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Nisin is a posttranslationally-modified antimicrobial peptide that has the ability to induce its
own biosynthesis. Serines and threonines in the modifiable core peptide part of precursor
nisin are dehydrated to dehydroalanines and dehydrobutyrines by the dehydratase NisB,
and subsequently cysteines are coupled to the dehydroamino acids by the cyclase NisC.
In this study, we applied extensive site-directed mutagenesis, together with direct binding
studies, to investigate the molecular mechanism of the dehydratase NisB. We use a
natural nisin-producing strain as a host to probe mutant-NisB functionality. Importantly,
we are able to differentiate between intracellular and secreted fully dehydrated precursor
nisin, enabling investigation of the NisB properties needed for the release of dehydrated
precursor nisin to its devoted secretion system NisT. We report that single amino acid
substitutions of conserved residues, i.e., R83A, R83M, and R87A result in incomplete
dehydration of precursor nisin and prevention of secretion. Single point NisB mutants
Y80F and H961A, result in a complete lack of dehydration of precursor nisin, but do not
abrogate precursor nisin binding. The data indicate that residues Y80 and H961 are directly
involved in catalysis, fitting well with their position in the recently published 3D-structure
of NisB. We confirm, by in vivo studies, results that were previously obtained from in vitro
experiments and NisB structure elucidation and show that previous findings translate well
to effects seen in the original production host.
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INTRODUCTION
Lantibiotics are ribosomally synthesized polycyclic peptides. The
rings contain post-translationally introduced thioether-bridged
amino acids, so called lanthionines. The most studied lantibi-
otic, which has also found commercial application, is nisin. Nisin
has been successfully used for over 50 years as a food preserva-
tive without significant resistance development in food pathogens
(Gravesen et al., 2001; Kramer et al., 2008).

Precursor nisin is composed of a 23 amino acid leader pep-
tide followed by a modifiable 34 amino acid core peptide part
(Figure 1). The leader peptide is a recognition signal for the mod-
ification enzymes NisB and NisC (Xie et al., 2004; Mavaro et al.,
2011; Khusainov et al., 2013a) and the transporter NisT (van der
Meer et al., 1994). It furthermore keeps the fully modified precur-
sor nisin inactive (Kuipers et al., 1993b; van der Meer et al., 1994).
Nisin contains one lanthionine ring and four (methyl)lanthionine
rings that are introduced enzymatically. Analysis of truncated
nisin variants has shown that the presence of at least the three N-
terminal rings ABC is necessary for nisin variants to exert some
antimicrobial activity (Chan et al., 1996).

NisB is a dehydratase of about 117.5 kDa (Kuipers et al.,
1993a). It is the first enzyme to come into play during the
modification by dehydrating serines and threonines in the core
peptide part of precursor nisin, to form dehydroalanines and

dehydrobutyrines, respectively (Figure 1). Moreover, in vitro
activity studies have indicated a possible mechanism for the
dehydration reaction, involving glutamylination of Ser and Thr
residues (Garg et al., 2013). Recently the structure of NisB was
solved implicating an un-expected cofactor namely glutamyl-
tRNAGlu (Ortega et al., 2015). This study gives insight in the
mechanism of action of NisB and also revealed the location of
its active sites, the glutamylation domain and the glutamate elim-
ination domain. Dehydrated amino acids are coupled to cysteines
by a second enzyme, NisC, in a regio- and stereospecific manner,
to generate lanthionine rings (Figure 1). A model of the catalytic
mechanism of NisC has been proposed based on in vitro studies
and the crystal structure of NisC (Li and van der Donk, 2007).

Modified precursor nisin is transported via the dedicated
ABC transporter NisT and the nisin leader peptide is extracel-
lularly cleaved off by the protease NisP, liberating active nisin
(Kuipers et al., 1993a). While nisin itself is renowned for its strong
antimicrobial and autoinducer activity, the nisin modification
enzymes have additional relevance because of their influence on
the extent of modification. NisB, NisC, and NisT can also mod-
ify and transport peptides unrelated to nisin provided that the
nisin leader peptide is present at the N-terminus (Kuipers et al.,
2004; Kluskens et al., 2005; Rink et al., 2007; Majchrzykiewicz
et al., 2010; van Heel et al., 2013). In this way lanthionines can
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FIGURE 1 | Nisin biosynthesis. NisA is ribosomally synthesized in a form of
precursor nisin. (A) NisB dehydrates underlined Ser/Thr’s (in bold), the
resulted dehydrated precursor nisin contains dehydroalanines (Dha) and
dehydrobutyrines (Dhb); (B) NisC forms thioether bridges between
dehydrated residues and cysteines resulting in fully modified precursor nisin.

(C) NisT transports the fully modified precursor nisin outside the cell. NisP
cleaves off the nisin leader extracellularly to liberate active nisin. The Figure is
in accordance with recent recommendations for a universal nomenclature for
ribosomally synthetized and posttranslationally modified peptide natural
products (Arnison et al., 2013).

be introduced into medically relevant peptides. By imposing a
conformational constraint, the lanthionines confer resistance to
breakdown by peptidases (Rink et al., 2010), enable in specific
cases oral and pulmonary delivery (de Vries et al., 2010) and
allow to select for peptides with optimal receptor interaction, thus
strongly enhancing their therapeutic potential (Kluskens et al.,
2005, 2009; van Heel et al., 2011). LanB enzymes do not share
significant sequence homology to members of known protein
families, thus representing a unique family of enzymes. Recent
studies have shown that the process of dehydration by NisB and
cyclization by NisC can alternate at the nisin precursor peptide
(Kuipers et al., 2008; Lubelski et al., 2009). This appears to pro-
ceed from the N- to the C-terminus for class I enzymes (Lubelski
et al., 2009), as well as for class II enzymes (Lee et al., 2009).
A complex of the nisin biosynthesis enzymes has been isolated
consisting of NisB, NisC, and NisT (Khusainov et al., 2011).
Moreover, NisB has been demonstrated to have stronger interac-
tions with precursor nisin than NisC has (Khusainov et al., 2011).
Interestingly, the nisin leader is not absolutely required for class
I lantibiotic biosynthesis in vivo (Khusainov and Kuipers, 2012),
however, its addition in trans increases the efficiency of modifica-
tion (Khusainov and Kuipers, 2012). Recently, it has been shown
that synthetic nisin variants lacking Ser/Thr’s in the core struc-
ture still bind NisB and synthetic nisin variant lacking Cys in
the core structure bind NisC (Khusainov and Kuipers, 2013b).
Increasing the number of negatively charged amino acids in the
core peptide part of precursor nisin does not abolish binding of

the nisin modification enzymes to these unnatural nisin variants
(Khusainov and Kuipers, 2013b).

Nisin’s N-terminal lanthionine ring binds to the cell wall pre-
cursor lipid II that is considered to act as a docking molecule
(Breukink et al., 1999; Hasper et al., 2006). Nisin exerts at least
two modes of antimicrobial action: it displaces lipid II from the
septum thereby inhibiting cell wall synthesis and it forms hybrid
pores composed of nisin and lipid II, which permeabilize the
target cell membrane (Hasper et al., 2006; Lubelski et al., 2008).

Four classes of lanthipeptides have been distinguished (Xie
et al., 2004; Goto et al., 2010; Mueller et al., 2010). Nisin belongs
to class I, in which precursor peptides are dehydrated by LanB
enzymes and cyclized by LanC enzymes. (Methyl)lanthionines in
classes II, III, and IV are installed by the bi- or multifunctional
enzymes LctM, RamC/LabKC, or LanL, respectively, that perform
both dehydration and cyclization reactions (Xie et al., 2004; Goto
et al., 2010; Mueller et al., 2010). We here applied extensive pro-
tein engineering of NisB to elucidate the potential mechanistic
roles of highly and less conserved residues. We identified two
likely catalytic site residues, i.e., Y80 and H961 and several regions
for substrate binding and discuss these results in conjunction with
the recently published NisB 3D-structure (Ortega et al., 2015).

MATERIALS AND METHODS
BACTERIAL STRAINS AND GROWTH CONDITIONS
Table S1 (supplementary material) lists the strains and plasmids
that were used in this study. Lactococcus lactis was used as a host
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for the overexpression plasmids pNZnisA-E3 or pNZnisA-H6
expressing precursor nisin or His-tagged precursor nisin, respec-
tively. Mutated versions of NisB as well as of wild type NisC
and NisT were overexpressed using the pIL3BTC plasmid (Rink
et al., 2005). Cells were grown as described previously (Khusainov
et al., 2011) at 30◦C in M17 medium (Difco) supplemented with
0.5% (w/v) glucose and antibiotics at 5 μg/ml chloramphenicol
and 5 μg/ml erythromycin, where appropriate. When both chlo-
ramphenicol and erythromycin were used, 4 μg/ml of each was
applied. Prior to mass spectrometric analyses, cells were cultured
in minimal medium as previously described (Rink et al., 2005).

RECOMBINANT DNA TECHNIQUES
Standard genetic manipulations were essentially performed as
described by Sambrook and Russell (2001). Plasmid pIL3BTC
(Rink et al., 2005) served as a template for PCR in order to
obtain site-specific NisB mutants. The round PCR method was
performed as described earlier (Rink et al., 2005). In brief, the
primers used were 5′-phosphorylated to allow ligation of the
amplicon ends after PCR. The primers were oriented in the
reverse direction to allow amplification of the whole plasmid.
The mismatches were in the 5′-ends of either the forward or
the reverse primer. Standard PCR was performed with these
primers according to the Phusion DNA-polymerase manufacture
(Finnzymes). After PCR, the PCR product was purified with the
PCR-purification kit (Roche). Subsequently, DNA ligation was
performed with T4 DNA ligase (Thermo Scientific). Plasmid iso-
lation was performed by means of the Plasmid DNA Isolation Kit
(Roche Applied Science). Restriction analysis was performed with
restriction enzymes from Thermo Scientific.

PROTEIN EXPRESSION AND PURIFICATION
C-terminal His-tagged precursor nisin was purified as described
before (Khusainov et al., 2011). L. lactis NZ9000 (de Ruyter et al.,
1996) containing mutated versions of nisB together with wild
type nisTC and nisA containing the C-terminal sequence for the
His-tag, was grown overnight followed by 1:50 dilution in GM17
(M17 (Difco) supplemented with 0.5% (w/v) Glucose). Growth
was continued until OD660 = 0.6, followed by induction with
0.5 ng/ml of nisin for 2 h. Cells were collected by centrifugation,
and lysed by use of 10 μg ml−1 freshly prepared lysozyme solu-
tion, followed by the addition of 10 mM MgSO4 and 100 μg ml−1

Dnase I (Sigma). Cells were disrupted by several rounds of freeze
thaw cycles with liquid nitrogen in cases when 0.5 L of culture was
used. Cells were disrupted by French Pressure treatment (15,400
psi) in case 2 L cultures were used, and remaining debris was
removed by low speed centrifugation (13,000 × g for 15 min at
4◦C; Sorvall SS34 rotor).

MASS SPECTROMETRIC ANALYSIS
In order to conduct mass spectrometric analysis of the pro-
duced peptides we used crude supernatants from bacteria grown
on minimal medium. Prior to the mass spectrometric analysis,
samples were ZipTipped (C18 ZipTip, Millipore) essentially as
described before (Khusainov et al., 2011). In short, ZipTips were
equilibrated with 100% acetonitrile and washed with 0.1% tri-
fluoroacetic acid. Subsequently, the supernatant containing the

peptides was mixed with 0.1% trifluoroacetic acid and applied
to a ZipTip. Bound peptides were washed with 0.2% trifluo-
roacetic acid and eluted with 50% acetonitrile and 0.1% tri-
fluoroacetic acid. The eluent was mixed in a ratio of 1:1 with
matrix (10 mg/ml α-cyano-4-hydroxycinnamic acid) and 1.5 μl
was spotted on the target and allowed to dry. Mass spectra
were recorded with a Voyager-DE Pro (Applied Biosystems)
MALDI-time-of-flight mass spectrometer. In order to increase
the sensitivity and the accuracy, external calibration was applied
with six different peptides (Protein MALDI-MS Calibration Kit,
Sigma).

INTERACTION ANALYSIS OF PRECURSOR NISIN WITH THE
MODIFICATION ENZYMES NisB AND NisC
To investigate the binding of NisB mutants to precursor nisin a
previously described pull-down method of the nisin biosynthe-
sis complex, using His-tagged precursor nisin as bait, was applied
(Khusainov et al., 2011).

RESULTS
Amino acid sequence alignment of 36 LanB protein sequences
resulted in the identification of several conserved residues
(Figure 2) (Schuster-Bockler et al., 2004). We selected 25 (semi)
conserved residues for site-directed mutagenesis. NisB mutants
harboring single amino acid substitutions residues were gener-
ated (Table 1). The expression of the NisB mutants and their
integrity were checked by, either mass spectrometric determina-
tion of nisin in the supernatant, or by SDS-PAGE and Western
blot analysis (Figure S1). NisB is about 117.5 kDa and is known
to have a natural N-terminal degradation product of ∼90 kDa
(Khusainov et al., 2011).

L. lactis strain NZ9000, expressing simultaneously nisA, nisTC
and in each case a different mutant version of the nisB gene,
was used to study the functionality of mutants of NisB. Wild
type precursor nisin is naturally secreted out of the cell by NisT.
In this study, the secreted precursor nisin variants were puri-
fied from the supernatant by ZipTip purification (Millipore)
and subsequently analyzed by MALDI-TOF mass spectrometry
(Tables 1, S2, Figure 3). Those precursor nisin variants that were
not secreted, were His-tagged and Ni-NTA purified and subse-
quently analyzed by MALDI-TOF mass spectrometry (Tables 1,
S2, Figure 3).

MUTATIONS IN NisB THAT HAVE NO MAJOR IMPACT ON THE
SECRETION AND MODIFICATION OF NISIN
To gain insight in the mechanism of action of NisB 25 dif-
ferent mutations were made in the sequence. The mutations
were selected to modify different conserved residues based on an
alignment of LanB-type dehydratases. Throughout the sequence
of NisB, we observed several repetitions of conserved leucine
and isoleucine residues or islands of adjacent leucine-isoleucine
residues. To investigate the role of these conserved leucine and
isoleucine residues, we performed a substitution of a single
isoleucine (I298A) and a double substitution of adjacent leucine-
isoleucine residues (L223A, I224A). Both mutants resulted in the
secretion of fully modified nisin. Further NisB mutants F342A,
Y346F, D648A, P639A, R775A, Y827F, D843A, S844A, S958A,
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FIGURE 2 | HMM-logo of the N-terminal amino acid alignment of

thirty six members of the dehydratase LanB family. The hidden
markov model (HMM) shows a number of conserved amino acid
residues. Residues marked with an asterisk have been (among others)

mutated in this study. Other mutations have been selected on the
basis of the full models of the C (PFAM PF04738 http://pfam.xfam.org/
family/PF04738) and the N terminal domains (PFAM PF04737
http://pfam.xfam.org/family/Lant_dehyd_N).

Table 1 | Dehydration pattern of precursor nisin modified by NisB

mutants.

Mutated residue in NisB Dehydrations Secretion

observed* of NisA

(L223A, I224A), I298A,
F342A, Y346F, P639A,
R775A, Y827F, D843A,
S844A, S958A, R966A,
E975Q,

8, 7, (6) +

D121A, D299A, D648A 8, 7, (6) +
T89A 7, 6, 5 +
R784A 7 +
R83A, R83M 0, 1, 2, (3) −
R87A 4, 5, 6, 7 −
R14A, W616A (Khusainov
et al., 2011)

0, 1, 2, 3, 4, 5, 6, 7 −

Y80F, H961A 0 −

+Demonstrated by the NisA-H6 pull-down assay (Figure S1).
*Most prominent mass peak observed is indicated with the bold number.

R966A, E975Q also resulted in the secretion of fully modified
precursor nisin identical to the wild type precursor nisin. In all
these samples the most prominent mass peak corresponded to
the 8-fold dehydrated nisin as is normal for the wild type nisin.
Therefore, these mutations appear not to affect NisB-precursor
nisin interactions and NisB-catalyzed dehydration. The dehydra-
tion pattern of precursor nisin, modified and secreted by wild
type NisBTC enzymes, harbors 8, 7, and 6 dehydrated residues,
with 8 being the most predominant peak in the mass spectra. For
the mutant R784A, the only peak observed corresponded to the 7
times dehydrated NisA, indicating a slightly reduced modification
efficiency and possibly a slightly lower production level since no
peaks corresponding to the 6 and 8 times dehydrated substrate
were observed. The analyzed dehydration pattern of precursor
nisin which was modified by the NisB mutants where aspartate
was changed to alanine (D121A, D299A, D648A) showed a sim-
ilar pattern to that of wild type. Although all three expected

dehydration species were present, i.e., 8, 7 and 6, the major peak
observed corresponded, unlike in wild type precursor nisin, to a
7-fold dehydrated precursor nisin. This indicates that the dehy-
dration efficiency of the above Asp?Ala NisB mutants was slightly
decreased.

Intriguingly, the mutation T89A led to a secreted precur-
sor nisin containing exactly one dehydration less than usually
observed for wild type NisB. Mass spectrometry demonstrated a
dehydration pattern of precursor nisin with 7, 6 and 5 dehydra-
tions, while the 6-fold dehydration peak was the most prominent
peak (Table 1, Figure 3). T89 is not very remote from the likely
catalytic residue Y80 (vide infra).

MUTATIONS IN NisB THAT ABOLISH SECRETION OF MODIFIED
PRECURSOR NISIN (TABLE 1)
Notably, several single NisB mutations at conserved positions, i.e.,
R14A, Y80F, R83A, R83M, R87A, H961A (Table 1; Figure S1) and
the previously reported W616A (Khusainov et al., 2011) resulted
in a lack of secretion of modified precursor nisin to the outside of
the cell, thus hampering the evaluation of mutant NisB-mediated
dehydration. To analyze these intracellularly-trapped precursor
nisins, His-tagged precursor nisin variants were constructed, used
and purified by Ni-NTA columns from the cell extract (Figure
S1). To break the cells (Figure S1), we used several rounds of liq-
uid nitrogen freeze-thaw cycles, which lead to cell lysis. However,
application of this method may result in differences in the effi-
ciency of L. lactis cell lysis. For this reason, results presented here
should be interpreted qualitatively only. Subsequently, these mod-
ified precursor nisin mutants were analyzed by MALDI-TOF mass
spectrometry (Tables 1, S1, Figure 3). A previously developed
pull-out assay, which relies on interaction of His-tagged precur-
sor nisin with its modification enzymes (Khusainov et al., 2011)
demonstrated that all these NisB mutants could still bind pre-
cursor nisin (Figure S1). Since unmodified precursor nisin can
also be exported via NisT (Kuipers et al., 2004), the NisB mutants
leading to intracellularly trapped precursor nisin apparently have
a reduced capacity to release their substrate. Furthermore, these
data clearly demonstrate that the specific NisB mutants that cause
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FIGURE 3 | Effect of NisB mutagenesis on the extent and pattern of

dehydration of precursor nisin. Matrix-assisted laser desorption
ionization–time-of-flight (MALDI-TOF MS) spectra were obtained of Ni-NTA
purified precursor nisin mutants containing the C-terminal extension GSIEGR
followed by His6 tag, and modified by NisB mutants in vivo. In the case of
mutants of NisB that resulted in a lack of secretion (Table 1), the His-tagged

version of precursor nisin was purified out of the cytoplasm of the cell. Cells
containing plasmid pIL3BTC and a plasmid encoding for NisA with C-terminal
extension and a His6 tag were grown until OD 0.6, induced with 0.5 ng/ml
nisin and let grow for two additional hours. Subsequently, cells were
harvested, disrupted by French press and purified precursor nisin was
analyzed by MALDI-TOF MS.

a lack of secretion of precursor nisin, have a reduced dehydration
capacity.

NisB SINGLE MUTANTS R83A, R83M, AND R87A HAVE SEVERELY
REDUCED DEHYDRATION CAPACITIES
Interestingly, R83A and R83M were severely hampered in their
dehydration capacity and led to intermediate dehydration pat-
terns: up to 3 or 2-fold dehydration of precursor nisin. R87A
resulted in 4, 5, 6, and 7 dehydrations. This suggests that these

residues are important for possible positioning of the partially
dehydrated peptide into the active site.

CATALYTIC RESIDUES OF NisB
Site-directed mutagenesis of Y80F and H961A resulted in a lack
of secreted precursor nisin. This result is consistent with recent
studies (Garg et al., 2013; Ortega et al., 2015), where mutagen-
esis of the NisB H961 residue also resulted in a non-dehydrated
precursor nisin and was shown to be part of the active site of the
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glutamate elimination domain. Applying the previously described
modification enzyme co-purification binding assay (Khusainov
et al., 2011) we showed that the NisB mutants Y80F and H961A
are still able to bind precursor nisin (Figure S1). MALDI-TOF
MS analysis resulted in one major peak, corresponding to fully
unmodified precursor nisin for both NisB mutants (Table S2,
Figure 3). These results strongly suggest that Y80 and H961 are
directly involved in catalysis, since no dehydration at all was
observed.

DISCUSSION
The class I dehydratase NisB is a remarkable catalyst that breaks
16 bonds by modifying 3 Ser and 5 Thr residues in precursor
nisin. To investigate the effect of mutations in NisB on its activ-
ity, we applied extensive site-directed mutagenesis of its conserved
residues without prior knowledge of its later published structure.
This resulted in the identification of residues in NisB that are
important for catalysis and/or for the efficiency of dehydration.

The effects of the mutations that we observed can be classi-
fied into three groups: (1) mutations that resulted in a wild type
extent of dehydration and secretion, (2) mutations that resulted
in non-secreted peptides with intermediate dehydration patterns,
and (3) mutations that resulted in non-secreted and unmodified
precursor nisin.

The NisB mutants from the groups 2 and 3 prevented export of
precursor nisin. However, NisT has been demonstrated of being
capable of exporting unmodified precursor nisin in the absence of
NisB (Kuipers et al., 2004). It can be speculated that the absence
of the export might be caused by strongly reduced release of pre-
cursor nisin from a mutant NisB. Another explanation might be
that lack of secretion is observed because NisB and NisC are act-
ing alternatingly (Lubelski et al., 2009). Incomplete dehydration
might disturb this delicate process leading to complexes that do
not release the product, which might block the export.

Mechanistic in vitro investigations of the dehydration reac-
tion of the bifunctional and multifunctional LctM, RamC/LabKC,
and LanL enzymes demonstrated that LctM, RamC/LabKC, and
LanL phosphorylate Ser and Thr in the substrate peptide, as was
evidenced by MALDI-TOF MS, which identified peaks with a
mass shift of +80 Da differences (Chatterjee et al., 2005; Goto
et al., 2010; Mueller et al., 2010). The class II LanM enzymes have
been shown to use ATP as an energy source. Notably, the class
III labyrinthopeptin A2 modification enzyme LabKC has been
recently demonstrated to require GTP for the phosphorylation
and dehydration reaction of serines (Mueller et al., 2010). The
recently published reconstitution of the in vitro activity of class I
NisB (Garg et al., 2013), shows that the dehydration by class I lan-
tibiotic enzymes happens via glutamylation of Ser/Thr and not by
phosphorylation. It is not clear why class I lantibiotic enzymes use
different mechanism for dehydration, however this might be due
different evolutionary lineages that these enzymes followed.

In the in vitro study of Garg et al., individual replacement of
residues Arg14, Arg83, Arg87, Thr89, Asp121, Asp299, Arg464,
and Arg966 with Ala and subsequent expression and purification
of these NisB mutants in E. coli resulted in abolishment of dehy-
dration (Garg et al., 2013). In our in vivo study in its native host
L. lactis, the NisB mutants Arg14, Arg83, Arg87, Thr89, Asp121,

Asp299, and Arg966 resulted in partial dehydration of the pre-
cursor nisin (Table 1). These differences are most likely due to
the differences in the host (E. coli vs. L. lactis) or due to the dif-
ferences between in vivo and in vitro conditions. However, both
of the studies pinpoint the importance of these residues for the
dehydration reaction. Moreover, we identified one more residue
of crucial importance: i.e., Y80. The mutant Y80F most likely
interferes with the glutamylation domain that was recently identi-
fied (Ortega et al., 2015). Furthermore, we show that NisB R14A,
Y80F, R83A, R83M, R87A, H961A, and W616A mutants result in
a lack of transport of precursor nisin.

Here we present data that is perfectly in line with the recent
publication of the structure of NisB (Ortega et al., 2015) as can
be seen in Figure 4, indicating the relation between position and
effect of the mutation in the 3D-structure of NisB. With our in-
vivo results we can confirm conclusions made on the basis of
experiments that were performed in vitro using heterologously
expressed enzymes and substrates.

In the structure of NisB four specific domains have been iden-
tified, a glutamylation domain, a glutamate elimination domain,
a tRNA interaction domain and a region likely to interact with
the nisin and its leader. We investigated several mutants that lie
within the proximity of the glutamylation domain (Figure 4A), of
which only H961A resulted in complete loss of activity. All other
mutants showed normal dehydration patterns indicating a certain
degree of structural freedom around the active site. The gluta-
mate elimination domain shows a different picture (Figure 4B).
The mutant Y80F resulted in total loss of activity but also many
mutations in the vicinity (R83A/M, R87A, R14A, and T89A) had
a detrimental effect on the activity. Although in Figure 4B, D648
seems to be in the proximity of the active site, this is actually
not the case (2D vs. 3D artifact) and therefore it is explainable
that mutating it into Ala had no effect on the activity. The glu-
tamate elimination site contains several conserved residues that
are less tolerant to amino acid changes. No mutants close to the
tRNA interaction domain were investigated. Close to the puta-
tive nisin leader interaction site (<10

′
Å) only one double mutant

(I223A, I224A) was investigated which resulted in normal activ-
ity. Although the NisA interaction region of the structure was not
extensively probed in this study, it can be expected that there is a
high degree of tolerance to amino acid substitutions since many
different substrates can be modified by NisB.

From the mutants we tested only the single mutants, i.e., NisB
Y80F and NisB H961A result in non-modified precursor nisin,
and importantly these mutants still bind precursor nisin and
are able to co-purify NisB in the precursor nisin co-purification
assay. Overall, we can conclude that R14, R83, R87, and W616
(Khusainov et al., 2011) in NisB play an important, though not
direct catalytic role, in the dehydration reaction of class I lan-
tibiotics, since their substitution leads to a reduced extent of
dehydration, without completely abolishing it and a lack of secre-
tion. The (novel) single point mutation Y80F and the single point
mutation H961A in NisB lead to unmodified and non-secreted
precursor nisin. Notably, NisB residues that resulted in an inter-
mediate dehydration pattern also resulted in a lack of secretion of
precursor nisin. This observation suggests that the NisB mutants
that result in unsecreted precursor nisin either do not release
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FIGURE 4 | Mapping the NisB mutants on two functional domains, the

glutamylation domain (A) and the glutamate elimination domain (B)

(PDB 4WD9, Ortega et al., 2015). Colors indicate the effect of the mutation
on the dehydratase activity, red, no activity observed; orange, activity
severely hampered; yellow, activity slightly hampered; green, normal activity.
The exact nature of the mutation can be looked up in Table 1. (A) Next to the

sidechain of His961 also the sidechains of Arg826 and Arg786 are indicated
which have been indicated to be important for glutamylation previously (Garg
et al., 2013). The vicinity of the glutamylation domain (A) seems to allow for
some amino acid changes whereas the surrounding of the glutamate
elimination domain (B) seems to be more strictly determined. Image was
created using UCSF chimera version 1.10.1 (Pettersen et al., 2004).

the substrate precursor nisin or a subsequent cyclization reac-
tion by NisC is significantly slowed down, preventing the export.
This observation indicates that the modification and the trans-
port processes are linked to each other, in line with a previous
publication (van den Berg van Saparoea et al., 2008), possibly
through the complex formation that has recently been described
(Khusainov et al., 2011).
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