite the shift of the regime of x > y 
to that of y > x. The corresponding results of the biaxial stretching with a value of x/y of (1/1) or (5/3) are shown in figs. S2 and S3, respectively.
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We comment that the liquid-like behavior reported here is a 
generalization of the classical super-soft behavior observed in uni-
axial extension (8). The reorientation and alignment of the LC 
domains accommodate shear (no change of area) and thus lead to 
an equalization of the two principal stresses (tx ≈ ty). In the uniaxial 
extension (U), lateral edges are free, and thus, one principal stress is 
necessarily zero (ty = 0). It follows then that the axial stress is also 
almost zero, and this is the classical super-soft behavior. In other 
words, the classical super-soft behavior is a manifestation of the 
liquid-like behavior. There is, however, an interesting difference in 
the way it manifests itself in the tx versus x curve: There is a plateau 

in U (Fig. 1A) but no noticeable plateau in biaxial stretch (e.g. PE; 
Fig. 2B). In U, tx ≈ ty ≈ 0 as explained above gives rise to the plateau. 
In contrast, in biaxial deformation (PE, UB, and EB), the lateral 
edge is not free, and thus, ty ≠ 0, which implies that tx ≠ 0, and there 
is no plateau. However, we have the same in-plane liquid-like be-
havior (tx ≈ ty) in all situations. It just manifests itself in a special 
manner in uniaxial stretch because the lateral edge happens to 
be free.

These observations and the mechanisms responsible are further 
examined from theoretical considerations. The isotropic-genesis 
NEs has three contributions to the free energy (20, 21)—the entropic 

Fig. 4. Biaxial true stresses as a function of dimensional change in the stress-free (z) direction in various types of biaxial strain for I-MCPNE. (A) In conventional 
elastomers, tx-z and ty-z relations depend on the type of biaxial stretching. (B) In I-MCPNE, tx-z and ty-z relations in all types of biaxial stretching collapse into a single 
master curve. Parts of individual load curves that deviate from the master curve correspond to the data in the monodomain regime. The master curve indicates that 
tx (= ty) in the polydomain regime is dictated by only z (or the area variation xy), independently of x and y.

Fig. 5. 2D WAXS patterns in various types of biaxial strain for I-MCPNE. (A and B) Mean orientational order (Sm) of the local nematic director in the larger strain (x) 
direction increases with an increase in x in unequal stretching (UB) including PE. When compared at the same z, Sm becomes higher as the anisotropy of biaxial strain 
field (x/y) becomes larger.
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elasticity of the Gaussian polymer chains, the non-ideality reflecting 
the disorder in the material, and the Frank elasticity (see Materials 
and Methods). In the ideal approximation (,  → 0), the behavior 
and the stress have been explicitly characterized in prior work (de-
tailed expressions in Materials and Methods) (40). There are three 
regimes as shown in Fig. 7A where r is a characteristic parameter for 
the anisotropy of the configuration of network strands. The an-
isotropy parameter r is related to the microscopic orientation order 
parameter Q and the nature of the polymer chain. It is possible to 
show that Q = (r − 1)/(r + 2) for a freely jointed rod model (10), al-
though the exact relation for a more realistic polymer chain is not 
known. In PNEs, the parameter r also determines the uniaxial stretch 
required for PMT (p), that is, the end of the plateau in the tx versus 
x curve in U (Fig. 1A), as p = r1/3 (8). In the first regime (labeled S), 
the directors are distributed in 3D and can realign to attain soft 
behavior with zero stress. The directors become planar in the sec-
ond regime labeled P; the directors are still not uniform but are planar 
and display a reflection symmetry about the x axis. They can realign 
in the plane, and therefore, the true stresses are equal and only a 
function of xy or, equivalently, only a function of z (Fig. 7B). The 
directors are fully aligned in the third region labeled M. The loading 
paths are also shown in Fig. 7A. The uniaxial stress (U) initially in S 
displays soft behavior and then goes to M. The PE goes from S to P 
to M displaying soft behavior, equal true stress and, lastly, unequal 
true stress. Last, the EB shows soft and then equal true stress. This 
diagram also explains the effects of the type of biaxial strain on the 
threshold of PMT (the boundary between P and M) observed in the 
experiments. The stretch x required for PMT increases with in-
creasing y. All this complex behavior is described by only two 
parameters—modulus G and anisotropy r.

Still, this ideal approximation does not have a length scale, and it 
does not describe either the finite stress plateau in U or the details 
of the director distribution. Figure 8 displays the results of full-field 
3D simulations with the free energy (including non-ideality and 
Frank elasticity) and a time-dependent evolution for the director 
(see Materials and Methods). The model has five parameters that 
are fitted to U and PE and held fixed for the remaining simulations. 
Figure 8 (A to C) shows the true stress-stretch behavior for U, PE, 
and UB(5/1) and compares them with experimental observations 
[see fig. S5 for UB(5/2), UB(5/3), and EB]. The true stresses in the 
polydomain regime are indeed equal in PE, UB, and EB until the 
end of PMT and depend only on z (Fig. 8D). The model accurately 
describes the behavior over these various protocols with a single set 
of only four parameters. Figure 8 (A to C) and figs. S5 and S6 also 

show the director distribution in real space (the color represents the 
angle of the planar component of the director) and the computed 
distribution. The evolution of the mean orientational order param-
eter Sm and the biaxial order parameter X (precise definition in 
Materials and Methods) is shown in Fig.  8E. The animations of 
these simulations are provided in the Supplementary Materials. 
Each simulation begins with the same equidistributed director dis-
tribution. In U, the directors simultaneously align into the plane (X) 
and in the plane (Sm) toward the loading direction as intuitively ex-
pected. In PE and UB, the directors orient simultaneously into the 
plane and in the plane, but the evolution into the plane is faster and 
complete before the full orientation in the plane. In EB, there is ori-
entation into the plane but no reorientation in the plane. The full-
field images show no discernable order like stripe domains. Still, 
director angular distributions show symmetry about the horizontal 
loading axis as in the experiments. Last, fitting the stress versus 
stretch data provides an anisotropy parameter of r = 7.71 (see Mate-
rials and Methods), which, in turn, yields the value Q = 0.69 using 
the relation Q = (r − 1)/(r + 2) = 0.69, which was derived for the 

Fig. 6. The equal true stress is only dependent on the thickness change (or the 
area change in the loading plane), independent of the director field (Sm). PNEs 
can vary their shape freely with no extra mechanical energy when subjected 
to deformation in plane, behaving like liquid in the plane but like solid out of 
the plane.

Fig. 7. State diagram and true stress–z relations of isotropic-genesis NEs by a 
theory with ideal approximation. (A) The three regimes are classified as the func-
tions of x (larger stretch) and xy (area variation in the loading plane) or z (thick-
ness variation): 3D distributed directors exhibiting soft behavior with zero stress 
(S regime); the directors fully aligned along the x axis (M regime); planar (but 
nonuniform) distribution of directors with a reflection symmetry about the x axis 
(P regime). The red arrows indicate the loading paths. (B) In the P regime, the direc-
tors can realign in the plane, thereby the true stresses are equalized and governed 
by only xy or equivalently by only z. The zero-stress region corresponds to the 
S regime, and the branches correspond to the data in the M regime. The r value 
(r = 7.71) is evaluated from the plateau width (p) in U (p = r1/3).
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freely jointed rod model (10). This compares very well with the 
experimental value Q = 0.6 (Sm = 0.4) obtained in Fig. 5B, considering 
the fact that the freely jointed rod model is better suited for the side-
chain polymers (4) instead of the main-chain polymers used here. 
All of these establish that the balancing of the true stress and the 
consequently in-plane liquid-like behavior occurs at the mesoscale 
despite the disorder and the non-ideality in the system.

In summary, we reveal the in-plane liquid-like behavior of 
I-MCPNE: The orthogonal true stresses are equalized in any type of 
biaxial strain, dictated only by the area variation in the loading 
plane and equivalently only by the dimensional change in the stress-
free direction, as long as it remains in a polydomain state. The in-
plane liquid-like behavior is successfully explained by the full-field 
3D simulations. It would be very interesting to see in future work 
whether the in-plane liquid-like behavior observed here is seen in 
the LCEs with different chemical structures. The unparalleled me-
chanical behavior of I-MCPNE enables manifold applications in-
cluding wrinkle-free membranes and adaptable materials. Eliminating 
wrinkles in membranes has been a long-standing problem because 
wrinkling severely degrades their performances in deployable antenna, 
solar sails and shields, and morphing wing applications. Conventional 

thin membranes are inevitably susceptible to nonuniform in-plane 
deformation resulting in wrinkling because of their poor resistance 
to shear, and thus, they require the extra complex mechanisms to 
rebalance the tension, which changes with temperature and other 
environmental conditions (41). The I-MCPNE–based membranes 
provide a means to avoid the problem because they can accommo-
date shear without any shear stress and balance the tension auto-
matically (see Supplementary Text). Similar instabilities arise when 
flat membranes are wrapped or draped over uneven or complex-
shaped objects as required in medicine, packaging, and clothing. 
Such draping changes the Gauss curvature, and this, in turn, may 
induce shear. The ability of I-MCPNE to undergo a range of shear 
without any shear stress avoids instabilities associated with draping 
of complex and changing surfaces. I-MCPNE exhibits apparent 
plastic deformation due to hysteresis, but the true stresses in the 
two directions will remain equal even during unloading. Since 
wrinkling is driven by unequal true stresses, we expect it to be sup-
pressed even during unloading. Last, the peculiar mechanical be-
havior of I-MCPNE is a result of mesoscale rather than molecular 
scale, providing insights into the design of artificial metamaterials 
with the similar in-plane liquid-like features.

Fig. 8. Theoretical true stress–stretch relations and director distribution for various types of extension obtained by the full-field 3D simulations with the free 
energy including nonideal and Frank elasticity and a time-dependent evolution for the director. The theoretical true stress–stretch relations satisfactorily describe 
the experimental ones in uniaxial (A), planar (B), and UB stretching with a strain ratio (x/y) = (5/1) (C). The insets show the nominal stress–stretch relations. The director 
field in real space and the corresponding diffraction patterns are also displayed. The color represents the angle of the planar component of the director. The correspond-
ing data for the biaxial stretching of a ratio x/y of (5/2), (5/3), and (1/1) are available in fig. S5. (D) The true stresses in the polydomain regime are indeed equal for all types 
of biaxial stretching and dictated only by thickness change (z), in agreement with the experimental results (Fig. 3B). The branches correspond to the data in the mono-
domain regime. (E) The evolutions of the planar mean orientational order parameter (Sm) and the mean biaxial orientational order parameter (X) are also obtained as a 
function of z in each type of stretching. The calculations (A to E) in all types of biaxial stretching are made using the same parameter set.
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MATERIALS AND METHODS
Sample preparation
The I-MCPNE membrane was fabricated using a thiol-acrylate 
Michael addition reaction (26, 42). The diacrylate mesogen, 1,4-bis[4-
(3-acryloyloxyproopoxy)benzoyloxy]-2-methylbenzene (RM-257), 
was purchased from Tokyo Chemical Industries (Tokyo, Japan). 
Two thiol monomers, 2,2′-(ethylenedioxyl) diethanethiol (EDDET) 
and pentaerythritol tetrakis (3-mercaptopropionate) (PETMP), were 
purchased from Sigma-Aldrich (St. Louis, MO, USA). Figure  1B 
shows the chemical structure of each compound. RM-257 was dis-
solved in toluene at 80°C, and then EDDET and PETMP were added 
to the solution so that the concentration of the total compounds 
could be 70 weight % (wt %). The molar ratio of RM-257/EDDET/
PETMP is 1/0.74/0.06. The catalyst dipropyl amine (DPA) was pur-
chased from Sigma-Aldrich. The DPA was first diluted in toluene at 
a weight ratio of 1/47. The DPA solution was added to the mixture 
solution at a molar ratio of RM-257/DPA = 1/0.017 and mixed vig-
orously to ensure a homogeneous mixture.

The solution was poured into a mold and left to undergo the 
thiol-acrylate reaction at 25°C where the mixture is in the isotropic 
state for 12 hours. The resultant free-standing gel film was transpar-
ent, ensuring the cross-linking in the isotropic state (i.e., isotropic 
genesis). The gel film was further left in air at 25°C for 3 days. The 
opaque I-MCPNE film was obtained by drying the film completely 
under a reduced pressure of 70 kPa at 80°C for 90 min.

SBR (styrene content: 25%, TUFDENE 2000, Asahi Kasei Corp.) 
with a small volume fraction (5%) of silica (Nipsil, Tosoh Silica Corpo-
ration) was used for comparison. Bis(triethoxysilylpropyl)polysulfide 
(Shin-Etsu Chemical Co.) was used as a silane-coupling agent, form-
ing covalent bonds between the silica filler surface and the rubber 
matrix. The specimen was made using a Brabender mixer at a mix-
ing speed of 80 rounds/min at 110°C. The concentration of sulfur for 
cross-linking was 1.4 wt %.

Biaxial and uniaxial tensile tests
Biaxial tensile tests of I-MCPNE and SBR were conducted at 25°C 
with a custom-made tester BIS-0707 or ISBT-2306 (IS Giken, Kyoto, 
Japan), respectively. Each of the biaxial testers is optimized for 
the measurements of considerably soft gels or rigid elastomers. The 
details of each tester were described elsewhere (38, 43). The two ten-
sile forces in the orthogonal directions (fx and fy, respectively) were 
measured as the functions of the stretch ratios in the x and y direc-
tions (x and y, respectively): i = li/l0 where li and l0 are the dimen-
sions in the deformed and undeformed states in the i direction 
(i = x,y). Six types of biaxial stretching were used (fig. S7): Equiaxial 
extension with x = y (EB), PE that holds the dimension in the y 
direction unchanged (y = 1), UB extension with a constant strain 
ratio (UB) [(x − 1)/(y − 1) = x/y = 5/1, 5/2, 5/3]. In the TPE, the 
specimen was first stretched to x  =  1.4 with y  =  1 and then 
stretched in the y direction with keeping x = 1.4. In EB, PE, and 
TPE, the crosshead speed was 0.5 mm/s. In UB with x/y = 5/1, 5/2, 
5/3, the crosshead speed in the x direction was 0.5 mm/s while that 
in the y direction was 0.1, 0.2, or 0.3 mm/s, respectively. The stress 
is substantially dependent on the strain rate due to the pronounced 
viscoelasticity (fig. S3), and the true equilibration requires extreme-
ly slow but practically inaccessible crosshead speed (<0.01 mm/s). 
The data at v = 0.5 mm/s, however, exhibit the key feature of inter-
est (i.e., tx ≈ ty), although the stress is not equilibrated. The detailed 
discussion is also given in the Results and discussion.

The I-MCPNE or SBR specimens with dimensions of 65 mm by 
65 mm and a thickness of 0.7 or 2 mm, respectively, were used for 
the biaxial stretching measurements. The effects of the complicated 
deformation around the chucks on the detected force will likely be 
small as the corresponding area is small relative to the area subjected 
to the uniform strain field. It was confirmed for conventional elas-
tomers and gels that the corresponding effect is negligibly small in 
the present custom-made biaxial testers (38, 43). These biaxial tes-
ters require the relatively large specimens (65 mm by 65 mm), and 
this requirement is for satisfying the condition in which the detected 
force is governed by the area subjected to the uniform strain field.

Uniaxial tensile tests were conducted at 25°C with an AC-500N-
CM (TSE Co., Yokohama, Japan) for the specimen with dimensions 
of 65 mm by 6 mm by 0.7 mm. The gauge length and crosshead 
speed (0.5 mm/s) were the same as in the biaxial tensile tests.

The specimen was not stretched to failure in each deformation, 
and the same specimen was used in all deformations. The failure 
point was evaluated in the preliminary experiments. After releasing 
the imposed strain, the specimen required an extremely long time 
to recover the initial dimensions. To accelerate the shape recovery, 
the unloaded specimen was placed for 1 min at 90°C beyond the 
nematic-isotropic transition point (ca. 80°C) and then cooled to 
25°C. The tensile properties were repeatable for the specimens sub-
jected to multiple heating/cooling cycles (fig. S8).

Wide-angle x-ray diffraction measurement
In situ WAX diffraction measurement was carried out during vari-
ous deformation modes (PE, UB, and PE) at BL05XU at SPring-8 
using a homemade biaxial tester (JUNKEN MEDICAL Co. Ltd.), 
which is specially designed for the x-ray beamline (fig. S9). PILATUS 
1M (DECTRIS Ltd.; pixel size, 172 m2) was used as a detector. 
Camera length, beam size, wavelength of x-ray, and exposure time 
were 100 mm, 200 m2, 0.1 nm, and 1 s, respectively. The measure-
ments of the LCE film specimen (10 mm by 10 mm by 0.7 mm) under 
biaxial strain were conducted at the same strain rate (8 × 10−3 s−1) as 
in the mechanical tensile tests for four types of biaxial stretching: EB 
stretching, UB stretching with x/y = 5/1 and 5/2, and PE. The 2D 
diffraction patterns were obtained at 25 positions at intervals of 
0.5 mm in the central area of the stretched specimens (2.5 mm by 
2.5 mm) (fig. S10). Obtained 2D patterns were reduced to 1D profiles 
by integrating with a software, FIT2D (version 12.077, A. Hammersley) 
(fig. S11). Mean orientational order (Sm) was calculated using 
Hermans’ method (44) at q = 14.2 to 14.8 nm−1. The values of Sm in 
Fig. 5B are the average of the data at 25 positions.

Theoretical approach
The free energy of an isotropic-genesis NE may be described 
as (20, 21)

	
           ​​ 

E [ y, n ] = ​∫ V​ ​​W(F, n, ∇ n; ​n​ 0​​ ) dV

​    ​= ​ ∫  V​ ​​​(​​ ​ G ─ 2 ​(tr ​F​​ T​ ​ℓ​​ −1​ F − 3 ) +  ​ α ─ 2 ​(​∣​F​​ T​ n∣​​ 
2
​ − ​(​n​ 0​​ ∙ ​F​​ T​ n)​​ 

2
​ ) +​​   

​​ κ ─ 2 ​ ​∣∇ n∣​​ 2​​)​​dV​

 ​​	  (2)

where F = ∇y is the deformation gradient, n is the director orienta-
tion, ℓ = r−1/3(I − (r − 1)nn) is the step-length tensor depending on 
the anisotropy parameter r > 1, and n0(x) is a random unit vector 
field. The first term is the Gaussian elasticity of the elastomer with 
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shear modulus G (4, 10); the second, depending on a parameter 
  >  0, describes the random disorder of the network (45), which 
leads to a preferred random director field n0(x); and the final is the 
Frank elasticity that penalizes changes of director orientation in the 
single constant approximation. Similar free energy formulations 
have been used in the literature (21) with a slightly different formu-
lation for the term describing randomness. We may view this as a 
finite deformation generalization of a Landau-Ginzburg–type free 
energy where the first term describes the energy landscape of the 
order parameters, the second term the role of the disorder, and the 
third term the exchange energy.

Experimentally, /G ~ 10−4 and ​​√ 
_

  / G ​​ ~ 10 nm, and one can ig-
nore them to leading order. This leads to the ideal model in the ap-
proximation ,  → 0. It is possible to obtain exact results for the 
response of the sheet subjected to biaxial stretching as done in prior 
work (40). These results show various regimes and provide an explicit 
formula for the stress and characterization of the domains (Table 1).

In the general nonideal setting (i.e., in the absence of the 
approximation ,  → 0), it is not possible to derive explicit results. 
So, numerical simulations were performed in 3D to solve the 
mechanical equilibrium ​​​ F​​ E + ​​ F​​​F ̇ ​  =  0​ and director evolution ​​
​ n​​​n ̇ ​  =  − ​​ n​​ E​. We may view these equations as the finite deforma-
tion generalization of time-dependent Landau-Ginzburg theory. 
We discretize these differential equations implicitly in time using 
backward Euler discretization, and the resulting equations can be 
written as a variational problem at the kth time step

	​​ 
​y​​ k​, ​n​​ k​  =  arg min ​∫  V​ ​​ W(∇ y, n, ∇ n; ​n​ 0​​ ) dV+

​    
​  ​ν​ F​​ ─ 2 ∆ t ​ ​∫  V​ ​​ ​∣∇ y − ​F​​ k−1​∣​​ 2​ dV + ​  ​ν​ n​​ ─ 2 ∆ t ​ ​∫  V​ ​​ ​∣n − ​n​​ k−1​∣​​ 2​ dV

​​	 (3)

subject to the constraint det ∇y = 1,|n∣ = 1 and periodic bound-
ary condition with prescribed x, y, and z = 0. We discretize this 
problem on a 1283 finite difference grid and solve it using a fast 
Fourier transform–based numerical method introduced by Zhou 
and Bhattacharya (46) (additional details in the Supplementary 
Materials). It is important that the computational volume V is large 
compared to the length scale determined by ​​√ 

_
  / G ​​ to ensure macro-

scopic response while the spatial discretization is smaller than that 

determined by ​​√ 
_

  / G ​​ to ensure sufficient spatial resolution. We have 
found that the 1283 grid meets this criterion.

The preferred director distribution n0 is obtained as follows: We 
generate a random distribution (equidistributed on the unit sphere) 
on our 1283 grid and filter it by removing Fourier coefficients that 
are smaller than the length scale determined by ​​√ 

_
  / G ​​ (smaller fluc-

tuations do not have any effect on the results because the model 
filters them away but adds to the computational cost). We then re-
lax our computational domain under zero stress to obtain our ini-
tial specimen. This specimen is typically internally stressed (with 
zero average) because the preferred director distribution n0 may not 
be kinematically compatible. We start all our loading protocols with 
this specimen. We have verified through select examples that our 
results are independent of the initial random distribution. These 
computations are expensive and solved on a computational cluster 
with a compute node consisting of a 14-core Intel Broadwell CPU 
and four Nvidia Tesla P100 GPUs. The parameters G = 23.63 kPa, 
r = 7.71,  = 0.06, F = 2.53 Pa∙s, and n = 0.01 Pa∙s are obtained by 
fitting the computed results to the experimental observations of the 
uniaxial stretch and PE.

To compute the orientation distribution and the order parame-
ter, recall that the orientation distribution tensor in a polydomain 
specimen is

	
​​

​S​ ij​​  =  < ​ u​ i​​ ​u​ j​​ –1 / 3 ​​ ij​​ ​>​ molecules in the polydomain specimen​​

​    
      = <  < ​ u​ i​​ ​u​ j​​ –1 / 3 ​​ ij​​ ​>​ molecules in a domain​​ ​>​ domains in the specimen​​

​           = <  < ​ u​ i​​ ​u​ j​​ –1 / 3 ​​ ij​​ ​>​ ensemble at x​​ ​>​ x​​  =  <  Q(​n​ i​​ ​n​ j​​ –1 / 3 ​​ ij​​ ) ​>​ x​​
​     

      = Q  <  (​n​ i​​ ​n​ j​​ –1 / 3 ​​ ij​​ ) ​>​ x​​

  ​​	

where ui is the orientation of a nematic mesogen, and Q is the mi-
croscopic order parameter. We define the mean orientational order 
parameter Sm to be the largest eigenvalue of Sij and the biaxial order 
parameter X to be the difference between the two smallest eigen-
values of Sij. It follows that Sm = 2Q/3, X = 0 for perfectly aligned 
domains, Sm = Q/6, X = Q/2 for equidistributed domains in the 
plane, and Sm = 0, X = 0 for equidistributed domains. We use the 
relation Q = (r − 1)/(r + 2), which was derived for the freely jointed 
rod model (10).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/25/eabe9495/DC1

REFERENCES AND NOTES
	 1.	 P. J. Flory, Principles of Polymer Chemistry (Cornell Univ. Press, 1953).
	 2.	 L. R. G. Treloar, The Physics of Rubber Elasticity (Clarendon Press, 1975).
	 3.	 M. Rubinstein, R. H. Colby, Polymer Physics (Oxford Univ. Press, 2003).
	 4.	 M. Warner, E. M. Terentjev, Liquid Crystals Elastomers (Revised Edition) (Clarendon Press, 

2007).
	 5.	 F. Brömmel, D. Kramer, H. Finkelmann, Preparation of liquid crystal elasotmers. Adv. 

Polym. Sci. 250, 1–48 (2012).
	 6.	 S. W. Ula, N. A. Traugutt, R. H. Volpe, R. R. Patel, K. Yu, C. M. Yakacki, Liquid crystal 

elastomers: An introduction and review of emerging technologies. Liq. Cryst. Rev. 6, 
78–107 (2018).

	 7.	 T. J. White, D. J. Broer, Programmable and adaptive mechanics with liquid crystal polymer 
networks and elastomers. Nat. Mater. 14, 1087–1098 (2015).

	 8.	 M. Warner, E. M. Terentjev, Liquid Crystals Elastomers (Clarendon Press, 2003).
	 9.	 L. Golubovic, T. C. Lubensky, Nonlinear elasticity of amorphous solids. Phys. Rev. Lett. 63, 

1082–1085 (1989).
	 10.	 P. Bladon, E. M. Terentjev, M. Warner, Transitions and instabilities in liquid crystal 

elastomers. Phys. Rev. E. 47, R3838–R3840 (1993).

Table 1. Explicit formula for the distinct regions of stretch and the 
corresponding state of stress and morphology according to the  
ideal theory.  

Region Strain range Stress Morphology

S ​​​ x​​ ​​ y​​ ≤ ​ r​​ 1/6​, ​​ y​​  ≤ ​ ​ x​​ ≤ ​ ​y​ −2​​ tx = ty = 0 3D polydomain

P xy > r1/6,  
​​r​​ −1/2​ ​​x​ 2​ < ​ ​ x​​ ​​ y​​ ≤ ​ ​x​ 2​​

​​ 
​t​ x​​  = ​ t​ y​​ =

​  ​G ​r​​ 1/3​​(​​ ​​λ​ x​​ ​λ​ y​​ _ 
​r​​ 1/2​

 ​ − ​ 1 _ 
​λ​x​ 2​ ​λ​y​ 2​

​​)​​​​​
2D polydomain 
with reflection 

symmetry

M ​​​x​ 1/2​ ≤ ​ ​ x​​ ​​ y​​  ≤ ​ r​​ −1/2​ ​​x​ 2​​

​​ 
​t​ x​​ =

​  ​G ​r​​ ​
1 _ 3​​​(​​ ​​λ​x​ 2​ _ r ​ − ​ 1 _ 

​λ​x​ 2​ ​λ​y​ 2​
​​)​​,​​​ 

​​ 
​t​ y​​ =

​  ​G ​r​​ 1/3​​(​​ ​​λ​y​ 2​ _ 
​λ​x​ 2​

​ − ​ 1 _ 
​λ​x​ 2​ ​λ​y​ 2​

​​)​​​​​

Monodomain

http://advances.sciencemag.org/cgi/content/full/7/25/eabe9495/DC1
http://advances.sciencemag.org/cgi/content/full/7/25/eabe9495/DC1


Tokumoto et al., Sci. Adv. 2021; 7 : eabe9495     18 June 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

10 of 10

	 11.	 S. Conti, A. DeSimone, G. Dolzmann, Soft elastic response of stretched sheets of nematic 
elastomers: A numerical study. J. Mech. Phys. Solids 50, 1431–1451 (2002).

	 12.	 J. Schätzle, W. Kaufhold, H. Finkelmann, Nematic elastomers: The influence of external 
mechanical stress on the liquid-crystalline phase behavior. Makromol. Chem. 190, 
3269–3284 (1989).

	 13.	 S. M. Clarke, E. M. Terentjev, I. Kundler, H. Finkelmann, Texture evolution during 
the polydomain-monodomain transition in nematic elastomers. Macromolecules 31, 
4862–4872 (1998).

	 14.	 K. Urayama, E. Kohmon, M. Kojima, T. Takigawa, Polydomain–monodomain transition 
of randomly disordered nematic elastomers with different cross-linking histories. 
Macromolecules 42, 4084–4089 (2009).

	 15.	 A. Azoug, V. Vasconcellos, J. Dooling, M. Saed, C. M. Yakacki, T. D. Nguyen, Viscoelasticity 
of the polydomain-monodomain transition in main-chain liquid crystal elastomers. 
Polymer 98, 165–171 (2016).

	 16.	 N. A. Traugutt, R. H. Volpe, M. S. Bollinger, M. O. Saed, A. H. Torbati, K. Yu, N. Dadivanyan, 
C. M. Yakacki, Liquid-crystal order during synthesis affects main-chain liquid-crystal 
elastomer behavior. Soft Matter 13, 7013–7025 (2017).

	 17.	 A. Agrawal, A. C. Chipara, Y. Shamoo, P. K. Patra, B. J. Carey, P. M. Ajayan, W. G. Chapman, 
R. Verduzco, Dynamic self-stiffening in liquid crystal elastomers. Nat. Commun. 4, 1739 
(2013).

	 18.	 A. Takebe, K. Urayama, Supersoft elasticity and slow dynamics of isotropic-genesis 
polydomain liquid crystal elastomers investigated by loading- and strain-rate–controlled 
tests. Phys. Rev. E. 102, 12701 (2020).

	 19.	 H. Higaki, K. Urayama, T. Takigawa, Memory and development of textures of polydomain 
nematic elastomers. Macromol. Chem. Phys. 213, 1907–1912 (2012).

	 20.	 J. S. Biggins, M. Warner, K. Bhattacharya, Supersoft elasticity in polydomain nematic 
elastomers. Phys. Rev. Lett. 103, 037802 (2009).

	 21.	 J. S. Biggins, M. Warner, K. Bhattacharya, Elasticity of polydomain liquid crystal 
elastomers. J. Mech. Phys. Solids 60, 573–590 (2012).

	 22.	 N. Uchida, Soft and nonsoft structural transitions in disordered nematic networks. 
Phys. Rev. E. 62, 5119–5136 (2000).

	 23.	 G. Skaçej, C. Zannoni, Molecular simulations shed light on supersoft elasticity 
in polydomain liquid crystal elastomers. Macromolecules 47, 8824–8832 (2014).

	 24.	 T. Okamoto, K. Urayama, T. Takigawa, Large electromechanical effect of isotropic-genesis 
polydomain nematic elastomers. Soft Matter 7, 10585–10589 (2011).

	 25.	 K. Urayama, New aspects of nonlinear elasticity of polymer gels and elastomers revealed 
by stretching experiments in various geometries. Polym. Int. 66, 195–206 (2017).

	 26.	 C. M. Yakacki, M. Saed, D. P. Nair, T. Gong, S. M. Reed, C. N. Bowman, Tailorable 
and programmable liquid-crystalline elastomers using a two-stage thiol-acrylate 
reaction. RSC Adv. 5, 18997–19001 (2015).

	 27.	 J. Kupfer, H. Finkelmann, Nematic liquid single-crystal elastomers. Makromol. 
Chemie-Rapid Commun. 12, 717–726 (1991).

	 28.	 S. M. Clarke, A. Hotta, A. R. Tajbakhsh, E. M. Terentjev, Effect of cross-linker geometry 
on equilibrium thermal and mechanical properties of nematic elastomers. Phys. Rev. E. 64, 
61702 (2001).

	 29.	 D. L. Thomsen, P. Keller, J. Naciri, R. Pink, H. Jeon, D. Shenoy, B. R. Ratna, Liquid crystal 
elastomers with mechanical properties of a muscle. Macromolecules 34, 5868–5875 (2001).

	 30.	 A. Petelin, M. Čopič, Observation of a soft mode of elastic instability in liquid crystal 
elastomers. Phys. Rev. Lett. 103, 77801 (2009).

	 31.	 K. Urayama, R. Mashita, I. Kobayashi, T. Takigawa, Stretching-induced director rotation 
in thin films of liquid crystal elastomers with homeotropic alignment. Macromolecules 40, 
7665–7670 (2007).

	 32.	 N. P. Godman, B. A. Kowalski, A. D. Auguste, H. Koerner, T. J. White, Synthesis 
of elastomeric liquid crystalline polymer networks via chain transfer. ACS Macro Lett. 6, 
1290–1295 (2017).

	 33.	 D. Mistry, P. B. Morgan, J. H. Clamp, H. F. Gleeson, New insights into the nature 
of semi-soft elasticity and “mechanical-Fréedericksz transitions” in liquid crystal 
elastomers. Soft Matter 14, 1301–1310 (2018).

	 34.	 T. H. Ware, J. S. Biggins, A. F. Shick, M. Warner, T. J. White, Localized soft elasticity in liquid 
crystal elastomers. Nat. Commun. 7, 10781 (2016).

	 35.	 G. C. Verwey, M. Warner, E. M. Terentjev, Elastic instability and stripe domains in liquid 
crystalline elastomers. J. Phys. Ii. 6, 1273–1290 (1996).

	 36.	 S. Conti, A. DeSimone, G. Dolzmann, Semisoft elasticity and director reorientation 
in stretched sheets of nematic elastomers. Phys. Rev. E. 66, 061710 (2002).

	 37.	 B. L. Mbanga, F. F. Ye, J. V. Selinger, R. L. B. Selinger, Modeling elastic instabilities 
in nematic elastomers. Phys. Rev. E. Stat. Nonlin Soft Matter Phys. 82, 051701 (2010).

	 38.	 B. Yohsuke, K. Urayama, T. Takigawa, K. Ito, Biaxial strain testing of extremely soft 
polymer gels. Soft Matter 7, 2632–2638 (2011).

	 39.	 A. J. Leadbetter, A. I. Mehta, Molecular packing in the nematic phase of cyano 
compounds with different ring systems. Mol. Cryst. Liq. Cryst. 72, 51–57 (1981).

	 40.	 P. Cesana, P. Plucinsky, K. Bhattacharya, Effective behavior of nematic elastomer 
membranes. Arch. Ration. Mech. Anal. 218, 863–905 (2015).

	 41.	 Y. Luo, J. Xing, Y. Niu, M. Li, Z. Kang, Wrinkle-free design of thin membrane structures 
using stress-based topology optimization. J. Mech. Phys. Solids 102, 277–293 (2017).

	 42.	 M. O. Saed, A. H. Torbati, D. P. Nair, C. M. Yakacki, Synthesis of programmable main-chain 
liquid-crystalline elastomers using a two-stage thiol-acrylate reaction. JoVE , e53546 
(2016).

	 43.	 T.-T. Mai, Y. Morishita, K. Urayama, Novel features of the Mullins effect in filled elastomers 
revealed by stretching measurements in various geometries. Soft Matter 13, 1966–1977 
(2017).

	 44.	 P. H. Hermans, P. Platzek, Beiträge zur Kenntnis des Deformationsmechanismus und der 
Feinstruktur der Hydratzellulose. Kolloid-Zeitschrift. 88, 68–72 (1939).

	 45.	 J. S. Biggins, E. M. Terentjev, M. Warner, Semisoft elastic response of nematic elastomers 
to complex deformations. Phys. Rev. E. 78, 41704 (2008).

	 46.	 H. Zhou, K. Bhattacharya, Accelerated computational micromechanics. J. Mech. Phys. 
Solids 153, 104470 (2021).

	 47.	 P. Plucinsky, M. Lemm, K. Bhattacharya, Programming complex shapes in thin nematic 
elastomer and glass sheets. Phys. Rev. E 94, 010701 (2016).

	 48.	 H. Aharoni, Y. Xia, X. Zhang, R. D. Kamien, S. Yang, Universal inverse design of surfaces 
with thin nematic elastomer sheets. Proc. Natl. Acad. Sci. U.S.A. 115, 7206–7211 (2018).

	 49.	 J. Michel, H. Moulinec, P. Suquet, A computational method based on augmented 
Lagrangians and fast Fourier transforms for composites with high contrast. Comput. 
Model. Engr. Sci. 1, 79–88 (2000).

Acknowledgments: We thank the Osaka Organic Chemical Industry Ltd. for the provision of 
the diacrylate compounds for the preliminary experiments and S. Okamoto for assistance in 
the experiments. Funding: K.U. is supported by JSPS KAKENHI grant number JP18H02034. K.B. 
and H.Z. are supported by the U.S. Air Force Office of Scientific Research MURI grant number 
FA9550-16-1-0566. Author contributions: K.U. conceptualized the experiment. K.B. provided 
theoretical insights for the experimental results. K.U. and K.B. supervised the project. H.T. and 
A.T. performed the sample preparation and mechanical tests. K.U., H.T., and A.T. analyzed the 
mechanical data. H.Z. carried out the full-field 3D simulation. K.Ka., K.Ko., and A.T. conducted 
the scattering experiments and the data analysis. K.U. and K.B. wrote the paper, and all of the 
authors edited the manuscript before submission. Competing interests: The authors declare 
that they have no competing interests. Data and materials availability: All data needed to 
evaluate the conclusions in the paper are present in the paper and/or the Supplementary 
Materials. Additional data related to this paper may be requested from the authors.

Submitted 24 September 2020
Accepted 5 May 2021
Published 18 June 2021
10.1126/sciadv.abe9495

Citation: H. Tokumoto, H. Zhou, A. Takebe, K. Kamitani, K. Kojio, A. Takahara, K. Bhattacharya, 
K. Urayama, Probing the in-plane liquid-like behavior of liquid crystal elastomers. Sci. Adv. 7, 
eabe9495 (2021).


