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Abstract: Fine-grained image classification is a hot topic that has been widely studied recently. Many
fine-grained image classification methods ignore misclassification information, which is important
to improve classification accuracy. To make use of misclassification information, in this paper,
we propose a novel fine-grained image classification method by exploring the misclassification
information (FGMI) of prelearned models. For each class, we harvest the confusion information from
several prelearned fine-grained image classification models. For one particular class, we select a
number of classes which are likely to be misclassified with this class. The images of selected classes
are then used to train classifiers. In this way, we can reduce the influence of irrelevant images to
some extent. We use the misclassification information for all the classes by training a number of
confusion classifiers. The outputs of these trained classifiers are combined to represent images and
produce classifications. To evaluate the effectiveness of the proposed FGMI method, we conduct
fine-grained classification experiments on several public image datasets. Experimental results prove
the usefulness of the proposed method.

Keywords: fine-grained image classification; misclassification information; confusion information;
object categorization

1. Introduction

Fine-grained image classification [1–3] has drawn much attention in recent years.
Fine-grained images are very similar, which make them hard to distinguish. Many efficient
fine-grained classification methods have been proposed.

Some researchers tried to improve fine-grained image classification accuracy by design-
ing discriminative classifiers [4–15] (e.g., deep convolutional neural networks [9,11,12]);
this is achieved by modeling the variations of fine-grained images. Classifiers are often
designed on the class level without considering the distinctive characters of a single image.
Since fine-grained images often belong to several visually similar subcategories, researchers
have also proposed many efficient models by using knowledge from various domains and
greatly improved the fine-grained classification performances [16–21]. However, domain
knowledge is hard to obtain. Besides, domain knowledge is task-dependent and varies
from different image datasets.

Other researchers make use of the structure information of images with multiview
correlations. Spatial as well as class-level information [22–30] is often used with intensive
labeling requirements. Automatic detection of objects is also used; although effective, it
introduces noisy information, especially when the number of fine-grained classes is large.
Since the discriminative power of single view is limited, one natural way is to combine
multiview correlations [31–44]. This is achieved by ensuring consistency of different views.
Making use of multiview correlations can eventually improve the performance.
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Although many models have been proposed with good performance, they do not
explore the discriminative information of a single image. In practice, images cannot
always be classified correctly. They are often misclassified with several other classes.
Besides, misclassification information is eventually not distributed. For example, when
we are classifying red flowers of one particular class, the misclassification probability
of red flowers of different classes is much larger than white flowers. The classes being
misclassified are biased. Misclassification information should also be used to improve the
classification performance.

To make use of misclassification information, in this paper, we propose a novel fine-
grained image classification method by exploring the misclassification information of
images. The proposed method first makes use of prelearned fine-grained image classifi-
cation models to obtain the misclassification information of images. Instead of using all
images for classification, for one particular class, we select a number of classes that are
most likely being misclassified with this class. The images of these selected classes and
the particular class are then used to train classifiers. The selection and training processes
are conducted for each class. As classifiers are trained with different images of varied
classes, the outputs of these classifiers cannot be compared for direct classification. We
concatenate the outputs of these learned classifiers to form new image representations and
use them for classifier training. We evaluate the proposed method on several datasets, and
the classification performance proves the usefulness of the proposed method.

The main contributions of the proposed method lie in three aspects:

• First, we select a subset of images instead of using all the images by exploring
the misclassification information for classification. This helps to get rid of noisy
information and improve the discriminative power of learned classifiers.

• Second, we construct new image representations by combining the outputs of classi-
fiers for fine-grained image classification. In this way, we can make use of a number
of prelearned models to boost the classification accuracy.

• Third, the proposed method has good generalization ability by making use of prelearned
classification models for misclassification information extraction and classification.

The rest of this paper is organized as follows. We discuss related work in Section 2.
Section 3 gives the details of the proposed method. In Section 4, experiments and analyses
on several fine-grained image datasets are given. Finally, we conclude in Section 5.

2. Related Work

Fine-grained image classification tries to classify a number of subclass images that
belong to a particular class (e.g., flower images). The state-of-the-art fine-grained image
classification methods could be roughly divided into two schemes. The first scheme tried
to design discriminative classifiers on the class level while the second scheme made use of
information beyond class-level supervision.

Discriminative classifiers have been widely used to improve classification perfor-
mance [2–15]. Earlier researchers used local features with support vector machine (SVM).
To make use of the spatial layouts of local features, Lazebnik et al. [4] proposed spatial
pyramid partitioning of images. Zhang et al. [2] made use of the low-rank constraint
to generate general and class-specific codebooks for fine-grained classification. To avoid
local feature encoding loss, Yang et al. [5] combined sparse coding and spatial pyramid
matching along with linear classifiers while Zhang et al. [6] made use of an exemplar
classifier as well as low-rank decomposed features [7,8] for image representation.

With the fast development of deep convolutional neural networks (e.g., AlexNet [9],
VGG [11], and ResNet [12]), fine-grained classification performances have been greatly
improved. Bilinear convolutional neural networks have also been introduced [3] to model
the two-dimension layouts of image pixels. Chai et al. [15] combined segmentation
and classifier training for joint classification. Instead of using class-level supervision,
Zhang et al. [10] used image-level classifier by hierarchical learning of the structure
information. Semantic classifiers [13] were also used for image classification. Although
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these well-designed classifiers have been proven useful for classification, they were often
designed for general images instead of fine-grained images. Since fine-grained images
often pose similar appearances, the intrinsic correlations of fine-grained images should be
well explored. A number of works have been made. For example, Wah et al. [17] used
the correlations of different birds. To determine the location of objects, Zhang et al. [18]
combined parts of images with r-cnns; however, automatic detection introduced noisy
information. To alleviate this problem, Cui et al. [19] made use of extra human labor
to annotate the bounding boxes of objects. To avoid the influences of background areas,
Zhang et al. [20] used objectness proposals to both visually and semantically model object,
context, and background separately while He et al. [21] also spatially pooled information
for classification. Although great improvements have been made, these methods all ignored
misclassification information.

Using only class-level supervision is not enough for efficient classification. To allevi-
ate this problem, researchers tried to make use of extra information, e.g.,
Russakovsky et al. [22] went one step beyond pyramid pooling by using object-centric
spatial pooling. Chen et al. [23] contextualized object detection and classification while
Angelova and Zhu [26] combined detection, segmentation, and classification into a unified
framework. Lin et al. [27] learned important regions automatically from images while
Xie et al. [28] made use of the hierarchical information of image parts. Farrell et al. [29]
combined volumetric primitives and posed a normalized appearance for classification.
Although effective, these methods’ performances decreased when the number of classes
increased.

Combination of multiple information could help alleviate the increment of classes to
some extent. For example, Torresani et al. [31] used human-labeled information while Yang
et al. [32] explored web images to assist with classification. However, this also introduced
noisy correlations. Instead of using visual information solely, Farhadi et al. [33] represented
images by attributes or semantics. Attributes were manually annotated by experts, which
took lots of human labor. To make use of previous learned knowledge for classification,
Zhang et al. [36] generated explicitly and implicitly semantic representations [37]. Wei
et al. [38] targeted multilabel image classification while Zhang et al. [39] fused semantic
information for event recognition. Wu and Ji [40] transferred information from other
sources while Zhang et al. [41] shared labels among different views. 3D information was
also used for classification in [43]. Ren et al. [44] used region proposal networks for object
detection to assist the classification. These methods treated images of the same class as
a whole instead of modeling each image separately. Some classes were relatively more
similar than other classes. We should treat different classes of images separately.

Many other efficient classification methods [45–67] have also been proposed. Zhang
et al. [57] proposed mapping images into subsemantic space instead of only using visual
representations. Weak location information was also used [60] to improve classification
performance. Part and pose information were used [62,63]. Girshick et al. [66] used the
feature hierarchy while Xie et al. [67] leveraged hyperclass correlation. The combination
of semantic representation and multiview information were also proven effective for
classification [68–81].

3. Fine-Grained Image Classification with Misclassification Information

In this section, we give details of the proposed fine-grained image classification
method by exploring the misclassification information of images. We first use the mis-
classification information from prelearned models for misclassified image selection. The
selected images are then used to train a number of classifiers. We concatenate the outputs
of learned classifiers for new image representations, which are then used for fine-grained
image classifications, as shown in Figure 1. Moreover, to further improve the performance,
we design several prelearned models with different backbones for image representation
and classification, and combine these prelearned models to leverage the advantages of
these models.
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Figure 1. Flowchart of the proposed fine-grained image classification method by exploring the misclassification information.

3.1. Exploring the Misclassification Information

We can make use of prelearned models to improve classification performance. For-
mally, let xm

n be the visual features of the n-th image used for the m-th prelearned model,
n = 1, . . . , N, m = 1, . . . , M, N is the number of images, M is the number of prelearned
models, yn ∈ RC×1 is the corresponding label, and C is the number of classes. Table 1
gives the symbols used in this paper. The prelearned model refers to the classifier, which
can be learned using either local features or deep convolutional neural networks. For
example, when local feature is used, the prelearned model can be trained using the support
vector machine classifier. When using deep convolutional neural networks, the prelearned
models refer to various the state-of-the-art networks. For the m-th prelearned model f m

c (∗)
corresponding to the c-th class, we use it to predict the classes of images as

ŷm
n,c = f m

c (xm
n ), (1)

where ŷm
n,c is the predicted class for the n-th image and the c-th dimension using the m-th

prelearned model, ŷm
n,c is the c-th dimension of ŷm

n . Ideally, the predicted classes ŷm
n,c should

be the same as their ground truth labels. However, the prelearned models cannot predict all
the images correctly in practice. Some images may be confused with different classes. For
images of the same class, their predictions scatter over many classes. The misclassification
is not evenly distributed. This is because images differ from each other in both semantics
and visual appearances. For example, flower images with a similar color and shape are
often misclassified with each other. However, the probability of misclassification is low
when classifying flowers with different colors and varied shapes. The misclassification in-
formation is often discarded by previous models. However, we believe the misclassification
information can also be used to improve classification performance.

Suppose for one particular class that images are often misclassified with several classes.
We should concentrate on these misclassified classes to mine useful information instead
of taking all image classes into consideration. Besides, different prelearned models have
varied misclassification information for each class. The classification performance can be
improved by jointly modeling this information.

Specially, for each class, we make use of this information by first selecting several
classes that are most likely being misclassified with this class. We calculate the class
distribution of ŷm

n for all images of the c-th class with m-th model and sort it in descending
order. Let

dm
c = [dm

c,1; . . . ; dm
c,C] (2)

be the sorted class distribution, where

dm
c,1 ≥ dm

c,2 ≥ . . . ≥ dm
c,C. (3)
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We select the top K(K < C) classes in which images have mostly been misclassified.
We select the classes that correspond to the first K dimensions of dm

c . Images of the K classes
along with the c-th class are then selected to construct a misclassification subset. In this
way, we can obtain a subset of images xm

i,c, i = 1, . . . , Nm
c with K + 1 classes, where Nm

c is
the number of selected images corresponding to the c-th class and m-th model. This avoids
using too many noisy images. Since images are often misclassified with the K-th classes,
we can improve the classification performance by separating the K + 1 classes of images.
Using a subset of easily confused images is more efficient than classifying all the images. It
can get rid of some irrelevant images and increase the classification accuracy.

Table 1. The symbols used in this paper and their meanings.

Symbol Description

xm
n visual features of the n-th image used for the m-th prelearned model

N number of images
M number of prelearned models
yn ∈ RC×1 label of xm

n
C number of classes
f m
c (∗) m-th prelearned model with the c-th class

ŷm
n predicted class for the n-th image using the m-th model

ŷm
n,c c-th dimension of ŷm

n
yn,c c-th dimension of yn

dm
c = [dc,1; . . . ; dc,C]

sorted class distribution of ŷm
n for all the images of the c-th class with

m-th model
K number of selected classes
xm

i,c, i = 1, . . . , Nm
c selected subset of images corresponding to the c-th class and m-th model

Nm
c

number of selected images corresponding to the c-th class and m-th
model

gm
c,k(∗)

learned classifier corresponding to the c-th class with the m-th pretrained
model

hm
c,k,n predicted value of xm

n using gm
c,k(∗)

hm
n concatenated new representation of xm

n with the m-th model
wm

c linear classifier parameter
α parameter for controlling the influence of the regularization term
ym

n binary label of the n-th image with the m-th prelearned model
`(∗, ∗) hinge loss function
λm,c linear combination parameter

3.2. Confusion Information Based Image Representations and Classifications

To make use of the selected K + 1 class images, we train K + 1 one-vs-all classifiers
to separate them. The advantages of using selected images lie in three aspects. First, we
can get rid of irrelevant images and concentrate on the classes that are most likely being
misclassified. Second, we can use various state-of-the-art image classification methods to
improve the classification performance. Third, since the selection and training processes are
conducted independently, it can be paralleled to save the computational time and improve
the modeling efficiency.

For images corresponding to the c-th class with the m-th pretrained model, let
gm

c,k(∗), k = 1, . . . , K + 1 be the learned classifiers that separate the K + 1 classes of im-
ages apart, we can then make use of the predictions for fine-grained image classification.
Various efficiently prelearned models can be combined with the proposed method. How-
ever, since each gm

c,k(∗) is only used to classify the corresponding K + 1 classes of images,
the predicted values cannot be directly compared.

To predict the class of one testing image, we can use the learned classifiers. The
output of one learned classifier indicates the semantic similarity between this testing
image and the class with the corresponding classifier. This information can be used for
image representations, which has been proven by [6,13,49,68–70]. We use the learned
classifiers gm

c,k(∗), k = 1, . . . , K + 1, c = 1, . . . , C as new image representations. For each
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image xm
n , n = 1, . . . , N, this is achieved by first using each learned classifier gm

c,k(∗) to
predict its class as

hm
c,k,n = gm

c,k(xm
n ). (4)

The predicted values are then concatenated as

hm
n = [hm

1,1,n; ..; hm
1,K+1,n; hm

c,k,n; ..; hm
C,K+1,n], (5)

where hm
n ∈ R(CK+C)×1. Note that we use the learned classifiers to predict the classes of all

the images instead of images that belong to particular classes for two reasons: First, the
selected top K classes cannot cover all the confused classes, especially when a relatively
small K is used. Second, an image is predicted C times for final classification. This makes
the proposed method more robust and effective than a single classifier.

Making use of the new image representations for final classification is quite straight-
forward. This can be achieved by learning C one-vs-all linear classifiers as

wm
c = argminwm

c

N

∑
n=1

`(wm
c hm

n , ym
n ) + α‖wm

c ‖2
2. (6)

∀c = 1, . . . , C. wm
c ∈ R1×(CK+C) is the classifier parameter to be learned, α is the

parameter that controls the influences of the regularization term, ym
n is the corresponding

binary label of the n-th image with the m-th prelearned model, `(∗, ∗) is the hinge loss
function as

`(wm
c hm

n , ym
n ) = max(0, 1−wm

c hm
n × ym

n ). (7)

Finally, we predict the classes of images by linearly combining the predicted results
using M prelearned models as

ỹn,c =
M

∑
m=1

λm,c ×wm
c hm

n , (8)

and assign the testing image with the class that has the largest ỹn,c. We set λm,c, m = 1, . . . , M
to be the same value that is equal to using the mean of the predicted values for classification.

Algorithm 1 gives the procedures of the proposed fine-grained image classification
with the misclassification information method. First, the prelearned classifiers are trained
using the training data, then they are used to predict the images of the training data using
Equation (1). Based on the prediction results, the misclassification information and class
distribution can be calculated using Equation (2). For each class, utilizing the selected K
classes that are most likely to be misclassified or confused with the class, the classifier is
trained again. The new image representation is obtained by concatenating the result of the
C newly trained classifiers, using Equations (4) and (5). With the new image representation,
the final classifiers are trained by Equations (6) and (8). It should be noticed that using
Equation (6), the classification results can be obtained using one type of prelearned model,
while using Equation (8), results of several/all types of prelearned models are combined to
obtain the final results, which is expected to improve the performance.
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Algorithm 1 Procedures of the proposed fine-grained image classification with misclassifi-
cation information method.
Input:

Training images xm
n and labels yn, prelearned classifier f m

c , K testing images.
Output:

The predicted classes of testing images:
Training phase

1: Predict the classes of images with prelearned classifiers using Equation (1);
2: Calculate the misclassification information using Equation (2);
3: Train misclassification classifiers using Equation (4);
4: Concatenate the results for new image representation using Equations (4) and (5);
5: Train the final classifiers using Equations (6)–(8).

Testing phase
6: Calculate the misclassification information with prelearned classifiers using

Equations (1) and (2);
7: Concatenate the predicted results of testing images using Equations (4) and (5);
8: Predict the classes of testing images using Equations (6) and (8).
9: return The predicted classes of testing images.

4. Experiments

To evaluate the proposed method (fine-grained classification with misclassification in-
formation, FGMI), we conduct fine-grained image classification experiments on the Flower-
102 dataset [1], the CUB-200-2011 dataset [17], and the Cars-196 dataset [54]. Figure 2
shows some example images of the three datasets.

a b c

Figure 2. Example images of (a) the Flower-102 dataset, (b) the CUB-200-2011 dataset, and (c) the Cars-196 dataset.

4.1. Experimental Setup

Both local-feature-based methods and deep convolutional neural network (CNN)-
based methods have been widely used for fine-grained image classification. CNN-based
methods have greatly improved over local-feature-based methods. The proposed method
can be combined with various prelearned models. We first evaluate the proposed FGMI
using local features (FGMI-LF) on the Flower-102 dataset. The Flower-102 dataset, the
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CUB-200-2011 dataset, and the Cars-196 dataset are also used to evaluate the performances
of FGMI when combined with various prelearned deep convolutional neural network
models (FGMI-CNN).

To extract local features from the Flower-102 dataset, we followed the same procedure
as [4] and densely extracted SIFT features, as in [55]. The minimum scale was 16× 16 pixels
with the overlap set to 6 pixels. We used the same local feature encoding strategies as
prelearned models. The codebook size was set to 1024. We used the same data splits
as provided in [1]. We calculated the classification accuracy for each class. The final
performance was evaluated using mean classification accuracy. As per deep convolutional
neural network (CNN)-based methods evaluated on the CUB-200-2011 dataset and the
Cars-196 dataset, we followed the same experimental setup as the prelearned models
to get the trained classifiers [9,11,12]. We used the same type of deep convolutional
neural networks for classifier training with the corresponding prelearned model. Mean
classification accuracy was used for performance evaluations. We used the reported results
of other baseline methods for direct comparison. The baseline models were selected for
two reasons: some models are widely used and extended by researchers; other models
have achieved state-of-the-art performance on these three datasets.

4.2. The Flower-102 Dataset

This dataset has 102 classes of 8189 flower images with predefined train/validate/test
split (10/10/rest images). There are different numbers of images per class, ranging from
40 to 258. The scale, pose, and lighting conditions vary between images. Some classes are
visually similar and hard to separate.

Table 2 gives the performance comparisons of the proposed method with several
baseline models [1,2,14,20,53,54,73]. We give the performances of the proposed method
when combined with these baseline models. FGMI-LF-AFC, FGMI-LF-LR-GCC, FGMI-
LF-OCB, FGMI-LF-ICAI, FGMI-LF-BR, and FGMI-LF-S3R represent the proposed method
combined with prelearned AFC, LR-GCC, OCB, ICAC, BR, and S3R models, respectively.
We also give the performance of FGMI-LF when jointly combined with AFC, LR-GCC, OCB,
ICAC, BR, and S3R for classification (FGMI-LF-Combined). We have three conclusions
from Table 2 when local-feature-based methods are combined. First, the proposed method
is able to improve over these baseline models. This is because we concentrate on the easily
confused classes of these prelearned models. Second, the performances vary for FGMI-
LF-AFC, FGMI-LF-LR-GCC, FGMI-LF-OCB, FGMI-LF-ICAI, FGMI-LF-BR, and FGMI-
LF-S3R because the discriminative power of these prelearned models are different. The
performances can be improved by making use of other information (OCB) or measuring the
similarities of images finely (BR and S3R), rather than simply using the training images with
histogram similarities. The performances of these baseline models can be further boosted
using the proposed method. Third, the performances can be improved by combining these
models (FGMI-LF-Combined). The experimental results on the Flower-102 dataset show
the effectiveness of the proposed method when combined with local-feature-based models.

We also evaluate the proposed method when combined with two deep convolutional
neural networks: ResNet-50 and ResNet-101, abbreviated as FGMI-CNN-ResNet-50 and
FGMI-CNN-ResNet-101, respectively. We can see that the proposed FGMI method is able to
improve classification performances. Finally, we combine both local feature based methods
and deep-convolutional-neural-network-based methods (FGMI-LF-CNN-Combined) for
classification. This eventually improves the classification accuracy.
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Table 2. Fine-grained classification performances of FGMI-LF and other baseline methods on the
Flower-102 dataset. FGMI-LF-AFC, FGMI-LF-LR-GCC, FGMI-LF-OCB, FGMI-LF-ICAC, FGMI-LF-
BR, and FGMI-LF-S3R represent the proposed method combined with prelearned AFC, LR-GCC,
OCB, ICAC, BR, and S3R models, respectively. FGMI-CNN-ResNet-50 and FGMI-CNN-ResNet-101
represent the proposed method combined with prelearned ResNet-50 and ResNet-101, respectively.
FGMI-LF-Combined represents the proposed method combined with AFC, LR-GCC, OCB, ICAC, BR,
and S3R jointly. FGMI-CNN-Combined represents the proposed method combined with ResNet-50
and ResNet-101 jointly. FGMI-LF-CNN-Combined represents the proposed method combined with
FGMI-LF-Combined and FGMI-CNN-Combined.

Methods Acc (%)

AFC [1] 72.8
LR-GCC [2] 75.7
OCB [20] 91.3
ICAC [14] 76.4
BR [56] 86.8
S3R [8] 85.3
ResNet-50 [73] 92.4
ResNet-101 [74] 92.3

FGMI-LF-AFC 77.5
FGMI-LF-LR-GCC 78.3
FGMI-LF-OCB 93.6
FGMI-LF-ICAC 79.2
FGMI-LF-BR 89.4
FGMI-LF-S3R 88.7
FGMI-CNN-ResNet-50 94.8
FGMI-CNN-ResNet-101 94.2
FGMI-LF-Combined 95.4
FGMI-CNN-Combined 95.9
FGMI-LF-CNN-Combined 96.5

4.3. The CUB-200-2011 Dataset

The CUB-200-2011 dataset has 200 different birds of 11,788 images. The images
are divided into 5994 training images and 5794 testing images. The images are also
labeled with bird locations along with class information. We only use the class information
of the images.

We give the performances of the proposed method and other
models [3,11,18,19,60–65,71,72,74–78] on the CUB-200-2011 dataset in Table 3. One thing
needs to mention is that some baseline models use both bounding box information and
image labels. The proposed method only uses image labels. Most baseline models use
AlexNet [9], VGG [11], and GoogleNet [58] with variations. Hence, we combine the pro-
posed method with AlexNet, VGG, GoogleNet, and Bilinear CNN (FGMI-CNN-AlexNet,
FGMI-CNN-VGG, FGMI-CNN-GoogleNet, and FGMI-CNN-BCNN). We also give the
combined performances (FGMI-CNN-Combined) by jointly using the prelearned AlexNet,
VGG, GoogleNet, and Bilinear CNN models. We can have similar conclusions as above.
The consideration of misclassification information is very effective to boost the classification
performances. Take FGMI-CNN-AlexNet, FGMI-CNN-VGG, FGMI-CNN-GoogleNet, and
FGMI-CNN-BCNN for example, they are able to greatly improve over AlexNet, VGG [11],
GoogleNet, and Bilinear CNN. Besides, performances can be further improved by using
more discriminative models. The relative improvements decrease with more discriminative
prelearned models. Moreover, we are able to outperform other baseline models when com-
bining the four models in a unified way. Especially, we are able to improve over [75,77,78],
which make use of ResNet or its variants for fine-grained classification. Once again, this
shows that misclassification information is very useful for accurate fine-grained image
classification.
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Table 3. Fine-grained classification performances of FGMI-CNN and other baseline methods on
the CUB-200-2011 dataset. FGMI-CNN-AlexNet, FGMI-CNN-VGG, FGMI-CNN-GoogleNet, and
FGMI-CNN-BCNN represent the proposed method combined with the prelearned AlexNet, VGG,
GoogleNet, and Bilinear CNN models, respectively. FGMI-CNN-Combined represents the proposed
method combined with AlexNet, VGG, GoogleNet, and Bilinear CNN jointly. EA—extra annotation.

Methods EA Acc (%) Network

FC-VGG [11] no 70.4 VGG
bilinear CNN [3] no 84.1 VGG
LRBP [59] no 84.2 VGG
WSDL [60] no 85.7 VGG
PR-CNN [18] yes 73.5 AlexNet
WS [61] yes 78.6 AlexNet
PS-CNN [62] yes 76.2 AlexNet
PN-CNN [63] yes 75.7 AlexNet
Triplet-A []19 yes 80.7 GoogleNet
STN [64] no 84.1 GoogleNet
BoostCNN [65] no 86.2 VGG
HSnet [71] yes 87.5 GoogLeNet
CVL [72] yes 85.6 VGG + GoogLeNet
MA-CNN [74] no 86.5 VGG-19
DFL-CNN [75] no 87.4 ResNet-50
DCL-VGG-16 [76] no 86.9 VGG-16
NTS-Net [77] no 87.5 ResNet-50
DFB-CNN [75] no 87.4 VGG-16
Cross-X (ResNet) [78] no 87.7 ResNet

FGMI-CNN-AlexNet no 73.4 AlexNet
FGMI-CNN-VGG no 75.8 VGG
FGMI-CNN-GoogleNet no 83.1 GoogleNet
FGMI-CNN-BCNN no 86.7 VGG
FGMI-CNN-Combined no 88.2 All

4.4. The Cars-196 Dataset

There are 196 classes of 16,185 images in the Cars-196 dataset. Images are divided into
8144 training images and 8041 testing images, respectively. The image labels and bounding
box annotations are also provided. We only use the class information of images, as on the
CUB-200-2011 dataset.

Performances of the proposed method and comparison with other baseline models
are given in Table 4. To be consistent with the experimental setup as on the CUB-200-
2011 dataset, we also give the performances of FGMI-CNN-AlexNet, FGMI-CNN-VGG,
FGMI-CNN-GoogleNet, and FGMI-CNN-BCNN along with FGMI-CNN-Combined. We
can see from Table 4 that the proposed method is able to improve over many baseline
models [3,11,60,65–67,75–77]. Particularly, by using misclassification information, we can
improve performance over AlexNet, VGG, GoogleNet, and BCNN, respectively. Besides,
we are able to improve over [77], which makes use of the structural information of image re-
gions to assist network construction. When analyzing the proposed method’s performances
on different datasets, we find that the Cars-196 dataset is relatively easier to classify than
the CUB-200-2011 dataset. This is because cars are rigid objects while birds are nonrigid
objects. Rigid objects are relatively easier to classify than nonrigid objects. However, by
taking the misclassification information into consideration, we can consistently improve
classification performance.
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Table 4. Fine-grained classification performances of FGMI-CNN and other baseline methods on the
Cars-196 dataset.

Methods EA Acc (%) Network

bilinear CNN [3] no 91.3 VGG
BoostCNN [65] no 92.1 VGG
BoT [66] yes 92.5 VGG
FC-VGG [11] no 76.8 VGG
WSDL [60] no 92.3 VGG
RCNN [66] no 57.4 AlexNet
FT-HAR-CNN [67] no 86.3 AlexNet
MA-CNN [74] no 92.8 VGG-19
DFL-CNN [75] no 93.1 ResNet-50
DCL-VGG-16 [76] no 94.1 VGG-16

FGMI-CNN-AlexNet no 63.4 AlexNet
FGMI-CNN-VGG no 84.7 VGG
FGMI-CNN-GoogleNet no 87.3 GoogleNet
FGMI-CNN-BCNN no 93.1 VGG
FGMI-CNN-Combined no 95.7 All

4.5. Influences of Parameters

The selected number of classes K influences the discriminative power of the new
image representations. If we set K to 1, the proposed method will equal to only using
the most easily confused class. All the classes will be used if we set K to C. To show the
influence of K, we plot the performance changes with K on the Flower-102 dataset, the
CUB-200-2011 dataset, and the Cars-196 dataset in Figure 3. We can see from Figure 3 that
setting K/C to 0.1∼0.2 is able to obtain satisfactory performances.

K/C
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Figure 3. Influence of K on the Flower-102 dataset, the CUB-200-2011 dataset, and the Cars-196 dataset.

α controls the influences of the regularization term in Equation (6). We plot its
influences on the three datasets in Figure 4. We can see from Figure 4 that α should not be
too big or too small. If α is too small, it will have very little influence. However, if we set
α to a very large value, the optimization of Equation (6) will be degenerated. Setting α to
0.1∼10 seems to be a better choice, as shown in Figure 4.
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Figure 4. Influence of α on the Flower-102 dataset, CUB-200-2011 dataset, and Cars-196 dataset.

The misclassification information also plays an important role for efficient classi-
fication. If we do not use the misclassification information, the proposed method will
simply equal the combination of prelearned models with averaged predictions. We give
the influences of the misclassification information in Table 5 (no CI). We can see that the
misclassification information is very useful for classification.

The new image representation scheme is also necessary for accurate classification.
This is because the classifier outputs of different subsets cannot be compared directly. One
alternative way is to predict the image’s class by voting. This can be achieved by using the
predicted classes (instead of the values) over all the selected subsets corresponding to the
pretrained models. We give the performances without using the new image representation
scheme on the three datasets in Table 5 (no NIR). Since different subsets contain images of
varied classes, the performances of this strategy are not as good as the proposed method.

Table 5. Influences of misclassification information and new image representations on the Flower-102
dataset, CUB-200-2011 dataset, and Cars-196 dataset. no MI—without misclassification information
(a simple combination of prelearned models with averaged predictions); no NIR—without new
image representation (using the predicted classes over all the selected subsets corresponding to the
pretrained models for voting).

Dataset No MI No NIR Proposed Method

Flower-102 93.2 91.6 96.5
CUB-200-2011 85.7 84.5 88.2

Cars-196 93.2 92.4 95.7

5. Conclusions

In this paper, we proposed an efficient fine-grained image classification method by
making use of the misclassification information of prelearned models, which has been
generally ignored by previous methods. We used the learned classifiers to select misclassi-
fied images for each class. The selected images were then used to train misclassification
classifiers. The selection and training process were conducted for each class. We combined
the outputs of these learned classifiers for new image representations and trained classifiers
for final predictions. The misclassification information contains discriminative features
that are important for classification of similar classes with similar semantic and visual ap-
pearances. Specifically, for the fine-grained classification task, training the classifiers with
misclassification information can better extract confused features, which is useful for dis-
criminating similar classes. To evaluate the proposed method’s effectiveness, we conducted
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fine-grained classification experiments on three fine-grained image datasets. Experiential
results and analysis proved the effectiveness and usefulness of the proposed method.
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