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Abstract: A new series of thiophene-based azomethines differing in the core structure was synthe-
sized. The effect of the central core structure in azomethines on the thermal, optical and electro-
chemical properties was investigated. The obtained compounds exhibited the ability to form a stable
amorphous phase with a high glass transition temperature above 100 ◦C. They were electrochemically
active and undergo oxidation and reduction processes. The highest occupied (HOMO) and the lowest
unoccupied molecular (LUMO) orbitals were in the range of −3.86–−3.60 eV and −5.46–−5.17 eV,
respectively, resulting in a very low energy band gap below 1.7 eV. Optical investigations were per-
formed in the solvents with various polarity and in the solid state as a thin film deposited on a glass
substrate. The synthesized imines absorbed radiation from 350 to 600 nm, depending on its structure
and showed weak emission with a photoluminescence quantum yield below 2.5%. The photophysical
investigations were supported by theoretical calculations using the density functional theory. The
synthesized imines doped with lithium bis-(trifluoromethanesulfonyl)imide were examined as hole
transporting materials (HTM) in hybrid inorganic-organic perovskite solar cells. It was found that
both a volume of lithium salt and core imine structure significantly impact device performance.
The best power conversion efficiency (PCE), being about 35–63% higher compared to other devices,
exhibited cells based on the imine containing a core tiphenylamine unit.

Keywords: thiophene; azomethines; imines; 3,4-diethyl ester 2,5-diaminothiophene; thiophenoa-
zomethines

1. Introduction

The compounds containing the imine bond (–N=CH–) known as imines, azome-
thines or a Schiff bases are a group of materials of interest to many fields of science [1–5].
Azomethines were tested as electrochromic materials and for applications in medicine
and pharmacology [6–9], in optical computers [10,11] and also as agents preventing the
corrosion of mild steel, zinc, aluminum and copper in an acid environment (corrosion
inhibitors) [12,13]. Imines often exhibit electrical conductivity, and the properties of molec-
ular glasses and can form morphologically stable layers, which are valuable properties
in optoelectronic devices [14]. Schiff bases can act as solar filters and are investigated in
photovoltaic cells as yes and active layers or components [15–18]. The imines were tested
as hole transporting materials (HTM) in perovskite solar cells (PSCs). The hole transport
layer (HTL) collects and transports holes from the perovskite layer, and may decrease
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the surface roughness of the perovskite and form better interfacial contact. Some of the
azomethines were studied as HTM in PSC, allowed to reach power conversion efficiency
(PCE) of even 14.37% [19]. On the other hand, the compounds containing a flat electron-rich
(π-excess) thiophene ring with the possibility of modification and the formation of p-doped
material constitute a significant structural element of the organic semiconductors [20].
The molecules with a thiophene ring(s) are p-type semiconductors, undergo a reversible
electrochemical oxidation process, show a low oxidation potential and are characterized
by a narrow energy band gap and high thermal stability [21,22]. Therefore, the thiophene
derivatives are considered promising building blocks for most materials intended for or-
ganic electronics [23–26]. The appropriate structural modification, the number of thiophene
rings and the degree of conjugation significantly impact the newly obtained compounds’
properties [23]. The thiophene-based materials were used as stable hole transport materials
in hybrid PSCs [27]. Considering various thiophene derivatives, the compounds obtained
from 2,5-diaminothiophene-3,4-dicarboxylic acid diethyl ester (DAT) are interesting as
materials dedicated to organic electronics [23]. The condensation reaction of DAT with the
various (di)aldehydes leads to the formation of (oligo)azomethines as promising materials
for optoelectronic applications [14,21,22,28–37]. However, research related to the molecules
prepared from 2,5-diaminothiophene-3,4-dicarboxylic acid diethyl ester is still valid, and
further modifications of the chemical structure allow for the extension of the applicability
range of these compounds [38–41]. Our research group also utilized the compound DAT as
a precursor for conjugated azomethines [42–44]. The synthesized and reported symmetrical
and unsymmetrical thiopheno azomethines from DAT have showed the beginning of the
thermal decomposition above 200 ◦C, a promising low energy band gap (below 2 eV), emis-
sion from the S2 excited state and an ability to form an amorphous state. They were tested
in the guest-host light emitting diodes (OLEDs) for the first time in our research group, and
electroluminescence (EL) in the red spectral region were registered [42,43]. The most favor-
able EL results were obtained for the symmetrical imine with two N-phenylpyrrolidine
substituents [43]. Unsymmetrical imines with one free amino group obtained from DAT
were tested as transporting materials in hybrid solar cells (PSC) [44]. The devices with un-
symmetrical imines showed higher power conversion efficiency than the reference device
without an HTM layer. The most promising was a compound with a morpholine substituent.
Attention should be paid to azomethines with a triphenylamine (TPA) core, due to the good
charge-transport ability of the TPA unit and the low-cost synthesis of imines. The utilization
of azomethine denoted as MS-2 with double 4-[N,Ndi(4-methoxyphenyl)amino]phenyl
units as HTM in devices with the structure FTO/bl-TiO2/mp-TiO2/CH3NH3PbI3/MS-
2/Au allowed for obtaining a PCE of 6.68% [45]. Salunke et al. [46,47] reported a series
of imines with phenothiazine core end-capped with the TPA unit. The fabricated PSCs
(ITO/SnO2/Cs0.05MA1−yFAyPbI3−xClx/HTM/Au (or Ag)) showed PCE in the broad range
of 9–14%. Petrus et al. [48,49] described a series of azomethines based on the TPA with differ-
ent cores (i.a. EDOT, thiophene). The prepared PSCs (FTO/TiO2/CH3NH3PbI3/HTM/Au)
showed a PCE of 0.2–14%. Bogdanowicz et al. [19] reported the symmetrical imine with
two TPA units, which, applied in device FTO/TiO2/CH3NH3PbI3/bTAThDaz/Ag, resulted
in registered PCE above 14%. The highest PCE=17% of device (ITO/HTM/CH3NH3PbI3/
PC61BM/BCP/Ag Au) based on imines with TPA units was reported by Duan et al. [50].
The results become the motivation forfurther modification of the structure
of thiophenoazomethines.

Our study focused on thiophenoazomethines and five new molecules with two free
amino groups are presented. In this work, five new molecules with two free amino groups
are presented as the results of our research group focused on thiophenoazomethines.
New molecules were synthesized from DAT and dialdehydes such as a isophthalalde-
hyde, 4,4′-biphenyldicarboxaldehyde, 4,4′-diformyltriphenylamine and 2,2′-bitiophene-
5,5′-dicarboxaldehyde, thieno[3,2-b]thiophene-2,5-dicarboxaldehyde. The effect of the
compound core structure on thermal, optical and electrochemical properties was evaluated.
Additionally, photophysical studies were supported by theoretical calculations using den-
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sity functional theory (DFT). To estimate charge carriers mobility of thiophenoazomethine
with triphenylamine, the Organic Field Effect Transistors (OFET) were made in a Top Gate
Bottom Contacts (TGBC) configuration and used as a mobility indicator [51]. The template
OFET were constructed with P3HT (Mw = 36,600) as a semiconductor film; in the indicator’s
OFETs, the semiconductor film were replaced by thiophenoazomethine. The FET charge
carriers mobility was calculated from I-V curves. Finally, the synthesized compounds were
examined as HTM in hybrid photovoltaic cells.

2. Result and Discussion
2.1. Synthesis and Structural Characterization

Thiophenoazomethines(AzDTs) end-capped with donating amine group were ob-
tained in the one-step condensation of the 2,5-diamino-thiophene-3,4-dicarboxylic acid
diethyl ester with five dialdehydes (Figures 1 and S1 in the ESI).
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The compounds were synthesized in a mild reaction conditions with catalytic amounts
of trifluoroacetic acid (TFA). Azomethines were obtained as a powders soluble in commer-
cially available organic solvents. The 1H NMR, 13C NMR and FTIR investigations were
performed to define the chemical structure of the synthesized thiophenoazomethines. In
the1H NMR spectra of the compounds, the signal of the imine proton as a singlet was seen
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in the range of 8.02 (AzDT-3)–8.29 (AzDT-5) ppm (Figure S2 in the ESI). The amine (–NH2)
proton signals as a singlet were seen at about 7.95 ppm. The lack of proton from the alde-
hyde unit was observed. The signals of the hydrogen atoms in the aromatic ring occurred in
the typicalrange (7.06–7.87 ppm). The proton signals from –CH3 and –CH2– groups of the
thiophene aliphatic chain were seen as quartets and triplets in the ranges of 4.14–4.32 ppm
and 1.20–1.34 ppm (not symmetrical structures), respectively. Based on the infrared spectra,
the absorption band of the imine unit from 1692 (AzDT-4) to 1649 cm−1 (AzDT-1 and
AzDT-3) was detected and two absorption bands characteristic for the amine (–NH2) group
at 3423–3465 cm−1 and 3308–3395 cm−1 were seen. The increase of conjugation was ob-
served in compounds with a biphenyl (AzDT-2) and a bithiophene core (AzDT-5) with
respect to compounds with a phenyl(AzDT-1) and a thieno[3,2-b]thiophenecentral unit
(AzNT-4). The elongation of the π-conjugation system was confirmed by the shift of the
position of imine proton signals towards higher values in the 1HNMR spectra and the shift
of the absorption band of the imine group towards lower cm−1 values in the FTIR spectra.
Additionally, the chemical structure of the prepared compounds was confirmed by HRMS.
Elemental analysis results were in good agreement with theoretical, which indicates the
purity of the synthesized thiophenoazomethines.

The thermal behavior of the AZDTs molecules was analyzed based on differen-
tial scanning calorimetry (DSC) measurements. The data obtained from DSC investi-
gations are collected in Table 1, and exemplary thermograms are presented in Figure S3 in
Supplementary Information (ESI).

Table 1. Thermal properties of the investigated compounds.

Code

DSC

I Heating II Heating

Scan Scan

Tm Tg Tm

[◦C] [◦C] [◦C]

AzDT-1 118, 242 101 nd
AzDT-2 118, 300 163 300
AzDT-3 262 194 nd
AzDT-4 117, 297 157 nd
AzDT-5 118, 260 137 nd

Tm—melting temperature, Tg—glass transition temperature, nd—not detected.

In the DSC thermograms registered under the first heating scan, two endothermic
peaks were observed, expect for the compound with a triphenylamine core (AzDT-3). The
first endotherm corresponds to crystal to crystal transition (Tm ≈ 118 ◦C), whereas the
second is a melting one, which indicates that AzDTs molecules were obtained as crystalline
compounds. The second heating scan (after rapid cooling) revealed a glass transition
temperature (Tg) in the range of 101–194 ◦C, meaning the investigated molecules showed
the ability to transform from crystalline into the amorphous state. No melting temperature
during further heating above Tg was seen, except for the AzDT-2 with the biphenyl core. It
means that AzDTs compounds form stable molecular glasses.

2.2. Electrochemical Investigations

Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used for
the electrochemical investigations. The measurements were performed in 0.1 M Bu4NPF6
electrolyte in dichloromethane with 10−3 mol/dm3 concentration of AzDTs. The ionization
potentials (IP) and electron affinities (EA) were estimated based on the onset potentials
from the oxidation and reduction processes (Eox(onset)

1,Ered(onset)
1). The data from CV and

DPV are provided in Table 2 and the cyclic voltammograms are presented in Figure 2.



Int. J. Mol. Sci. 2022, 23, 8160 5 of 18

Table 2. The redox properties of the thiophenoazomethines.

Code Method
Ered

1 Ered(onset)
1 Eox

1 Eox(onset)
1 EA LUMO c IP HOMO c Eg

(V) (V) (V) (V) (eV) (eV) (eV) (eV) (eV)

AzDT-1
DPV −1.81 −1.33 0.42 0.28 −3.77 −2.28

−5.38 −5.52
1.61

CV −1.84 a −1.29 0.52 a 0.36 −3.81 −5.46 1.65

AzDT-2
DPV −1.82 −1.39 0.63 0.28 3.71 −2.48

−5.38 −5.41
1.67

CV −1.73 a −1.3 0.38 a 0.34 −3.8 −5.44 1.64

AzDT-3
DPV −1.78 −1.45 0.21 0.07 −3.65 −2.19

−5.17 −5.24
1.52

CV −1.78 a −1.50 0.27 a 0.14 −3.6 −5.24 1.64

AzDT-4
DPV −1.58 −1.27 0.29 0.18 −3.83 −2.81

−5.28 −5.28
1.45

CV −1.56 a −1.24 0.34 a 0.27 −3.86 −5.37 1.51

AzDT-5
DPV −1.65 −1.35 0.37 0.15 −3.75 −2.74

−5.25 −5.15
1.5

CV −1.63 a −1.28 0.42 b 0.25 −3.82 −5.35 1.53

IP=−5.1− Eox(onset)·|e−|, EA=−5.1− Ered(onset)·|e−|, Eg = Eox(onset) − Ered(onset). Measurements in CH2Cl2 with
concentration 10−3 mol/dm3 and electrolyte 0.1 mol/dm3 Bu4NPF6. Pt as the working electrode. a Irreversible
process. b Quasi-reversible process. v = 0.1 V/s for CV and v = 0.01 V/s for DPV. c Data from the DFT calculations.
1 The first reduction and oxidation processes.
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The investigated azomethines were electrochemically active and the oxidation and
reduction processes were registered. The first reduction and oxidation process were irre-
versible [28], except for molecule AzDT-5 with a bitiophene core where the quasi-reversible
process of oxidation was seen (∆E = 110 mV). The two or three reduction processes (Table S1
in the ESI) were associated with the reduction of the acceptor part of the molecules with
radicals formation and the imine bond, as was reported previously [43,44]. In the case
of oxidation, more complex voltammograms were recorded, which may be related to the
presence of the electron donating elements in the AzDTs’ molecules. Based on the oxidation
potentials, it can be concluded that the compound AzDT-3 with a TPA core has greater
capabilities to donate electrons because the oxidation process took place at a lower potential.
Moreover, the compound AzDT-3 showed multistep oxidation processes (cf. Figure S4 in
the ESI) in both CV and DPV measurements. The one para position in the TPA core is free
and the formed radical cation can dimerize [52,53].

The reduction of the formed dication was seen in the reverse voltammetric sweep
and in the second scan, and a new peak at 0.1 V was observed [53]. It should be noted
that in order to see this behavior, the potential must be higher than 0.6 V vs. Fc/Fc+

(Figure S4 in the ESI). The other scans did not reveal the polymerization of the investigated
molecules on the Pt electrode. The EA and IP, closely related to LUMO and HOMO levels,
were obtained in the range of −3.60–−3.86 eV and −5.17–−5.46 eV, respectively (Table 2).
The presence of the bithiophene (AzDT-5) and thieno[3,2-b]thiophene (AzDT-4) in the
cores impacts on the IP and EA value, lowering the EA and increasing the IP and finally
reducing the electrochemical energy band gap (Eg) calculated as a difference between IP
and EA. The energy band gap was below 1.7 eV and was dependent on the core structure
(AzDT-1, 2, 3 > AzDT-4, 5), as mentioned above.

2.3. Theoretical Calculations

Theoretical calculations were performed with the use of the density functional theory
(DFT) and were carried out using the Gaussian09 program on the B3LYP/6–311g++ level.
Molecular geometry of the singlet ground and S1, S2, T1, T2, T3 excited states of the
compounds were optimized in the gas phase (ground state) and electronic structures,
and electronic transitions and excited states were calculated with use of the Polarizable
Continuum Model (PCM) in dichloromethane for comparison of HOMO and LUMO
energies with electrochemical data and chlorobenzene (excited states) as solvents. The
optimized geometries of the compounds are depicted in Figure S6 in the ESI.

Comparing the energies of HOMOs and LUMOs determined on the basis of electro-
chemical data (cf. Table 2) with theoretically calculated values, it can be noticed that the
calculated HOMO energies correspond with the experimental values of IP determined
from CV measurements. Calculated LUMO energies were overestimated but the calculated
values of the HOMO and LUMO energies were used only for consistency with geometry
optimization. For a more detailed description of the molecular orbitals, the contribution of
molecule parts, i.e., central fragment,–N=CH–and thiophene-3,4-dicarboxylic acid diethyl
ester moieties to a molecular orbital, was calculated. The obtained DOS diagrams are
presented in Figure S7 in the ESI, and the composition of selected molecular orbitals are
gathered in Table S2 (contours of HOMO and LUMO are presented in Figure S8). HOMO
comprises the conjugated bonds in the central molecule part, and the imine bond with the
dominant share of the DAT fragment. LUMO is mainly localized in the central molecule
part with the azomethine fragment. HOMO-1 and HOMO in AzDT-1 and AzDT-2 are
degenerate with an energy difference of 90 meV and 200 meV, respectively. The pres-
ence of two donor moieties should lead to a degeneracy of the frontier orbitals, but in
other compounds (AzDT-3, 4 and 5), the HOMO-1/HOMO energy differences are higher
(310–480 mV), which is associated with changes in the acceptor fragment of the molecule.
The influence of the donor on the LUMO levels is significantly attenuated (Figure S8 and
Table S2 in the ESI).
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The excitation wavelengths resulting in emission (vide infra) correspond to H-1/
HOMO→LUMO/L+1 transitions (Table S3 in the ESI) andhave a mixed intra molecu-
lar charge transfer/locally-excited (ICT/LE) nature. Based on the data in Table S3, the
charge transfer process takes place between the moieties and central molecule part includ-
ing imine linkers. These compounds exhibit photoluminescence with low quantum yields
(cf. Table 3) and the TD-DFT method was used to optimize the S1, S2 and T1, T2 T3 excited
states of the AzDT-4 and AzDT-5 compounds in chlorobenzene as a solvent (in the case of
the others compounds, the optimization of the excited states were not convergent). The
emission spectra of AzDT-4 and AzDT-5 calculated for S1 show peaks in 548 and 551 nm,
respectively. The transitions have a 1π→π∗ character and the contribution to the bands
mainly comes from LUMO→H-1 (AzDT-4) and L+1→HOMO transitions (AzDT-5). Since
the geometries of S0 and S1 states are similar (Table S4 in the ESI), the Stokes shifts are
small (cf. Table 3). The geometries of the triplet states are also similar to the ground state
but T1 presents a larger stabilization compared to S1 and a much lower energy compared
to the ground state. Whereas the energy vertical emissions from S1 to S0 is close to 1.91 eV
(649 nm, corresponding to the lower energy emission band cf. Table 3), the vertical emission
from T1 is only 0.42 eV.

Table 3. UV-Vis and PL data of AzDTs.

Code Medium

UV-Vis PL

Φ (%)λmax λem Stokes Shifts
(nm) (ε·104) a (nm) (cm−1) b

AzDT-1

CHCl3 c 401 (4.05) 450 2715 0.2
CH2Cl2 404 (3.88) 453 2677 0.1
C6H5Cl 401 (2.68) - - -
C2H3N 211 (4.41), 242 (3.32), 410 (4.51) 468 3023 0.1
Film d 407 - - -

AzDT-2

CHCl3 304 (2.29), 428 (6.28) 494 3122 0.1
CH2Cl2 308 (1.74), 431 (4.76) 496 3041 0.2
C6H5Cl 310 (2.33), 433 (5.76) 494 2852 0.2
C2H3N 295 (2.32), 431 (5.63) 530 4334 0.2
Film d 445 - - -

AzDT-3

CHCl3 306 (2.56), 404 sh, 445 (7.52) 500 2472 2.4
CH2Cl2 309 (2.59), 404 sh, 445 (5.54) 506 2709 2.3
C6H5Cl 407 sh, 446 (6.96) 501 2461 2.0
C2H3N 242 (3.69), 310 (2.00), 401 sh, 442 (6.92) 507 2901 0.5
Film d 454 - - -
Film e 449 - - -

AzDT-4

CHCl3 325 (1.62), 459 sh, 492 (5.58), 527 (4.88) 564 1245 1.8

CH2Cl2
266 (1.59), 322 (1.59), 459 sh, 489 (6.83), 525

(5.94)
564 1317 0.9

C6H5Cl 325 (1.55), 461 sh, 494 (2.57), 533 (2.34), 601 sh 560,591 905 1.2
C2H3N 220 (5.46), 325 (1.77), 487 (6.42), 521 (5.69) 595 2387 1.0
Film d 495 - - -

AzDT-5

CHCl3 272 (2.62), 404 sh, 500 (6.58) 582 2818 2.0
CH2Cl2 272 (2.38), 311 sh, 401 sh, 501 (6.52) 585 2866 1.2
C6H5Cl 406 sh, 474 sh, 507 (1.57), 542 sh 578,616 2423 1.0
C2H3N 219 (4.64), 272 (2.11), 404 sh, 501 (5.35) 612 3620 1.3
Film d 489 - - -

a ε—Absorption coefficient (dm3·mol−1·cm−1). b Stokes shifts calculated according to the equation
∆ν = (1/λabs − 1/λem)·107 (cm−1). c Concentration of the solutions= 10−5 mol/dm3. d Film prepared from
chloroform solution. e Film prepared from chlorobenzene solution. sh—shoulder. Underline data indicates the
excitation wavelength (λex).
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The energy difference between the S1 and T2 state equal to 1335 cm−1 in AzDT-4
and 2544 cm−1 in the case of AzDT-5 indicates that the conversion process can easily
take place (Figure 3). On the other hand, energy differences between T2 and T1 states is
higher (~10,000 cm−1); therefore, the S1→S0 emission is observed, although non-radiative
excitation energy dissipation processes related to internal conversion significantly reduce
the fluorescence emission (see Section 2.4).
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Figure 3. Low-lying energy states of AzDT-4 and AzDT-5 molecules.

2.4. Photophysical Properties

The photophysical properties of AzDTs were investigated using UV-vis and photolumi-
nescence spectroscopies. The UV-Vis spectra were recorded in the four solvents differing in
polarity: chloroform (CHCl3, ε = 4.81), chlorobenzene (C6H5Cl, ε = 5.62), dichloromethane
(CH2Cl2, ε = 10.66) and acetonitrile (C2H3N, ε = 37.50) in concentration c= 10−5 mol/dm3

and as a films prepared on the glass substrates. The electronic spectra are presented in
Figure 4 (Figure S9 in the ESI) and data are collected in Table 3.
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The imines in a solution absorbed the radiation with the maximum absorption band
(λmax) located between 242 and 533 nm (2.22–5.12 eV; Table 3.). The absorption at higher
energy ranges (3.82–5.12 eV) can be assigned to π→π* transitions [39,44]. The dominating
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absorption bands were localized at the lower energies (2.33–3.09 eV) and were shifted
towards longer wavelengths depending on the core structure: phenyl < biphenyl < triph-
enylamine < bitiophene < thieno[3,2-b]thiophene (Figure 4). There were no significant
differences in the λmax position registered in various solvents (∆λmax= 2–12 nm; Figure S9
in the ESI). In the films, the maximum of the absorption bandwas very similar to λmax in
the solutions (cf. Table 3 and Figure S9 in the ESI); however, the film of AzDT-3 (with TPA
core) prepared from a chloroform solution showed a 10 nm red shift of the λmax compared
to the solution. The broad absorption spectrum is presented in Figure S9 in the ESI, and
was recorded for imines with a bitiophene (AzDT-5) and a thieno[3,2-b]thiophene (AzDT-4)
core with the λmax located at the highest absorption coefficient in the solutions.

The presented molecules showed weak light emission in the solutions, and the PL quan-
tum yield (φ) was below 2.5% and was none-emissive in the solid state. Such behavior was
also reported in our previous publications for unsymmetrical and symmetricalthiophene-
based azomethines [43,44]. The excited states are deactivated in a non-radiative way, which
may be related to the presence of a heavy atom (sulfur) and internal conversion. In the
solutions, the PL spectra were shifted towards the longer wavelengths depending on the
core structure, as in the case of the absorption spectra (Figure 5).
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Figure 5. The emission spectra (PL) (a) in chloroform and (b) in chlorobenzene solution (λextaken
from the UV-Vis spectra, presented in Table 3).

The weak emission spectra with the one emission band were registered in the blue
(AzDT-1, 2, 3), green (AzDT-2 in C2H3N, AzDT-4) and yellow to orange (AzDT-4 in C2H3N
and C6H5Cl, AzDT-5) range of light. The maximum of the PL band (λem) was bathochromic
and shifted as the polarity of solvent increased (Table 3). In the case of AzDT-4 and
AzDT-5 in the chlorobenzene solution, the vibrionic structure of the emission band was
seen (Figure 5b). It was found that the excitation wavelength (λex) did not effect on the λem
position, according to the Kasha’s rule [54].

2.5. Photovoltaic Study

Considering the requirements for HTM, the energy of the HOMO of the HTM should
be close to the energy of valance band of the perovskite for proper hole transport and
the energy of the LUMO of the HTM should be higher than the energy of conductive
band of the perovskite to block the electron flow to the Au electrode. The synthesized
imines were tested asthe hole transporting materials in the non-encapsulated hybrid
inorganic-organic perovskite solar cells (Figure 6b). The devices without the HTM layer
(FTO/b-TiO2/m-TiO2/perovskite/Au) and with a Spiro-OMeTAD as the HTM were also
fabricated. The PSC structure with the HTM layer is presented in Figure 6. The two-step
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method was applied for the perovskite layer (MAPbI3) preparation, which is described
in Supplementary Information. To improve the efficiency of the cells, azomethines were
doped with a different volume of lithium bis-(trifluoromethanesulfonyl)imide (Li-TFSI)
with 4-tert-butyl pyridine (tBP) VtBP = 28.8 µL, the common p-dopant (to “extract” the
electrons from the HTM donor molecule; VLi-TFSI = 8.75, 17.50 and 35.00 µL) [55,56].
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Figure 6. (a) The sandwich hybrid solar cell structure and (b) the energy level diagram of
the cell components.

The atomic force microscope (AFM) was used to estimate the quality of the layers based
on the root-mean-square (RMS) parameter (cf. Table S5). The AFM micrograms of the tested
surfaces are shown in Figure 7. Moreover, the scanning electron microscope (SEM) was
utilized to register a cross-section images of the FTO/b-TiO2/m-TiO2/perovskite/AzDT-4
and the reference cell without HTM. The surface roughness of the oxide semiconductor
(TiO2) was determinate. The RMS of the TiO2 mesoporous layer was about 20 nm, indi-
cating a relatively planar structure. The deposition of the perovskite crystals resulted in
a significant increase of the RMS value to about 130 nm (Figures 7a,g,h and S11a). The
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presence of a hole transporting layer on the top of the perovskite decreased the surface
roughness to 75–90 nm (cf. Table S5 and Figure S11b). The layer of imine with a biphenyl
core (AzDT-2) showed the smoothest surface (RMS = 75 nm). The well-formed structure of
the perovskite before and after HTM deposition is shown in the SEM images (Figure 7g,h).
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TiO2/perovskite/AzDT-3, (e) FTO/b-TiO2/m-TiO2/perovskite/AzDT-4, (f) FTO/b-TiO2/m-
TiO2/perovskite/AzDT-5 and the SEM cross-section images of (g) FTO/b-TiO2/m-TiO2/perovskite 
and (h) FTO/b-TiO2/m-TiO2/perovskite/AzDT-4. 
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35.00 6.72 530.30 0.34 1.37 

AzDT-2 
8.75 7.60 760.80 0.34 2.24 
17.50 6.52 759.50 0.42 2.38 
35.00 3.92 301.10 0.31 0.42 

AzDT-3 
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17.50 7.80 680.50 0.35 2.11 
35.00 2.80 513.90 0.35 0.57 

AzDT-4 
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35.00 4.80 778.90 0.50 2.14 

AzDT-5 
8.75 5.00 798.00 0.45 2.04 
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35.00 1.72 640.30 0.33 0.42 

Figure 7. AFM images (20 µm × 20 µm) of (a) FTO/b-TiO2/m-TiO2/perovskite,
(b) FTO/b-TiO2/m-TiO2/perovskite/AzDT-1, (c) FTO/b-TiO2/m-TiO2/perovskite/AzDT-2,
(d) FTO/b-TiO2/m-TiO2/perovskite/AzDT-3, (e) FTO/b-TiO2/m-TiO2/perovskite/AzDT-4,
(f) FTO/b-TiO2/m-TiO2/perovskite/AzDT-5 and the SEM cross-section images of
(g) FTO/b-TiO2/m-TiO2/perovskite and (h) FTO/b-TiO2/m-TiO2/perovskite/AzDT-4.

The photovoltaic parameters such as Jsc—density of short-circuit current, Voc—open-
circuit voltage, FF—fill factor, and PCE—power conversion efficiency estimated from
current-voltage (I-V) characteristics are summarized in Table 4 and in Table S6 in the ESI.
I-V graphs for the selected devices are collected in Figure 8.

Table 4. Photovoltaic properties of the best fabricated hybrid perovskite solar cells:
FTO/b-TiO2/m-TiO2/perovskite/Au, and TiO2/perovskite/AzDTs:VLi-TFSI/Au.

Code
VLi-TFSI

(µL)
Jsc Voc FF PCE

(mA/cm2) (mV) (-) (%)

reference - 9.24 156.10 0.25 0.41
spiro-OMeTAD 17.50 15.35 739.80 0.42 5.05

AzDT-1
8.75 3.88 603.90 0.41 1.10

17.50 3.68 425.70 0.33 0.59
35.00 6.72 530.30 0.34 1.37

AzDT-2
8.75 7.60 760.80 0.34 2.24

17.50 6.52 759.50 0.42 2.38
35.00 3.92 301.10 0.31 0.42

AzDT-3
8.75 13.50 673.50 0.35 3.64

17.50 7.80 680.50 0.35 2.11
35.00 2.80 513.90 0.35 0.57

AzDT-4
8.75 3.92 708.10 0.46 1.46

17.50 3.68 758.60 0.59 1.88
35.00 4.80 778.90 0.50 2.14

AzDT-5
8.75 5.00 798.00 0.45 2.04

17.50 3.28 753.40 0.41 1.16
35.00 1.72 640.30 0.33 0.42

The prepared solar cells with a HTM layer exhibited higher power conversion effi-
ciency (PCE) than device without a hole transporting compound (Figure S12); however,
for the solar cells with AzDT-2 and AzDT-5 (VLi-TFSI = 35 µL), this difference was incon-
siderable (Table S6). The highest Jsc (density of short-circuit current, Jsc = 13.50 mA/cm2)
for the device structure FTO/b-TiO2/m-TiO2/perovskite/AzDT-3/Au (VLi-TFSI = 8.75 µL)
was achieved and resulted in the highest PCE (3.64%). However, such a value is lower
compared to the PCSs based on the typical HTM, as is seen with Spiro-OMeTAD (Table 4).
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At the same time, the obtained efficiency (PCE = 5.05%) of cells with Spiro-OMeTAD is not
high compared to the recorded results. Performing optimization of cell preparation would
improve the PV performance of cells. However, the optimization was not the aim of this
work. It should be noticed that the devices are prepared and measured in ordinary labo-
ratory conditions without the use of appropriate, efficient systems to eliminate moisture
and oxygen.
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The charge carrier mobility was estimated for imine AzDT-3, which applied as a HTM
gave the best results. The charge carrier mobility was measured based on the transfer
current-voltage characteristic of the prototype OFET devices (Figure S13) [57–59]. The
p-type characteristics were received and the hole mobility at 1.0 × 10−4 cm2/V·s were
estimated in the saturation regime of OFET with an active layer ofAzDT-3. The increasing
of lithium salt (8.75 µL < 17.50 µL < 35.00 µL) did not guarantee an increase to the power
conversion efficiency of the investigated devices [60]. The radical cation formation affects
the PCE. The dopant concentration is important and controlling the radical formation
process is difficult [61–63].

3. Methods and Materials

Information concerning the characterization methods, film and device preparations
with DFT calculations are available in Supplementary Materials.

3.1. Materials

Isophthalaldehyde and 4,4′-biphenyldicarboxaldehyde were purchased from Acros
Organics and 2,2′-bitiophene-5,5′-dicarboxaldehyde from TCI. In addition,
4,4′-Diformyltriphenylamine, thieno[3,2-b]thiophene-2,5-dicarboxaldehyde, trifluoroacetic
acid (TFA), activated charcoal, KBr, Bu4NPF6 and solvents were purchased from Sigma
Aldrich (Merck, Rahway, NJ, USA). The materials used for perovskite solar cells were
surfactant, fluorine doped tin oxide coated glass slides (FTOs, 7 Ω/sq, Sigma-Aldrich, St.
Louis, MO, USA), ethanol (EtOH, POCH), hydrochloric acid (HCl, CHEMPUR), tetraethyl
orthotitanate ((C2H5O)4Ti, Merck), paste Ti-Nanoxide T/SP (Solaronix), anhydrous N,N-
dimethylformamide (DMF, Sigma-Aldrich), isopropanol (IPA, POCH), lead iodide (PbI2,
Sigma-Aldrich), methylammonium iodide (MAI, Solaronix) and chlorobenzene (C6H5Cl,
POCH). Additionaly, 4-Tert-butyl pyridine (TBP) and lithium bis(trifluoromethanesulfonyl)imide
(Li-TFSI) were purchased from Sigma-Aldrich (Merck). Materials used for prototype OFET
devices were purchased from Sigma-Aldrich (Merck) and Ossila. Furthermore, 2,5-Diamino-
thiophene-3,4-dicarboxylic acid diethyl ester (DAT) was synthesized according to publication [31].
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3.2. Synthesis of the Thiophenoazomethines

Dialdehydes (2 mmol of: isophthalaldehyde, 4,4′-biphenyldicarboxaldehyde,
4,4′-diformyltriphenylamine, 2,2′-bitiophene-5,5′-dicarboxaldehyde,thieno[3,2-b]thiophene-
2,5-dicarboxaldehyde) were dissolved in 50 mLof ethanol in around bottom flask and heated
to 78 ◦C. After 15 min2,5-diamino-thiophene-3,4-dicarboxylic acid diethyl ester (8 mmol;
2066 g) was added with four drops of trifluoroacetic acid (TFA). The reaction was carried out
for 24 h, and after that time the product was filtered, dissolved in chloroform (20 cm3) with
activated charcoal and filtered again to 10 cm3 of chloroform. The main product was received
from the evaporated chloroform solution using a rotary evaporator.

Bis-2-(1,3-iminophenylene)-5-amino-thiophene-3,4-dicarboxylic acid diethyl
ester(AzDT-1)

Yellow solid. Yield = 75%. 1H NMR (δ, 600 MHz, DMSO-d6, ppm): 8.13 (s, 2H,
H–C=N−), 8.11 (s, 1H), 7.95 (s, 4H, –NH2), 7.83 (d, J = 7.8 Hz, 2H), 7.56 (t, J = 7.7 Hz, 1H),
4.32 (q, J = 7.1 Hz, 4H), 4.16 (q, J = 7.1 Hz, 4H), 1.32 (t, J = 7.1 Hz, 6H),1.22 (t, J = 7.1 Hz,
6H). 13C NMR (δ, 151 MHz, DMSO-d6, ppm): 165.1, 163.7, 161.7, 152.1, 136.7, 132.1,
131.0, 130.4, 129.8, 127.5, 100.6, 61.30, 60.0, 14.6, 14.5. FT-IR (KBr, v, cm−1): 3423, 3315
(NH2stretch), 3155 (C-H aromatic), 2976 (C-H aliphatic), 1741, 1706 (C=O), 1671, 1649
(CH=N stretch),1584 (C-N stretch). El.Anal. Calcd for C28H30N4O8S2 (614.69 g/mol): C
(54.71%), H (4.92%), N (9.11%), Found: C (54.26%), H (4.36%), N (8.58%). HRMS (m/z)
[M + Na]+calcd for C28H30N4NaO8S2: 637.1391. ρ = 1.39 g/cm3.

Bis-2-(4,4′-diiminophenylene)-5-amino-thiophene-3,4-dicarboxylic acid diethyl
ester (AzDT-2)

Orange solid. Yield = 85%. 1H NMR (δ, 600 MHz, DMSO-d6, ppm): 8.15 (s, 2H,
H–C=N−), 7.93 (s, 4H, –NH2), 7.87 (s, 8H), 4.30 (q, J = 7.1 Hz, 4H),4.16 (q, J = 7.1 Hz, 4H),
1.34 (t, J = 7.1 Hz, 6H),1.22 (t, J = 7.1 Hz, 6H). 13C NMR (δ, 151 MHz, DMSO-d6, ppm):
165.3, 163.8, 161.7, 152.0, 141.5, 135.8, 132.5, 130.7, 129.0, 127.5, 100.6, 61.2, 59.9, 14.6,14.5.
FT-IR (KBr, v, cm−1): 3423, 3308 (NH2stretch), 3161 (C-H aromatic), 2988 (C-H aliphatic),
1715 (C=O), 1663 (CH=N stretch), 1593 (C-N stretch). El.Anal. Calcd for C34H34N4O8S2
(690.79 g/mol): C (59.12%), H (4.96%), N (8.11%), Found: C (58.88%), H (4.84%), N (7.61%).
HRMS (m/z) [M + Na]+calcd for C34H34N4NaO8S2: 713.1703. ρ = 1.41 g/cm3.

Bis-2-(4,4′-diiminotriphenylamine)-5-amino-thiophene-3,4-dicarboxylic acid diethyl
ester (AzDT-3)

Gold solid. Yield = 86%. 1H NMR (δ, 600 MHz, DMSO-d6, ppm): 8.02 (s, 2H,H–C=N−),
7.87 (s, 4H, –NH2),7.69 (d, J = 8.6 Hz, 4H),7.41 (t, J = 7.8 Hz, 2H), 7.20 (t, J = 7.4 Hz, 1H),
7.14 (d, J = 7.7 Hz, 2H), 7.06 (d, J = 8.6 Hz, 4H),4.25 (q, J = 7.1 Hz, 4H), 4.14 (q, J = 7.1 Hz,
4H), 1.28 (t, J = 7.1 Hz, 6H),1.20 (t, J = 7.1Hz, 6H). 13C NMR (δ, 151 MHz, DMSO-d6,
ppm):165.3, 163.8, 161.2, 151.9, 149.1, 146.2, 132.9, 130.8, 130.4, 129.8, 129.5, 126.4, 125.5,
123.3, 100.5, 61.1, 59.9, 14.6, 14.5. FT-IR (KBr, v, cm−1): 3423, 3315 (NH2stretch), 3155 (C-H
aromatic), 2976 (C-H aliphatic), 1741, 1706 (C=O), 1671, 1649 (CH=N stretch), 1584 (C-N
stretch). El.Anal. Calcd forC40H39N5O8S2 (781.89 g/mol): C (61.44%), H (5.03%), N (8.96%),
Found: C (60.81%), H (5.03%), N (8.52%). HRMS (m/z) [M + H]+calcd for C40H40N5O8S2:
782.2306. ρ = 1.32 g/cm3.

Bis-2-(2,5-diimino-thieno[3,2-b]thiophene)-5-amino-thiophene-3,4-dicarboxylic acid
diethyl ester (AzDT-4)

Red solid. Yield = 81%. 1H NMR (δ, 600 MHz, DMSO-d6, ppm): 8.29 (s, 2H, H–C=N−),
7.97 (s, 4H, –NH2), 7.86 (s, 2H), 4.29 (q, J = 7.0 Hz, 4H), 4.15 (q, J = 7.1 Hz, 4H), 1.34 (t,
J = 7.1 Hz, 6H),1.22 (t, J = 7.1 Hz, 6H). 13C NMR (δ, 151 MHz, DMSO-d6, ppm): 165.1,
163.6, 161.2, 147.2, 146.3, 141.9, 132.0, 130.7, 125.4, 100.8, 61.3, 60.1, 14.7, 14.5. FT-IR (KBr,
v, cm−1): 3462, 3321 (NH2stretch), 2976 (C–H aliphatic), 1738, 1720 (C=O), 1692 (CH=N
stretch), 1595 (C-Nstretch). El. Anal. Calcd for C28H28N4O8Ss (676.80 g/mol): C (49.69%),
H (4.17%), N (8.28%), Found: C (48.97%), H (3.56%), N (7.68%). HRMS (m/z) [M + H]+calcd
for C28H29N4O8S2: 677.0886. ρ = 1.45 g/cm3.

Bis-2-(5,5′-diimino-2,2′-bitiophene)-5-amino-thiophene-3,4-dicarboxylic acid diethyl
ester (AzDT-5)
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Red solid; Yield = 65%. 1H NMR (δ, 600 MHz, DMSO-d6, ppm): 8.23 (s, 2H, H–C=N−),
7.95 (s, 4H, –NH2), 7.55 (d, J = 3.9 Hz, 2H), 7.49 (d, J = 3.9 Hz, 2H), 4.29 (q, J = 7.0 Hz, 4H),
4.15 (q, J = 7.1 Hz, 4H), 1.34 (t, J = 7.1 Hz, 6H),1.21 (t, J = 7.1 Hz, 6H). 13C NMR (δ, 151 MHz,
DMSO-d6, ppm): 165.1, 163.7, 161.5, 145.8, 142.5, 139.9, 133.8, 132.1, 130.3, 126.7, 100.7,
61.2, 60.0, 14.6, 14.5. FT-IR (KBr, v, cm−1): 3456, 3295 (NH2stretch), 2994 (C-H aliphatic),
1733 (C=O), 1669 (CH=N stretch), 1574 (C-N stretch). El. Anal. Calcd for C30H30N4O8S4
(702.84 g/mol): C (51.27%), H (4.30%), N (7.97%), Found: C (50.37%), H (3.93%), N (7.63%).
HRMS (m/z) [M+H]+calcd for C30H31N4O8S2: 703.1039. ρ = 1.44 g/cm3.

4. Conclusions

The five azomethines with two free amino groups, able to form stable amorphous
states, were synthesized in eco-friendly conditions. The impact of the imine core—phenyl,
biphenyl, triphenylamine, thieno[3,2-b]thiophene and bithiophene—on thermal, optoelec-
tronic and electrochemical properties was demonstrated. It was found that:

• the compounds both showed high Tm (above 200 ◦C) and Tg (above 100 ◦C). The
presence of TPA and a biphenyl structure increase the Tm to ~300 ◦C and Tg to 194 ◦C
(AzDT-3) and 163 ◦C (AzDT-2),

• the HOMO of the imines was in the similar range of −5.58–−5.15 eV, whereas in the
LUMO value, due to the fact that it is mainly localized on the central molecule part,
more pronounced differences were observed and molecules with TPA and phenyl unit
exhibited the lowest LUMO energy level at −2.19 eV and −2.28 eV, respectively. The
introduction of a phenyl and a biphenyl structure slightly increases the Eg from 1.5 eV
to 1.6 eV,

• the presence of a thieno[3,2-b]thiophene and a bithiophenebathochromically shifted
the absorption range and together with TPA have a beneficial effect on PL efficiency.
The weak emission in the solutions and its lack in the thin films is related to the
presence of a heavy atom (sulfur) and internal conversion,

• imines smoothed the perovskite layer, which improves the HTM—electrode
interfacial contact,

• low value of FF and Jsc of the fabricated hybrid solar cells based on the synthesized
azomethines have resulted in poor power conversion efficiency, not excited 3.65%.

The presented molecules are potential monomers because of two free amine groups,
and the most promising ones as examples with a TPA unit will be applied for polyconden-
sation for the preparation of the conjugated polymers in further investigations.
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