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Background: Per- and poly-fluorinated alkyl substances (PFAS) are environment-
persitent emerging endocrine disrupting chemicals raising health concerns worldwide.
Exposure to PFAS has been associated with the imbalance of thyroid hormones.
However, available studies addressing the cell mechanism underlying thyroid disrupting
feature of legacy PFAS, such as perfluoro-octanoic acid (PFOA), perfluoro-octane-sulfonic
acid (PFOS), and the new generation substitutes, such as C6O4, are still lacking. In this
study the potential disrupting effect of PFOA, PFOS, and C6O4 on a murine thyroid cell
model was assessed.

Methods: A rat FRTL-5 cell line was used as the normal thyroid follicular cell model. Cell
iodide-uptake, induced by thyroid stimulating hormone (TSH), was used to assess the
functional impact of PFAS exposure on cell function. Tetrazolium salt-based cell viability
assay and merocyanine 540-based cell staining were used to address the possible
involvement of cell toxicity and membrane biophysical properties on altered cell function.
The possible direct interaction of PFAS with TSH-receptor (TSH-R) was investigated by
computer-based molecular docking and analysis of molecular dynamics. Evaluation of
intracellular cAMP levels and gene expression analysis were used to validate the direct
impairment of TSH-R-mediated downstream events upon PFAS exposure.

Results: Different from PFOS or C6O4, exposure to PFOA at a concentration ≥ 10 ng/mL
was associated with significant impairment of the iodide uptake upon TSH stimulation
(respectively: basal 100.0 ± 19.0%, CTRL + TSH 188.9 ± 7.8%, PFOA 10 ng/mL + TSH
120.4 ± 20.9%, p= 0.030 vs CTRL + TSH; PFOA 100 ng/mL + TSH 115,6 ± 12,3% p=
0.017 vs CTRL + TSH). No impairment of cell viability or membrane stability was observed.
Computational analysis showed a possible direct differential interaction of C6O4, PFOA,
and PFOS on a same binding site of the extracellular domain of TSH-R. Finally, exposure
to PFOA was associated with a significant reduction of downstream intracellular cAMP
n.org June 2022 | Volume 13 | Article 9150961

https://www.frontiersin.org/articles/10.3389/fendo.2022.915096/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.915096/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.915096/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.915096/full
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:carlo.foresta@unipd.it
https://doi.org/10.3389/fendo.2022.915096
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2022.915096
https://www.frontiersin.org/journals/endocrinology
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2022.915096&domain=pdf&date_stamp=2022-06-23


De Toni et al. PFAS and Thyroid Function

Frontiers in Endocrinology | www.frontiersi
levels and both sodium-iodide transporter and thyroperoxidase gene expression upon
TSH-R stimulation.

Conclusions: Our data suggest that legacy and new generation PFAS can differentially
influence TSH dependent signaling pathways through the direct interaction with TSH-R.
Keywords: endocrine disruptors, thyreocyte, iodide, PFOA, PFOS, C6O4
INTRODUCTION

In the last decades, great attention has been paid to the harmful
effects of various chemicals on the environment and human health
and how they interfere with hormonal function, collectively known
as endocrine-disrupting chemicals (EDCs).AmongEDCs, per- and
poly-fluorinated alkyl substances (PFAS) are emerging chemicals
raising health concerns worldwide (1). PFAS are a group of more
than 4,700 anthropogenic chemicals (2). Among the family of
perfluoroalkyl acids/polyfluoroalkyl acids, perfluoro-octanoic acid
(PFOA) and perfluoro-octane sulfonic acid (PFOS) represent the
twomost diffused andmost studied compounds. PFAS are used in a
wide variety of consumer products and industrial applications
because of their unique chemical and physical properties,
including oil and water repellence, temperature and chemical
resistance, and surfactant properties (3). For these reasons, PFAS
have been used for several applications such as firefighting foams,
non-stick metal coatings, food packaging, cosmetics, textiles,
photography, chrome plating, pesticides, and pharmaceuticals. It
is now recognized thatwithin the large diversity of PFAS chemicals,
some tend toaccumulate inhumans, animals, and the environment,
adding to the total burden of other chemicals to which people are
exposed and increasing the risk of health impacts.

Thyroidhormonesplay crucial roles innormalneurodevelopment
of the fetus and child. Many chemicals can affect the control and
homeostasis of thyroid hormones, eventually leading to various
adverse health effects such as neurodevelopmental disorders. PFASs
have been considered thyroid disrupting chemicals since the exposure
to several PFASswas significantly associatedwith alterationof thyroid
hormone (TH) balancing (4, 5). Thyroid hormones, namely
triiodothyronine (T3) and thyroxine (T4), are produced by the
thyroid and are finely regulated with a feedback mechanism by the
thyroid stimulating hormone (TSH) that is produced in the pituitary
gland. T3 and T4 play a crucial role in human metabolism, growth,
andcell developmentandtheirdysregulation leads toan increasedrisk
of developing cardiovascular diseases (6). Previous literature shows
non-consistent results with positive, negative, and null associations
between PFAS and T3 and T4, in the adult population (7–15) and in
the youth age range (11, 16–18), although this variability has been
mainly attributed to different degrees of PFAS exposure (19). A very
recent study on 21,424 individuals aged 14–39 living in a highly
contaminated area of Italy found no evidence of association between
TSH and PFAS. However, some results suggested a possible inverse
association of TSH with PFOA, and PFOS and perfluorohexane-
sulfonic acid (PFHxS) among adult males (20).

The issue of PFAS as chemicals involved in the disruption
effect of thyroid pathways was recently reviewed by Coperchini
et al. (21). The research activity focused on the evaluation of the
n.org 2
possible impact of PFAS exposure on the TSH-receptor (TSH-
R)-mediated effects on available cell models of thyrocytes.
However, their role as thyroid disruptors is still debated since
in vitro experimental studies seem to confirm the detrimental
effects of PFAS on thyroid cells (22, 23), from cytotoxicity and
cell accumulation, to the interference with TPO function, iodine
uptake, and TH synthesis. Moreover, in addition to in vitro
studies, experiments on animal models have confirmed that both
old and new generation PFAS act as thyroid disruptors (17, 24).
Different mechanisms have been suggested to explain the thyroid
disrupting feature of PFAS, including: i) impairment of iodine
uptake of thyroid cells by competitive mechanisms and/or direct
inhibition of the sodium/iodide symporter (NIS); ii) interference
with thyroglobulin synthesis; iii) modification of thyroperoxidase
(TPO) activity; iv) interference with feedback mechanisms or
with thyroid hormone biological effects through disruption of the
TH signaling pathway, deiodinase enzyme activity, or TH
binding proteins (25).

On this basis, experimental models suggest that PFAS could
exert a thyroid disrupting effect. However, epidemiological data
in humans are not consistent in both adult and young subjects
with varying degrees of exposure to these contaminants. In
addition, most studies mainly focused on PFOS and PFOA,
whereas adverse effects of their substitutes such as the acetic
acid, 2,2-difluoro-2-[(2,2,4,5-tetrafluoro-5(trifluoromethoxy)-
1,3-dioxolan-4-yl) oxy]-ammonium salt (1:1), known as C6O4,
are still lacking. At present, only one study from Coperchini et al.
showed no alteration of cell viability, ROS production, and cell
proliferation in human thyroid cell lines exposed to C6O4,
although specific endocrine-disrupting targets of thyroid cell
function have not yet been evaluated (21). To this regard, we
aimed to experimentally assess the potential disrupting effect of
C6O4, PFOA, or PFOS on FRTL-5 normal rat thyroid follicular
cell lines at multiple levels of investigation— from the functional
impact of PFAS exposure on cell function, involvement of cell
toxicity, and analysis of membrane biophysical properties to the
computational modeling of the possible interaction of PFAS with
TSH-R along with subsequent experimental validation.
METHODS

Chemicals
Merocyanine 540 (MC540, cat#323756), thiazolyl blue tetrazolium
bromide (MTT, cat#5655), nutrient mixture F-12 Ham (cat#
F6636), hydrocortisone solution (cat# H6909), - bovine apo-
transferrin (cat# T1428), somatostatin (cat# S1763), Gly-His-Lys
acetate salt (cat# G7387), and insulin from bovine pancreas (cat#
June 2022 | Volume 13 | Article 915096
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I6634) were all purchased byMerck Life Science S.r.l. (Milan, Italy).
Native human thyroid stimulating hormones (TSH, cat# TSH-
108H), were purchased by Creative BioMart Inc. (NY, USA). The
Cyclic AMP Complete ELISA Kit (cat# ab133051), used for
intracellular cAMP quantification, was purchased by Abcam
(Cambridge, UK). The non-radioactive iodide Assay Kit (cat#
25659), used for intracellular iodide quantification, was purchased
by Cayman Chemical (Michigan, USA). Perfluoro-octanoic acid
and perfluoro-octane-sulfonic acid were purchased by Wellington
Laboratories (Ontario, Canada). C6O4 was a kind gift from Solvay
Industrial – HSE (Milan, Italy).

Cell Cultures
The rat thyroid cell line FRTL-5was a kind gift fromProf. Salvatore
Ulisse (Department of Surgical Sciences. University of Rome “La
Sapienza”, Rome, Italy). Cells were maintained under sterile
conditions at 5% CO2 and 37°C in Coon′s modified Ham′s F12
medium with 2mM Glutamine, 10mg/ml Insulin, 10nM
Hydrocortisone, 5mg/ml Transferrin, 10ng/ml gly-his-lys acetate,
10ng/ml somatostatin, 5% Foetal Bovine Serum (FBS), and 1 mU/
ml TSH as previously described (26). Sub-confluent cultures (70-
80% confluence)were detachedwith 0.25% trypsin-EDTA solution
and seeded at 3-4×10,000 cells/cm2 density. In stimulation
experiments, sub-confluent cells underwent overnight starving in
culture medium lacking TSH. Cells were then exposed to PFAS for
24 hours and then evaluated as described below.

Accumulation of PFAS levels in FRTL-5 cell culture were
measured through reversed-phase (RP) liquid chromatography
coupled with triple quadrupole mass spectrometry (LC-MS/MS)
as previously described (27)

Cell Toxicity and Membrane Fluidity
The possible inhibition of cell growth by PFAS was evaluated by
MTT assay as previously described (28). Briefly, 3-8×103 cells/well
were seeded in 96-wellmicroplates in100mL culturemedium.After
24 hours of culture, cells were exposed to PFAS diluted in complete
medium at concentration ranging from 0.1 to 100 ng/mL as
indicated below. Triplicate cultures were established for each
treatment. After 24 hours of exposure, cells were incubated for 5
hours with MTT at the final concentration of 0.5 mg/mL and then
lysedwith a solutionof1%sodiumdodecylsulfate (SDS) inHCl 0.01
M.After an overnight treatment, the absorbance of eachwell at 570
nm was measured by a Bio-Rad 680 microplate reader and
normalized on controls lacking PFAS exposure.

Cell membrane fluidity was assessed by the bilayer sensitive
probe Merocyanin 540 (MC540), as previously described (29–
31). Briefly, DMSO-stock solution of MC540 was diluted in cell
suspension at the final concentration of 4 mM and incubated for
15 minutes at 37°C in the dark. Cells were finally analyzed at
FACScan flow cytometer (Becton Dickinson, Milan, Italy). Mean
cell fluorescence intensity was normalized on controls lacking
PFAS exposure.

Computer-Based Molecular Docking and
Molecular Dynamics Analysis
The possible docking of PFAS to TSH receptor (TSH-R) was
investigated through a computational approach. The structure of
Frontiers in Endocrinology | www.frontiersin.org 3
the extracellular domain of the human (TSH-R) is available as
deposited 3D structure in the Protein Data Bank (PDB code
2XWT). The computational docking analyses were carried out by
considering only this domain. Once extracted from
crystallography template, TSH-R was subjected to energy
minimization by Yasara Energy Minimization Server
(YASARA Energy Minimization Server) to obtain an estimate
of its unliganded configuration. As there are no experimental
models of TSH-R in complex with TSH, and it was estimated
using the experimental models of the 2 TSH subunits and taking
the FSH-FSHR complex as a template, whose structure was
experimentally obtained (PDB code: 1XWD).

The possibile binding of PFAS to the TSH-R extracellular
domain was evaluated by the Autodock Vina algorithm (32)
implemented in the UCSF Chimera 1.12 (https://www.cgl.ucsf.
edu/chimera/) molecular modeling software (33).

The molecular dynamics procedure, based on the method by
Kuriata et al. (34) and available as a web server (https://biocomp.
chem.uw.edu.pl/CABSflex2), was used to evaluate the
conformations the receptor can acquire after binding with
PFAS and to compare them with those of the free receptor.

RNA Isolation, cDNA Synthesis,
and Real-Time PCR
Total RNA was extracted from FRLT5 cell line stimulated with
increasing concentrations of PFOA, PFOS, C6O4 using the
RNeasy Mini Kit (Qiagen, Hilden, Germany). Dnase treatment
was performed using Ambion® TURBO DNA-free™ Kit
(Thermo Fisher Scientific, Carlsbad, CA, USA) according to
the manufacturer’s instruction. RNA purity and concentration
was assessed by NanoDrop ND-1000 (NanoDrop Technologies,
Wilmington, DE, USA).

cDNA was synthesized from 500 ng of total RNA using
SuperScript III (Invitrogen, Carlsbad, CA, USA) and random
hexamers. Real Time PCR were performed in a 20 µl final
volume containing 20 ng of cDNA, 1X Power SYBR Green PCR
Master Mix (Applied Biosystem, Foster City, CA, USA), and a mix
of forward and reverse primers (1 mmol/l each). The following
primers were used: Nis forward 5′-TCCTCACAGGCCGTATC
TCA-3′ and reverse 5′-GAAGGAACCCTGGAGGACAC-3′, Tpo
forward 5′-GCATGTATCATTGGGAAGCA-3′ and reverse 5′-
CGGTGTTGTCACAGATGACC-3′, Tshr forward 5′- TCATT
GCCTCTGTAGACCTG-3′ and reverse 5′- TGATAACTCAC
TGGCGAAA-3′. Mouse Beta actin was used as a reference gene:
forward 5′- GGCACCACACTTTCTACAATG-3′ and reverse 5′-
TGGCTGGGGTGTTGAAGGT-3′. StepOne plus (Applied
Biosystems, Foster City, CA, USA) thermocycler was used for
Real Time PCR and relative quantification was performed using
Delta Delta Ct (2−DDCt) method.

Quantification of Intracellular cAMP
and Iodide Uptake
TSH-induced cAMP production in FRTL-5 cells was assessed as
previously described (35). Upon the achievement of 80%
confluence in complete medium, cells were starved for 72h in
medium without TSH. Subsequently, cells were incubated for
another 24 hours in complete medium with PFAS at
June 2022 | Volume 13 | Article 915096
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concentration ranging from 0.1 to 100 ng/mL. In control
samples, PFAS were omitted. Cells were then harvested by
scraping in ice-cold phosphate-buffered saline (PBS) and
cAMP was quantified with Competitive Cyclic AMP ELISA Kit
according to the manufacturer’s instructions.

Non radioactive cell iodide uptake was assessed in FRTL-5
cells as previously described (36). Briefly, cells were seeded in 96-
well plates and grown up to 60% confluence in complete
medium. Cells were then starved in growth medium without
TSH for 72 hours, followed by 24 hours exposure to PFAS, at a
concentration ranging fron 0.1 to 100 ng/mL and stimulation
with TSH 1 mU/ml for another 48h. After the treatments, cells
were washed twice with 1 ml HEPES-buffered modified Hank’s
balanced salt solution (HBSS) (137 mM NaCl, 5.4 mM KCl, 1.3
mM CaCl2, 0.4 mM MgSO4, 0.5 mM Na2HPO4, 0.44 mM
KH2PO4, 5.55 mM glucose, 10 mM HEPES, pH 7.3) and
incubated for 60 min at 37°C modified HBSS containing 1 mM
NaI. Cells were then washed twice with ice-cold modified Hank’s
Balanced-Salt Solution (HBSS) and then assessed for iodide
concentration a with non-radioactive iodide Assay Kit
according to manufacturer’s instruction. Reference inhibition
of iodide uptake was obtained by incubation with 50 mM sodium
thiocyanate (NaSCN).

All experiments were performed in triplicate. Data were
normalized on control conditions free from PFAS exposure
and TSH stimulation.

Statistical Analysis
Statistical analysis of the data was conducted with SPSS 21.0 for
Windows (SPSS, Chicago, IL, USA). The comparison between
the two groups of data, obtained from western blot analysis and
cytochemical staining, were determined by paired two-tailed
Student’s t-test after acceptance of normal distribution of the
data with the Kolmogorov–Smirnov test. One-way ANOVA with
Bonferroni correction was used for the comparison of more than
2 groups of data. Values of p<0.05 were considered as
statistically significant.
RESULTS

Exposure to Legacy Perfluoroalkyl-
Substance PFOA Alters TSH-Mediated
Cell Iodide Uptake Without the
Involvement of Cell Viability or
Membrane Biophysical Properties
In order to evaluate whether the exposure to PFAS was
associated with altered thyrocyte cell function, the impact on
TSH-dependent iodide uptake was firstly evaluated. To this end,
starved FRTL-5 were exposed for 24 hours to C6O4, PFOA, or
PFOS at a concentration ranging from 0.1 ng/mL to 100 ng/mL
and then stimulated with human TSH 1 mU/ml (Figure 1A).
Sodium thyocyanate (NaSCN), a known blocker of NIS, was used
as reference downstream inhibitor of iodide uptake (37).

At basal conditions, in absence ofTSH stimulation, compared to
the unexposed control (100.0 ± 19.0%), cell iodide uptake was
Frontiers in Endocrinology | www.frontiersin.org 4
significantly reduced upon NaSCN treatment (22,2 ± 18,3%,
p=0.0036). In addition, differentl from C6O4 and PFOS for which
no major effects were observed, a significant reduction of basal
iodide uptake was observed in cells exposed to PFOA at the
concentration of 0.1 ng/mL (p= 0.0366) and at a concentration
equal or greater than 10 ng/mL (respectively PFOA 10 ng/mL 7.4 ±
23.6%, p=0.0014 and PFOA 100 ng/mL 5.6 ± 15%, p=0.0012).

Stimulation with TSHwas associated with a significant increase
of cell iodide uptake in all tested conditions [respectively, versus
corresponding basal: CTRL+TSH 188.9 ± 7.9%, p= 0.0025, NaSCN
+TSH 107.4 ± 29.0% p=0.045; for cells exposed to C6O4 at any
concentration F(1, 20)=18.56 and p<0.001, for cells exposed to
PFOA at any concentration F(1, 20)=36.15 and p<0.001 and for
cells exposed to PFOS at any concentration F(1, 20)=30.94 and
p<0.001]. However, a peculiar trend emerged from the comparison
with the CTRL condition stimulated with TSH. As expected, the
treatment with NaSCN significantly reduced cell iodide uptake
(p=0.045). Interestingly, no significant alteration of cell iodide
uptake upon TSH stimulation was observed for cells exposed to
C6O4orPFOS (all p>0.05 vsCTRL+TSH),while exposure toPFOA
at a concentration equal or greater than 10 ng/mL was associated
with a significant reduction of this parameter (respectively: PFOA
10 ng/mL+TSH120.4 ± 20.9%, p= 0.030, PFOA100 ng/mL+TSH
115,6 ± 12,3% p= 0.017), suggesting a major impact of this
perfluorinated compound on TSH-mediated function in the
thyrocyte model.

In order to rule out a major involvement of cell viability in the
observed altered function of thryrocyte upon exposure to PFOA,
an MTT-based cytotoxicity test was performed (Figure 1B).
Compared to unexposed control, the exposure to C6O4,
PFOA, or PFOS for 24 hours at a concentration ranging from
0.1 to 100 ng/mL was associated with non significant variation of
cell viability at any tested condition.

Based on previous reports, major impairment of cell function
associated with PFAS exposure may rely on the alteration of
membrane bilayer stability (30, 38, 39). Accordingly, we evaluated
whether the observed impaired thryrocyte function upon exposure
to PFOA was associated with the membrane’s altered biophysical
properties, such as fluidity. To this end, we used the bilayer fluidity-
sensitive probeMerocyanin540 (MC540;Figure1C).The exposure
to C6O4, PFOA, or PFOS for 24 hours at a concentration ranging
from0.1 to 100ng/mLwas associatedwithnon significant variation
of the mean fluorescence intensity of MC540 staining, a proxy of
membrane fluidity, compared to unexposed control. Accordingly,
no significant cell accumulation was detected for any PFAS at LC-
MS/MS analysis (data not shown) measured using our previously
published method (27).

Computer-Based Molecular Docking and
Molecular Dynamics Analysis Shows the
Possible Interference of Legacy PFAS on
the TSH/TSH-R Interaction
In order to address the possible direct effect of PFAS exposure on
TSH-mediated signaling, the binding of these compounds to
TSH-R was investigated through a computational approach,
focusing on the extracellular domain of the receptor, whose
June 2022 | Volume 13 | Article 915096
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structure is available in the Protein Data Bank (PDB code 2XWT,
Figure 2A). The consistency between rat and human TSH-R was
assumed on the basis of the responsiveness of the murine model
to human TSH. Importantly, the binding mode of TSH to TSH-R
(Figure 2B) was estimated using the FSH-FSHR complex as
template (PDB code: 1XWD).

On this basis, the possible binding of C6O4, PFOA, and PFOS
as representative models of new generation and legacy PFAS, was
assessed on the unliganded TSH-R structure. Interestingly, a
binding site was observed for all the considered PFAS in the same
domain of the receptor involving the peptide sequence TYR-185-
ARG-255 (Figure 2C). In addition, the binding models of the
three molecules showed camparable stability, being associated
with similar free Gibbs energy variations estimates (-5.7 kcal/mol
for C6O4, -5.9 kcal/mol for PFOA and -6.0 kcal/mol for PFOS).

Molecular dynamics procedures allowed the evaluation of the
differential conformations acquired by the receptor upon the
binding of the three PFAS molecules, compared to the unliganded
receptor. Figure 2D shows the best conformers of unliganded
receptor and of the receptor bound to C6O4, PFOA, and PFOS,
highlighting major differences of the two equilibrium
configurations. It can therefore, be hypothesized that the binding
of the two legacy and the new-generation PFAS to TSH-R can
differentially modify the affinity for TSH, resulting in major
alteration of the downstream signal transduction. This hypothesis
was further investigated by the analysis of the estimated flexibility of
the extracellular domain of the receptor in the different binding
Frontiers in Endocrinology | www.frontiersin.org 5
conditions. Figure 2E shows the interaction interface between TSH
and the extracellular domain of TSH-R, where the aminoacid
residues mainly involved of the receptor are in the LEU100-
GLN170 domain of the receptor. The root-mean-square deviation
(RMSD) profile of the atomic positions in this domain for the
unliganded receptor compared to that of the TSH-R bound to
C6O4, PFOA, or PFOS (Figure 2E), depicts a different spectrum of
flexibility. In particular, focusing on the amino acid region of TSH-R
around ASP160, previously shown to highly involved in the
activation by TSH (40), shows that the modelled binding of
PFOA was associated with an increase of the backbone flexibility,
compared to both the unliganded receptor and the receptor bound
to C6O4 or PFOS.

Exposure to PFOA Alters Main
Downstream Events of the TSH-R-
Mediated Signaling Pathway
In order to provide a mechanistic link between the observed
altered thyrocyte cell function and the possible differential
interference of the PFAS in the interaction between TSH and
TSH-R, the analysis of main downstream events of the TSH-R
mediated signaling pathway was performed.

TSH-R belongs to the family of G-protein-coupled receptors,
whose activation by TSH triggers adenylate cyclase (AC)
activation and, in turn, increases intracellular levels of cyclic
adenosine monophosphate (cAMP) to promote the pathways
transduced by protein kinase A (PKA) (41). On this basis, the
A B

C

FIGURE 1 | (A) Evaluation of cell iodide uptake, at basal condition (Basal)and upon stimulation with 1 mU/ml thyroid stimulating hormone (TSH), in FRTL-5 normal
rat thyrocyte cell line exposed for 24 hours to acetic acid, 2,2-difluoro-2-[(2,2,4,5-tetrafluoro-5(trifluoromethoxy)-1,3-dioxolan-4-yl)oxy]-ammonium salt (1:1) (C6O4),
perfluoro-octanoic acid (PFOA) perfluoro-octane-sulfonic acid (PFOS) at concentration ranging from 0.1 to 100 ng/mL. Reference inhibition of iodide uptake was
obtained by incubation with 50 mM sodium thiocyanate (NaSCN). Experiments were performed in triplicate and normalized as percentage fold increase on basal
control laking TSH stimulus and exposure to perfluoroalkyl substances (CTRL). Data are reported as mean values ± standard deviation. Significance: *P < 0.05, **P <
0.01 vs corresponding CTRL; a=p < 0.05, b=p < 0.01 and c=p < 0.001 vs corresponding basal). Evaluation of FRTL-5 cell viability (B) and cell mebrane fluidity (C)
upon exposure to C6O4, PFOA or PFOS exposed for 24 hours at concentration ranging 0.1 to 100 ng/mL. In CTRL, exposure was omitted. Cell viability was
evaluated by MTT assay and membrane fluidity by merocyanine-540 staining as described in methods. Experiments were performed in triplicate and normalized as
percentage fold increase on CTRL. Data are reported as mean values ± standard deviation.
June 2022 | Volume 13 | Article 915096
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possible impact of PFAS on intracellular cAMP levels upon TSH
stimulation was investigated (Figure 3A). As expected,
stimulation with TSH was associated with a massive increase
of intracellular cAMP levels compared to unstimulated basal
conditions (respectively: basal 100.0 ± 14,1% vs TSH 428.9 ±
38.4%, p= 0.0002). Compared to unexposed rat thyrocytes
stimulated with TSH, cells exposed for 24 hours to C6O4 or
PFOS at concentration ranging from 0.1 to 100 ng/mL and
stimulated with TSH, showed a significant reduction of
intracellular cAMP levels only at the highest concentration
tested (C6O4 100 ng/mL 347.2 ± 11.1%, p=0.023; PFOS 100
ng/mL 320.0 ± 33.3, P=0.020). Differently, exposure to PFOA
was associated with a significant reduction of intracellular cAMP
levels upon TSH stimulation at all concentrations tested (PFOA
0.1 ng/mL 244,1 ± 57,6%, p= 0.01; PFOA 1 ng/mL, p= 0.001;
PFOA 10 ng/mL, p= 198.9 ± 8.2%, p=0.0005; PFOA 100 ng/mL
183.0 ± 12.2, p=0.0005).

The direct phosphorylation of the cAMP-responsive element
binding protein (CREB) represents a key event in TSH-receptor-
related signaling, driving the expression of the downstream genes
such as NIS and thyroperoxidase (TPO) (42, 43). Accordingly,
the possible effect of PFAS exposure on the downstream gene
expression of NIS and TPO upon TSH stimulation was evaluated
Frontiers in Endocrinology | www.frontiersin.org 6
(Figure 3B). In spite of non- significant effects of either TSH or
PFAS and TSH on TSH-R gene expression, exposure to PFOA
for 24 hours was associated with a significant reduction of both
NIS and TPO gene expression upon TSH stimulation, at all the
tested concentrations. Differently, exposure to C6O4 or PFOS
exerted no major alteration of the gene pattern.
DISCUSSION

This is the first study to compare the in vitro adverse effects of legacy
and new-generation PFAS on a cell model of thyrocyte function and
TSH-R mediated pathways. In particular, we focused on the most
peculiar markers of thyrocyte function, such as iodide uptake, for
which a disrupting effect was observed, essentially for PFOA.
Importantly, this effect is not due to non-specific endpoints such
as cell viability or membrane biophysical properties in the range of
concentrations from 0.1 to 100 ng/mL. The lack of a cytotoxic effect
on thyroid cells is in agreement with a recent study on the same
molecules from Coperchini et al. (21). Conversely, the absence of
significant impairment of membrane fluidity, evaluated by
merocyanine 540 staining, represents a novel result, particularly
compared with previous studies in which PFAS exposure was
A B C

D E

FIGURE 2 | Computer-based Molecular Docking and Molecular Dynamics Analysis of the possible docking of 2,2-difluoro-2-((2,2,4,5-tetrafluoro-5(trifluoromethoxy)-
1,3-dioxolan-4-yl)oxy)-ammonium salt (1:1) (C6O4), perfluoro-octanoic acid (PFOA) or perfluoro-octane sulphonic acid (PFOS), to thyroid stimulating hormone-
receptor (TSH-R), whose extracellular domain is shown in (A). Representative model of thyroid stimulating hormone (TSH) eterodimeric chain (TSH-a and TSH-b)
bound to TSH-R is reported in (B). Possible binding sites of C6O4, PFOA or PFOS to TSH-R are reported in (C), with the the corresponding free Gibbs energy
variations (DG) of the complex formation and aminoacids involved in the binding. Representative images of the best conformers of unliganded receptor (blue)
overimposed with the receptor bound to C6O4 (ocra), PFOA (purple) or PFOS (orange), are shown in (D). The interaction interface between TSH and the extracellular
domain of TSH-R and the the root-mean-square deviation (RMSD) profile of the LEU100-GLN170 domain of the receptor, mainly involved in the binding to TSH, of
unliganded receptor and the receptor bound to C6O4, PFOA, or PFOS, are shown in (E).
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associated with an increased membrane fluidity in different cell
models, such as dopaminergic neurons (27), sperm (38). or platelets
(39). The different behavior of thyroid cells could be explained by
the different membrane composition and plasticity, leading to a
more rigid membrane in physiological conditions and less prone to
modifications from external insults (44). The fact that the exposure
to PFOA, but not C6O4 or PFOS, negatively affected iodide uptake
even at the lowest concentration tested, led us to investigate the
potential interaction of the three molecules with TSH-R by a
computer-based approach. It should be noted that the amino acid
residues primarily inolved in TSH-R activation by TSH have been
previously identified by Sanders et al. through a site-mutation
approach (40). Interestingly, among the 41 experimental genetic
variants tested, only those related to amino acids GLU107, ASP160,
ASP232, and TYR279 were associated with a significant impairment
of early TSH-R-mediated intracellular cAMP increase. We found
that both three PFAS show a possible binding activity on a shared
site of the extracellular domain of TSH-R. Despite the fact that none
of the aforementioned amino acids critically involved in TSH-R
activation were committed in the binding to PFAS, molecular
dynamic analysis showed a differential pattern of the receptor’s
backbone flexibility associated, in particular, at the ASP160 site
within the putative receptor domain involved in the interaction with
TSH. This pattern of distal inhibition is not novel. In fact, with an
analog site mutation approach, the blocking autoantibody K1-70
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was shown to bind the TSH-R closed to the N-terminus with
minimal overlap on TSH-binding domain (45). Accordingly, this
evidence can possibly explain the differential effects of the three
PFAS tested on TSH-R mediated cell function. Major uncertainty
may be derived from themodelling on the human receptors domain
while in vitro results are from rat cells. However, the consistency
between rat and human TSH-R can be assumed on the basis of the
responsiveness of the murine model to human TSH.

Results from previous studies on humans reported that
significant concentrations of PFOA and PFOS can be detected
in thyroid gland surgical specimens (46) and suggest that PFAS
could be potential endocrine disruptors, interfering with the
physiological mechanisms of hormone regulation (47), including
thyroid hormones. The biosynthesis of thyroid hormones and
TSH is finely regulated by a negative feedback mechanism
involving the hypothalamic–pituitary–thyroid axis, with an
increase in thyroid hormones leading to a decrease in TSH and
vice versa (48). However, available in vitro studies show that
legacy PFAS compounds exert a cytotoxic effect on the thyroid
only at very high concentrations (22). In a context in which
studies about cell effects of C6O4 exposure are still scarce (21, 29,
49, 50), only one to date has evaluated the impact of this new
generation PFAS on thyroid cells (21), showing a lower toxicity
of C6O4 compared with legacy PFAS, mainly PFOA and PFOS,
and largely overlapping with our results. In fact, we confirm here
A B

FIGURE 3 | (A) Evaluation of intracellular cAMP levels in FRTL-5 normal rat thyrocyte cell line at basal condition, upon stimulation with 1 mU/ml thyroid stimulating
hormone (TSH) or after the exposure for 24 hours to acetic acid, 2,2-difluoro-2-((2,2,4,5-tetrafluoro-5(trifluoromethoxy)-1,3-dioxolan-4-yl)oxy)-ammonium salt (1:1)
(C6O4), perfluoro-octanoic acid (PFOA) perfluoro-octane-sulfonic acid (PFOS), at concentration ranging from 0.1 to 100 ng/mL, followed by stimulation with TSH.
Experiments were performed in triplicate and normalized as percentage fold increase on basal control lacking TSH stimulus and exposure to perfluoroalkyl
substances (CTRL). Data are reported as mean values ± standard deviation Significance: *P < 0.05, **P < 0.01, ***P < 0.001 vs unexposed cells stimulated with
TSH. (B) Evaluation of TSH-receptor (TSH-R), sodium-iodide symporter (NIS) and thyroperoxidase (TPO) gene expression FRTL-5 cell at different combinations of
exposure to C6O4, PFOA and PFOS, at concentration ranging from 0.1 to 100 ng/mL, and upon stimulation with TSH. Experiments were performed in triplicate and
normalized on cell stimulated with TSH. Significance: *P < 0.05, **P < 0.01, ***P < 0.001 vs TSH.
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the lack of a pro-apoptotic or genotoxic effect of C6O4 on
thyreocyetes and add novel data about a possible specific effect
on the endocrine pathways related to thyroid function, showing
that among long-chain PFAS, PFOA displays a more severe
disrupting effect as compared to PFOS and C6O4. Taken
together, these data indicate that PFAS, even if structurally
related, show different toxicity profiles also depending on the
target cell considered.

A remaining uncertainty of the study is related to the
concentrations of C6O4 which were tested in this study, being
in the same dose range reported for blood serum levels of PFOA
and PFOS in population exposure studies. This is clearly a
provisional setting in the absence of serum levels of C6O4 in
general public or industry workers. Also, we tested these
compounds independently but in real life context, a cocktail
effect in which humans are exposed to a mixture of PFAS and
also other endocrine disruptors is much more realistic. To this
regard, a very recent study has evaluated a mixture-centered risk
assessment strategy, integrating epidemiological and
experimental evidence. The mixture tested included also PFAS
and confirmed a detrimental effect on thyroid-related pathways
(51). Finally, the results of the present study would require
confirmation in human cell types and in animal models before
extrapolating conclusive data on a human safety profile.
CONCLUSION

Our data suggest that legacy and new generation PFAS can
influence TSH dependent signaling pathways through a possible
differential direct interaction with TSH-R, according to the
structural moiety of the molecule. Further study in human cell
and in animal models are requested to address the consistency
and reliability of these preliminary data
Frontiers in Endocrinology | www.frontiersin.org 8
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