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Abstract: Resveratrol was investigated in terms of its stability, biocompatibility and intestinal
permeability across Caco-2 cell monolayers in its free form or encapsulated in solid lipid nanoparticles
(SLNs) and nanostructured lipid carriers (NLCs). SLNs and NLCs presented a mean diameter between
160 and 190 nm, high negative zeta potential of ´30 mV and resveratrol entrapment efficiency of 80%,
suggesting they are suitable for resveratrol oral delivery. Nanoencapsulation effectively protected
resveratrol from photodegradation, and MTT assays demonstrated that neither resveratrol nor lipid
nanoparticles adversely affected cell viability and integrity of Caco-2 cell monolayers. The in vitro
intestinal permeability of resveratrol was significantly increased by NLCs, and SLNs did not impair
the absorption of resveratrol. Resveratrol oral absorption can be enhanced during meals, since
the intestinal permeability was increased in the presence of fed-state intestinal juices. SLNs and
NLCs constitute carrier systems for resveratrol oral administration, for further use as supplements
or nutraceuticals.

Keywords: resveratrol; biocompatibility; oral bioavailability; nanodelivery systems; lipid nanoparticles;
intestinal permeability

1. Introduction

Resveratrol has been one of the most extensively studied naturally occurring compounds due to
its great therapeutic potential in cancer therapy, cardio- and neuroprotection, anti-inflammatory action,
antioxidant activity, antiaging effects and diabetes treatment [1–3]. However, resveratrol pharmacokinetic
properties must be considered since this compound demonstrated low solubility, rapid degradation
and extensive metabolism, resulting in poor oral bioavailability [4–7]. Moreover, trans-resveratrol, the
biologically active isomer, is highly photosensitive, being rapidly converted to cis-resveratrol when
exposed to light [8]. Different strategies have been implemented to overcome the above-mentioned
problems, such as the co-administration with metabolism inhibitors, use of analogs, and the design of
new delivery systems [9–14]. In the past decade, several nanoformulations focused on enhancing
therapeutic potential of resveratrol [3,9,15], namely polymeric nanoparticles such as poly(lactide)
(PLA) nanoparticles [16,17], poly-(lactic-co-glycolic) acid (PLGA) [18–20] and poly(epsilon-caprolactone)
(PCL) nanoparticles [18,19], polymeric micelles [21], nanoparticles based on zein, an amphiphilic
protein [22], lecithin-based nanoemulsions [23], cyclodextrins [24–26], and liposomes [27–31], or on dual
nanoencapsulation approaches, such as the inclusion of cyclodextrin complexes inside liposomes [32].
In the present study, we have developed resveratrol nanodelivery systems based on lipid nanoparticles to
increase its oral bioavailability for further use as supplements or nutraceuticals. So far, lipid nanoparticles
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for resveratrol encapsulation have been developed for dermal and brain delivery [33–35], and only two
studies have used it for oral administration [36,37]. Solid lipid nanoparticles (SLNs) and nanostructured
lipid carriers (NLCs) have proven to be suitable vehicles for resveratrol encapsulation [36]. While SLNs
are made solely by solid lipids at room and body temperature, NLCs are composed by a mixture of both
solid and liquid lipids [38,39]. The incorporation of a liquid lipid to the solid matrix of the nanoparticles
seems to create an imperfect matrix with an increased number of cavities, facilitating the accommodation
of the encapsulated compound, while preventing early crystallization and drug release [40,41]. Therefore,
resveratrol stability, biocompatibility, and intestinal permeability studies were conducted in a solution
or encapsulated in SLNs and NLCs. Intestinal apparent permeability was assessed using Caco-2 cell
monolayers grown on permeable filter transwell devices, simulating the intestinal membrane barrier.
Caco-2 cell monolayers are the most commonly used intestinal models to evaluate the effect of delivery
systems on drug permeation because Caco-2 cells form differentiated monolayers with microvilli, tight
junctions, enzymes and transport systems, after 21 days of growth [42,43]. In addition, the influence of
physiological fluids that mimic gastrointestinal conditions on the apparent permeability of resveratrol
and resveratrol-loaded nanoparticles was also tested. Fasted-state simulated intestinal fluid (FaSSIF) and
fed-state simulated intestinal fluid (FeSSIF), besides the control medium Hanks’ balanced salt solution
(HBSS), were used. The first two media mimic fasted and fed digestive conditions because they contain
natural surfactants (bile salts and lecithin) that form micelles that are present in the gastrointestinal
fluids [44,45].

2. Materials and Methods

2.1. Materials

trans-Resveratrol (>99% purity) was purchased from Sigma-Aldrich (St. Louis, MO, USA), cetyl
palmitate was provided by Gattefossé SAS (Nanterre, France), polysorbate 60 (tween 60) was supplied
by Merck (Darmstadt, Germany), and miglyol-812 from Acofarma (Madrid, Spain). For the preparation
of buffer solutions, sodium hydroxide was obtained from Riedel-de Haën AG (Seelze, Germany),
sodium phosphate monobasic monohydrated was acquired from Fluka (Seelze, Germany), sodium
chloride was purchased from Panreac (Barcelona, Spain), and acetic acid (ě99.8%) was obtained from
Sigma-Aldrich. The transport media HBSS was purchased from Gibco (Paisley, UK), while FaSSIF
and FeSSIF were prepared by using simulated intestinal fluid (SIF) instant powder (Phares Drug
Delivery AG, Muttenz, Switzerland) according to the manufacturer’s instructions. The HPLC mobile
phase was composed of acetonitrile and acetic acid (LiChrosolv HPLC grade) obtained from Merck.
Caco-2 cell line was purchased from the American Type Culture Collection (ATCC, Wesel, Germany)
between passage numbers 35 and 55, and maintained in Dulbecco’s Modified Eagle Medium (DMEM)
supplemented with 10% fetal bovine serum (South America origin), 1% fungizone (amphotericin B,
250 µg¨mL´1), and 1% Pen Strep (penicillin, streptomycin), all obtained from Gibco. Trypsin-EDTA
was also purchased from Gibco. Trypan blue and thiazolyl blue tetrazolium bromide (MTT) were both
provided by Sigma-Aldrich.

2.2. Preparation of SLNs and NLCs

SLNs and NLCs were produced by a high shear homogenization technique followed by the
ultrasound method to reduce the microparticles to the nanometer range, as described before [36,46].
SLNs were composed of 10% of the solid lipid cetyl palmitate, while NLCs were constituted by 7%
of cetyl palmitate and 3% of the liquid lipid miglyol-812. Both types of lipid nanoparticles were
dispersed in aqueous medium by the presence of 2% surfactant polysorbate 60. Resveratrol (5 mg)
was added to the lipid phase and melted above the lipid’s melting point, which was followed by
dispersion in the aqueous phase. The oil/water (o/w) emulsion was then submitted to high-speed
stirring (SLNs—30 s at 12,000 rpm and NLCs—2 min at 12,000 rpm) in Ultra-Turrax T25 (Janke and
Kunkel IKA-Labortechnik, Staufen, Germany) and sonicated (SLNs—5 min at 80% intensity and
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NLCs—15 min at 70% intensity) in a Sonics and Materials Vibra-Cell™ CV18 (Newtown, CT, USA).
After cooling at room temperature, lipid nanoparticles were formed and the formulations were stored
for characterization and application.

2.3. Resveratrol Entrapment Efficiency

Resveratrol entrapment efficiency was measured indirectly by quantifying the amount of
compound that was not internalized by the nanoscale particles, as dissolved compound in the aqueous
phase of the formulation [38,47]. Amicon Ultra-4 centrifugal Filter Devices (Millipore, Billerica, MA,
USA) were used to separate lipid nanoparticles from the aqueous medium after 15 min of 3300 g
centrifugation in a Jouan BR4i multifunction centrifuge (Thermo Electron, Waltham, MA, USA).
The non-entrapped resveratrol was quantified in the supernatant after absorbance spectral analysis
using a V-660 spectrophotometer (Jasco, Easton, MD, USA) at 200–600 nm and the entrapment efficiency
calculated according to the equation (1):

EE “
total resveratrol´ non entrapped resveratrol

total resveratrol
ˆ 100 (1)

2.4. Particle Size and Zeta Potential Measurements

Particle size and zeta potential analysis were performed by dynamic light scattering (DLS)
and electrophoretic light scattering (ELS), respectively, in a Brookhaven Instrument (Holtsville, NY,
USA). The samples were first diluted (1:400) in order to get a suitable scattering intensity. The mean
hydrodynamic diameter (Z-average) and the polydispersity index were determined as a measure of the
width of particles size distribution, while zeta potential was measured according to the electrophoretic
mobility of nanoparticles, which is influenced by their charge. The measurements were performed in
triplicate in cycles of 10 runs each.

2.5. Resveratrol Photostability Study

Photostability studies were performed to investigate the protection effect of lipid nanoparticles
against photodegradation of trans-resveratrol over time. Aqueous solutions of free resveratrol and
resveratrol encapsulated in SLNs and NLCs at the same concentration of 1 mg¨mL´1 were exposed
for 4 h to UV light (HPW125W-T E27, Philips) in a chamber with reflecting walls. The UV lamp had an
emission spectrum between 320 and 400 nm, with an irradiation intensity of 5.5 ˆ 10´3 kJ¨ s´1¨m´2.
Aliquots were withdrawn from each sample at 0, 0.5, 1, 2, 3 and 4 h, and a 20%-volume of ACN was
added to promote the disruption of lipid matrix, allowing the quantification of trans-resveratrol in a
solution by spectrophotometric detection at 306 nm in a V-660 spectrophotometer (Jasco, Easton, MD,
USA). Resveratrol photodegradation was calculated as a percentage by comparing the absorbance of
trans-resveratrol at each time to the maximum absorbance at the beginning of each experiment.

2.6. Caco-2 Cell Culture

Caco-2 cells were grown in DMEM supplemented with 10% fetal bovine serum, 1% fungizone,
1% Pen Strep at 37 ˝C, and 5% CO2. Cells were supplied with a fresh medium every 2 days and
subcultured by treatment with 0.25% trypsin–EDTA when they reached 80%–90% confluency, followed
by counting in a Neubauer chamber with a trypan blue solution (0.4%, w/v). Cells were then seeded
at a density of 104 cells per cm2.

2.7. MTT Cell Viability Assay

Cell viability in the presence of nanoparticles was assessed by MTT assay. This assay detects living
cells via mitochondrial dehydrogenases activity [48]. Cells were seeded in 96-well plates (104 cells per
well) and grown for 20 h at 37 ˝C, 5% CO2. Cells were then incubated with different concentrations
of free resveratrol and resveratrol-loaded SLNs and NLCs, as well as with the respective placebo
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formulations for 4 h. After that, cells were treated with 0.5 mg/ml MTT for 4 h. Finally, DMSO was
added to dissolve MTT formazan and incubated for 15 min, followed by absorbance measurement at
550 and 690 nm in a microplate reader (Synergy HT; Bio-Tek Instruments, Winooski, VT, USA).

2.8. Caco-2 Cell Permeability Study

Cells were seeded on transwell polycarbonate inserts (12 wells, pore diameter of 3 µm, 1.12 cm2)
in a density of 1 ˆ 105 cells per insert and grown for 21 days, at 37 ˝C and 5% CO2, until a confluent
monolayer was achieved. In fact, Caco-2 cells present an absorptive polarized monolayer and
an apical brush border after 21 days from seeding [49,50]. The integrity of the monolayers was
monitored by measuring trans-epithelial electrical resistance (TEER) with an epithelial voltohmmeter
(EVOM) from World Precision Instruments (Sarasota, FL, USA). Only monolayers with TEER values
higher than 200 Ω cm2 were used. Permeability assay was performed by incubating free-resveratrol
and resveratrol-loaded SLNs and NLCs (10 µM) on the apical side for 4 h at 37 ˝C and 5% CO2.
Three different transport media were used to mimic intestinal fluids: HBSS was used as control, FaSSIF
as the fasted state medium, and FeSSIF as the fed state medium. Aliquots from the basolateral
side were collected at regular intervals of 30 min and treated with 20% acetonitrile/acetic acid
(92:8, v/v) to promote the disruption of lipid nanoparticles and the release of resveratrol to be
quantified. The quantification was performed by HPLC separation in a C18 monolithic column with
isocratic elution in a 2% acetic acid solution/acetonitrile (80:20), followed by fluorimetric detection
(330/374 nm), according to a validated method [51]. TEER values were rechecked at the end to confirm
the quality of the monolayer after the experiment. The apparent permeability coefficients (Papp) in the
three media tested were calculated after 4-h assay by the Equation (2):

Papp pcm{sq “
Q

A ˆ C ˆ t
(2)

where Q represents the total amount of permeated resveratrol (µg), A is the surface area of the insert
(cm2), C is the initial resveratrol concentration (µg/cm3) and t is the experiment time (s).

2.9. Statistical Analysis

Statistical analysis was performed using SPSS software (version 20.0; IBM, Armonk, NY, USA).
The measurements were repeated at least three times and data were expressed as mean˘ SD. Data were
analyzed using one-way analysis of variance (one-way ANOVA), followed by Bonferroni, Tukey and
Dunnett post-hoc tests. A p value less than 0.05 was considered statistically significant.

3. Results

3.1. Characterization of Nanoparticles

The physicochemical characterization of nanoparticles is depicted in Table 1. All formulations
presented a size between 160 and 190 nm, polydispersity index of 0.2 and high negative zeta potential
around´30 mV, regardless of resveratrol incorporation. The results indicate that there is no statistically
significant difference in the size and charge of both types of lipid nanoparticles (SLNs and NLCs) and
that resveratrol did not significantly change these parameters. Resveratrol entrapment efficiency in both
SLNs and NLCs was found to be very high (around 80%), suggesting its preferential partition into the
nanoparticles lipid matrix. The developed nanoparticles can be considered physically stable because
the absolute value of zeta potential is around 30 mV, and the electrostatic repulsions between particles
can therefore avoid flocculation and aggregation of nanoparticles [52,53]. Moreover, polydispersity
index of 0.2 suggests an acceptable monodispersity distribution, with low variability. The mean
size of these nanosystems (<200 nm) confirmed that they are appropriated for oral administration
and gastrointestinal absorption [54,55], and the negatively charged nanoparticles can interact with
enterocytes, being prone for permeation across the intestinal barrier [56,57].
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Table 1. Characterization of resveratrol-loaded solid lipid nanoparticles (SLNs) and nanostructured
lipid carriers (NLCs).

Z-Average
(nm)

Polydispersity
Index

Zeta Potential
(mV)

Entrapment
Efficiency (%)

SLN Placebo 189.2 ˘ 15.4 0.205 ˘ 0.045 ´30.8 ˘ 7.3 -
SLN RSV 171.5 ˘ 17.1 0.215 ˘ 0.033 ´32.1 ˘ 6.9 80.5 ˘ 3.4
NLC Placebo 172.9 ˘ 19.8 0.203 ˘ 0.030 ´29.6 ˘ 7.4 -
NLC RSV 163.8 ˘ 21.7 0.198 ˘ 0.027 ´29.9 ˘ 5.8 78.9 ˘ 2.5

Note: All values represent the mean ˘ standard deviation (n = 3).

3.2. Photostability Study of Resveratrol

Resveratrol is found in nature as both trans and cis isomers, trans-resveratrol being the biologically
active form [58]. However, it is well-known that trans-resveratrol easily isomerizes into the cis form
under UV irradiation [8,59].

Figure 1A displays the absorption intensity spectra of resveratrol before (trans-resveratrol) and
after UV light exposure during 4 h. The result is in agreement with previous studies which show a
decrease of 50% in the trans-resveratrol absorption intensity at 306 nm and a 20 nm shift from 306 nm
to 286 nm for the maximum absorption intensity, typical of cis-resveratrol spectra [60,61]. The ability
of lipid nanoparticles to protect the compound against isomerization was also investigated and the
absorption spectra for resveratrol-loaded SLNs and NLCs before and after UV irradiation are represented
in Figures 1B and 1C, respectively. Resveratrol photostability after 4 h of UV light exposure was verified
by comparing the percentage of photodegradation inside lipid nanoparticles with that of the pure
compound in an aqueous solution at the same concentration. The results suggest that both types of
lipid nanoparticles (SLNs and NLCs) enhance photostability of resveratrol (Figure 1D). In fact, around
50% of trans-resveratrol in solution was converted to the cis isomer after 4h of UV exposure and the
entrapment of the compound inside lipid nanoparticles decreased this value for less than 10%. This result
is consistent with previous studies using either SLNs or liposome delivery systems [28,37,62].
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Figure 1. Photostability study of trans-resveratrol exposed to 312 nm UV light for four hours. (A) free
resveratrol; (B) resveratrol loaded in SLNs; (C) resveratrol loaded in NLCs; (D) Photodegradation
profile of trans-resveratrol in aqueous solution (�) compared to the compound encapsulated in SLNs
(∆) and NLCs (#).
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3.3. Caco-2 Cell Viability Study

Caco-2 cell viability studies were performed to assess the cytotoxicity of resveratrol and
resveratrol-loaded lipid nanoparticles in the intestinal barrier. MTT assay evaluates the activity
of cellular oxidoreductase enzymes inside mitochondria by converting the MTT tetrazolium dye
into its insoluble formazan, which has a purple color. The quantitative measure of purple that is
produced (550 nm) is directly proportional to the number of viable cells, allowing the determination
of the biocompatibility of formulations. Observing Figure 2, it is possible to conclude that 10 µM
concentration of resveratrol, resveratrol-loaded nanoparticles and the equivalent solid amount of
placebo nanoparticles did not produce any cytotoxic effect after 4 h of incubation at 37 ˝C, when
compared to cells in DMEM medium. Only at concentrations higher than 50 µM was there a significant
reduction of cell metabolic activity. However, even for the highest concentration tested (100 µM), a cell
toxicity below 50% was produced, indicating that resveratrol-loaded nanoparticles are biocompatible
and well tolerated by the intestinal mucosa. This study also allowed us to choose the appropriate,
non-toxic concentration (10 µM) for the intestinal permeability studies, without compromising Caco-2
cell monolayer.
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3.4. Intestinal Permeability Study

In vitro intestinal permeability assays were performed in transwell devices using Caco-2 cell
monolayers that mimic the intestinal barrier. Figure 3 shows Caco-2 cells photographs immediately
after seeding and after forming a confluent monolayer. Confluent Caco-2 cells have been used as the
standard model for the in vitro investigation of intestinal absorption due to their similarities to the
small intestinal epithelium [63,64].
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In order to mimic the intestinal fluids, three transport media were applied: HBSS, FaSSIF and
FeSSIF. HBSS was used as the control medium, while the last two media mimic the fasted- and fed-state
intestinal juices, respectively, because they contain natural surfactants (bile salts and lecithin) that
generate micelles that are present during the digestive process [44,45]. The HPLC quantification
method was firstly developed and validated for resveratrol in the three different matrices [51].
The permeation of free resveratrol and resveratrol-loaded lipid nanoparticles across the intestinal
barrier is presented as cumulative transport over 4 h in Figure 4. The results are also reported as Papp

(Table 2), which provides independent values that can be compared between different studies. Figure 4
shows that resveratrol rapidly starts to cross Caco-2 monolayer, since the compound is detected on the
basolateral side after only 30 min. This initial burst permeability has already been reported in previous
studies where Papp of free resveratrol is in agreement with our value of 1.6 ˆ 10´5 cm/s in HBSS
medium [65,66]. The comparison between different transport media indicates that resveratrol Papp

is 1.7-fold higher in FaSSIF and 2.1-fold higher in FeSSIF when compared to HBSS control medium.
This fact can be related to the micellarization of resveratrol and lipid nanoparticles [45]. On the other
hand, FaSSIF and FeSSIF protection against trans-resveratrol degradation is also reported [51], which
can explain the increased resveratrol absorption when taken with meals. We have performed identical
studies to ensure the integrity and stability of the nanoparticles in the different media used, in order
to ensure the validity of the intestinal permeability assay. At regular intervals, when aliquots were
collected from the basolateral side of Caco-2 monolayer, the size and zeta potential parameters of these
aliquots were analyzed, and no statistically significant changes were detected compared to the size and
zeta potential values of the fresh nanoparticles reported before (Table 1). This information indicates
that the permeability results are justified by the permeation of the SLNs and NLCs themselves through
the intestinal barrier and not to the diffusion of the free compound.
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Figure 4. Resveratrol permeability over 4 hours of cumulative transport across Caco-2 cell monolayer
mimicking intestinal permeability conditions, on free-form (�) and encapsulated in SLNs (∆) or NLCs
(#) in 3 different transport media. (A) HBSS; (B) FaSSIF and (C) FeSSIF. Note: All values represent
the mean ˘ standard deviation (n = 3). Results were analyzed and compared with the free form of
resveratrol. (*) denotes statistically significant differences (p < 0.05).
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Table 2. Apparent permeability (Papp) of free resveratrol and resveratrol-loaded SLN or NLC for 4 h of
transport across Caco-2 cell monolayer mimicking intestinal permeability conditions.

Papp (ˆ10´5 cm/s)

HBSS FaSSIF FeSSIF

NLC RSV 2.2 ˘ 0.1 * 3.7 ˘ 0.1 * 4.8 ˘ 0.3 *
SLN RSV 1.9 ˘ 0.2 3.0 ˘ 0.1 3.8 ˘ 0.1
Free RSV 1.6 ˘ 0.4 2.7 ˘ 0.2 3.5 ˘ 0.4

Note: All values represent the mean ˘ standard deviation (n = 3). (*) denotes statistically significant differences
compared with the free form of resveratrol (p < 0.05).

When comparing the different formulations tested, resveratrol permeability through Caco-2
monolayers was significantly increased by NLCs encapsulation (up to 1.5-fold increment, p < 0.05).
On the other hand, SLNs did not produce any significant effect on resveratrol permeation.
The difference between both types of lipid nanoparticles may be related with their different lipid
composition, because their size, charge and resveratrol entrapment efficiency were found to be similar.
In a recent study, we have found that NLCs promoted a more sustained and controlled release of
resveratrol when compared to SLNs in gastrointestinal studies, since SLNs release 10% of resveratrol
after 4 h assay, while NLCs only release 5% of compound at the same conditions [36]. The difference
observed can be attributed to the less ordered lipid matrix conferred by the liquid lipid present in the
NLCs, allowing better accommodation of resveratrol and avoiding its premature release. Therefore,
although the encapsulation efficiency was identical in both systems, the early loss of compound in
SLNs may have led to a lower permeability across the intestinal barrier when compared to NLCs.
Besides that, the presence of a liquid lipid in NLCs composition can influence the lipid matrix of those
nanoparticles that become more flexible, thus allowing a greater physical deformation at the time of
crossing the barrier, and perhaps leading to an increase of resveratrol permeation. Indeed, the higher
permeability of NLCs could be related to the decrease of tight junctions stickiness, promoting an
enhancement of the paracellular transport route with this particular system. Actually, TEER values in
the presence of NLCs were slightly smaller (10%) than those for SLNs and free-resveratrol, indicating
a partial opening of tight junctions between epithelial cells when NLCs were incubated. Nevertheless,
the TEER values were reverted at the end of the assay by replacing the nanoparticles solution by
fresh medium, indicating that the opening of tight junctions was reversible and did not completely
disrupt and compromise the monolayer integrity [67]. These results are in agreement with a recent
paper where the applicability of SLNs and NLCs as oral drug delivery nanosystems was tested [68].
In this study, the cellular uptake, internalization pathways and transcytosis routes through Caco-2
monolayers were assessed. Transmission electron microscopy and confocal laser scanning microscopy
images revealed the ability of these nanosystems to cross the monolayer by a transcellular route.
Indeed, cell internalization occurred mainly through a clathrin-mediated endocytosis mechanism.
However, the higher cellular uptake of NLCs together with the contribution of a paracellular route
also involved in this nanocarrier permeation would explain the higher permeability found for NLCs
compared to SLNs. These results support the conclusions drawn in the present study.

Therefore, we conclude that NLCs exhibit greater efficiency in the transport across the intestinal
barrier, promoting an increase in resveratrol permeability. Regarding SLNs, they do not produce
any significant increase in resveratrol permeation, but still do not compromise its absorption when
compared with the free compound. Thus, SLNs may also be used for resveratrol delivery into
systemic circulation, since they also provide gastrointestinal protection and resistance to the early
first-pass metabolism [37]. As a conclusion, both nanosystems might be used for oral administration
of resveratrol.
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4. Discussion

In the present study, lipid nanoparticles were successfully developed, characterized and applied
for oral administration of resveratrol. SLNs and NLCs presented a mean diameter of 160–190 nm, high
negative zeta potential of ´30 mV and a resveratrol entrapment efficiency around 80%, suggesting
that they are suitable for resveratrol oral delivery, being prone for its permeation across the intestinal
barrier [55,57]. The results also revealed that resveratrol encapsulation effectively protected it from
photodegradation, and previous studies have already shown that these nanosystems conferred
protection during its gastrointestinal transit avoiding premature release in simulated gastric and
intestinal conditions [36]. Therefore, this study demonstrated the applicability of these nanoparticles,
protecting resveratrol from degradation as well as allowing their permeability through the intestinal
barrier in order to reach the systemic circulation. Indeed, SLNs did not impair the absorption
of resveratrol, and NLCs further increased the permeability of the polyphenol compound across
Caco-2 cell monolayer. Furthermore, it was observed that resveratrol oral absorption can be
enhanced during meals, since the intestinal permeability was increased when fed-state intestinal
juices were applied. At this point, the development of resveratrol-loaded nanoparticles may be
important towards the production of novel food supplements or nutraceuticals. This can be
achieved by improving products derived from food sources, such as juices, yogurts, milk, or
cheese, with extra health benefits similar to those attributed exclusively to resveratrol-rich red wine
consumption. A combination of several innovative formulation strategies have been applied in order to
accomplish this great challenge [3,9,15], including the use of polymeric nanoparticles [16–20], polymeric
micelles [21], zein-based nanoparticles [22], lecithin-based nanoemulsions [23], cyclodextrins [24–26],
liposomes [27–32], and lipid nanoparticles [33–37]. The efforts in tuning these intelligent nanocarriers
are based on improving the permeation across an epithelial cell monolayer, on preserving the physical
integrity of the nanoparticles during the biodistribution process, and on enhancing the activity of
the encapsulated resveratrol. Here, lipid nanoparticles not only meet these physical, chemical and
biological requirements, as exploited before, but also represent the most suitable nanosystems for food
industry application. In fact, SLNs and NLCs are composed of biodegradable and biocompatible lipids
recognized as safe by Food and Drug Administration, which can be loaded with the lipophilic and
poorly soluble resveratrol, for further use in food supplements [38,47]. Moreover, the preparation of
lipid nanoparticles is very simple, rapid and economically affordable for food industry scale up [52].

5. Conclusions

As a conclusion, SLNs and NLCs were developed and validated for trans-resveratrol protection,
stabilization and intestinal permeability. Both lipid nanoparticles seem to be compatible and adequate
for resveratrol delivery after oral administration, representing a promising strategy for enhancing its
in vivo efficacy.
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