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Exosomes are nano-sized biological extracellular vesicles transmitting

information between cells and constituting a new intercellular

communication mode. Exosomes have many advantages as an ideal drug

delivery nanocarrier, including good biocompatibility, permeability, low

toxicity, and low immunogenicity. Recently, exosomes have been used to

deliver chemotherapeutic agents, natural drugs, nucleic acid drugs, and

other antitumor drugs to treat many types of tumors. Due to the limited

production of exosomes, synthetic exosome-mimics have been developed

as an ideal platform for drug delivery. This review summarizes recent advances

in the application of exosomes and exosome-mimics delivering therapeutic

drugs in treating cancers.
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1 Introduction

Malignant tumors are among the leading causes of death worldwide (Mattiuzzi et al.,

2019). Current therapeutics, including chemotherapy, radiation, surgical resection, and

immunotherapy, remain the most commonly used treatment (Leal and García-Perdomo,

2019). However, many malignant tumors have poor prognoses due to the late diagnosis

and lack of effective treatment options. Thus, novel antitumor drugs and treatments are

urgently needed to enhance treatment efficacies. Drug delivery systems (DDS) hold great

promise in improving cancer treatments (Song et al., 2021). Despite the improved efficacy

of reported DDS in treating many types of tumors, high clearance, toxicity to normal

tissues, and limited penetrating depth are the main limitations of current nanocarriers for

cancer therapy, leading to poor treatment outcomes (Maeda and Khatami, 2018).

Exosomes are nano-sized extracellular vesicles (EVs) ranged from 40 to 100 nm that

are secreted by many types of cells (Pegtel and Gould, 2019). Exosomes, apoptotic bodies,

and microvesicles are three members of EVs family (Liao et al., 2019). Exosomes, as the

smallest EVs, contain various proteins and nucleic acid molecules, essential in

transmitting information between cells. Exosomes were first isolated and purified

from sheep reticulocytes by Johnstone (Johnstone et al., 1987). Initially, exosomes

were thought to be wastes discharged by cells. However, subsequent studies in recent
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years have shown that exosomes play critical roles in the tumor

microenvironment, such as regulating the occurrence and

development of tumors (Xiong et al., 2017; Wang et al., 2020).

Further investigations have shown that exosomes secreted by

tumor cells may have unique properties and could act as

biomarkers for tumor diagnosis (Wang et al., 2018). In

addition, exosomes exhibited efficient tumor enrichment

effects known as high permeability and retention effects (EPR)

(Ngoune et al., 2016). Therefore, the appropriate size and unique

physiological structure properties of exosomes make them

suitable for delivering various reagents for therapeutic

applications (Mohammed et al., 2017). In addition, the natural

materials-derived biocompatibility, structural stability, good

permeability, low toxicity, and immunogenicity make them

ideal carriers for drug delivery (Lee et al., 2012; Xin et al.,

2012; Lou et al., 2015). Increased studies have indicated the

superior effect of drug-loaded exosomes in treating many

diseases (Bagheri et al., 2020; Pei et al., 2021).

1.1 Origin of exosomes

Exosomes can be isolated from cell culture supernatants,

plasma, serum, and various sources (Muller et al., 2014). The

biogenetic processes of exosomes can be divided into four stages:

initiation, endocytosis, formation of multivesicular bodies

(MVBs), and secretion of exosomes (Figure 1) (Razi and

Futter, 2006). The formation of exosomes in MVBs has

similarities with lysosomal formation because lysosomal

surface proteins such as LAMP and CD63 are also present in

exosomes (Johnsen et al., 2014). The production of exosomes is

affected by many factors, such as an increase in intracellular Ca2+

(Merendino et al., 2010), amino acids, and intracellular and

intercellular pH (Fader and Colombo, 2009). Some specific

mechanisms have been proposed to explain the various stages

of exosome biogenesis, suggesting that exosomal formation may

be a fine-tuning process (Van Niel et al., 2018). However, it is still

unclear what triggers exosome biogenesis and secretion.

FIGURE 1
The preparation and application of exosomes and exosome-mimics as drug delivery vehicles for cancer therapy.
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1.2 The composition of exosomes

Exosomes from various organisms and cell types contain

thousands of proteins, lipids, mRNAs, and miRNAs. (Zhuang

et al., 2011). The confluence of cholesterol, diglyceride,

phospholipid, sphingolipid, and glycerophospholipid is higher

in exosomes than in parental cells (Yang et al., 2015). Specific

molecules, including targeting and fusion proteins, cytoplasmic

enzymes, chaperones, and membrane transport proteins, are

enriched in exosomes (Gonzalez-Begne et al., 2009). CD9,

CD63, and CD81 proteins are usually considered marker

proteins of exosomes (Subra et al., 2010; Mathieu et al., 2021).

Exosomes can transfer their functional molecules from one cell to

another via cell-to-cell communication (Dourado et al., 2019).

1.3 Separation of exosomes

The great potential of exosomes for delivering vehicles

prompts the need for high-yield exosomes. Exosomes are

usually isolated from cells incubated with serum-free mediums

for several days (Gupta et al., 2018; Biadglegne et al., 2021).

Although many cells can produce exosomes, the yield of

exosomes produced by different cell types is highly variable

(Kim et al., 2021). Therefore, selecting the optimal source of

cells is crucial for the production of exosomes. Nowadays, the

exosomal preparation protocols include differential

ultracentrifugation and density gradient centrifugation,

sedimentation, capture, and microfluidic separation (Coughlan

et al., 2020; Jung et al., 2020). As the most popular protocol,

differential ultracentrifugation with a centrifugal force of 200 × g

to 100,000 × g removes larger particles and cell debris and finally

precipitates exosomes (Thakur et al., 2020).

Due to the unsatisfactory yield, how to increase the production

of exosomes is still a significant challenge. Kim et al. found that the

mesenchymal stem cells (MSCs) cultured in three-dimensional (3D)

spheroids produced a higher level of exosome than that in the

traditional two-dimensional (2D) culture (Kim et al., 2018). The

changes in exosome production may be attributed to the non-

adherent and round MSCs, which means the three-dimensional

structure may affect the efficiency of exosome production. Ludwig

et al. found that adenosine receptors modulated the production of

exosomes originating from tumor cells (Ludwig et al., 2020).

Ambattu et al. showed that high-frequency acoustic cell

stimulation induced an 8-fold increase in exosome production

through irradiation and post-excitation incubation steps

(Ambattu et al., 2020). These findings provided new ideas for the

preparation of a large number of exosomes. However, obtaining

exosomes with high purity and satisfied yield is still a significant

problem limiting the application of exosomes in cancer treatment.

2 Drug loading into exosomes

Drug loading into exosomes refers to loading different

drugs into purified exosomes’ inner cavities or

intramembrane. Exosomes could encapsulate hydrophilic

drugs, hydrophobic reagents, and membrane proteins as

efficient drug delivery vehicles. In principle, drug-loaded

exosomes can be acquired through post-loading and pre-

loading of exosomes.

2.1 Post-loading of exosomes

There are several ways to load drugs into isolated

exosomes, including co-incubation, electroporation, and

ultrasound (Değirmenci et al., 2022). Co-incubation is a

commonly used method for drug loading into exosomes,

which is simple to operate but has low loading efficiency

(Fang and Liang, 2021). Yang and his coworkers prepared a

linezolid-loaded exosome using co-incubation at 37°C with a

drug loading efficiency of 5% (Yang et al., 2018). Nucleic acid

drugs, including DNA, siRNA, miRNA, and others were

usually loaded into the inner cavity of exosomes by the

electroporation method (Figure 2) (Faruqu et al., 2018;

Asadirad et al., 2019). The loading efficiency of nucleic acid

drugs into exosomes depends on the molecule weight and the

size of exosomes (Lamichhane et al., 2015). Unlike the

traditional strategies, Yang et al. designed a cell

nanoporation (CNP) biochip, combining exosome

purification and drug loading into a device, significantly

improving the exosome yield and mRNA loading efficiency

(Yang et al., 2020). Improving the drug loading capacity of

exosomes is crucial for enhancing the efficacy of cancer

treatment.

2.2 Pre-loading of exosomes

Another drug loading method is introducing the drugs into

the exosome–derived cells, which is especially important for

those drugs that cannot be loaded into purified exosomes,

such as the cytosol and transmembrane proteins (Bai et al.,

2020). Tian et al. transfected cells with iRGD plasmid to

obtain iRGD-decorated exosomes, encapsulating doxorubicin

for targeted therapy in breast cancer (Tian et al., 2014).

Severic et al. modified exosome-mimics with prostate-specific

targeting peptides, which significantly increased the

accumulation of exosome-mimics in prostate tumor tissues

and reduced their distribution in normal tissues and organs

(Severic et al., 2021).
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3 Application of exosomes as drug
delivery vehicles

3.1 Nucleic acid drugs

Recently, exosomes from tumor cells, adipose stem cells,

mesenchymal stem cells and epithelial cells have been used to

treat different diseases (ZhangM. et al., 2021; Pan et al., 2021; Rui

et al., 2021; Sun et al., 2021; Wang L. et al., 2022). Gene therapy

has shown great promise in treating intractable diseases (Suresh

et al., 2014). The key to gene therapy is introducing nucleic acid

drugs into the targeted cells for long-term gene regulation (Misra,

2013). Despite some promising results, the clinical application of

gene therapy is limited by the lack of proper delivery systems

(Mendell et al., 2021). In this regard, exosomes have been used to

deliver many nucleic acid drugs, including miRNA, siRNA, and

mRNA (Aqil et al., 2019; Zhang D. et al., 2021; Huang et al.,

2021).

3.1.1 miRNA
miRNA is a non-coding RNA molecule with

20–22 nucleotides in size binding to a partially

complementary mRNA sequence, resulting in targeted

degradation or translational inhibition (Novina and Sharp,

2004). Increasing evidence has shown that the acquisition or

loss of related miRNA function is closely related to tumorigenesis

(Farazi et al., 2013; Zhou et al., 2014; Ye et al., 2017; Mo et al.,

2018). The inherent ability of exosomes in delivering bio-related

molecules is a significant advantage over other delivery platforms

(Esposito et al., 2021). For example, exosomes modified with

GE11 peptide could deliver let-7a miRNA into the epidermal

growth factor receptor (EGFR)-overpressed breast cancer cells

(HCC70, HCC 1954, and MCF-7). Enhanced tumor suppression

was observed in mice treated with miRNA-loaded exosomes in

breast cancer (Ohno et al., 2013). Han et al. developed exosomes

delivering miR-567 and found that they could target autophagy-

related proteins (ATG5) to reverse trastuzumab resistance in

breast cancer cells (Han et al., 2020). Yao et al. used exosomes

derived from HEK-293T cells to deliver miR-204-5p for cancer

treatment. The results showed that exosomal miR-204-5p could

significantly inhibit the proliferation of cancer cells and increase

their sensitivity to chemotherapeutic agents (Yao et al., 2020).

3.1.2 siRNA
Tumor cells can overcome the immune attack from the host

immune system through the immunosuppressive tumor

microenvironment (Chew et al., 2012). Cancer

immunotherapy results largely depend on the continuous

activation and expansion of tumor-specific T cells, especially

the tumor-infiltrating cytotoxic T lymphocytes (De Sanctis et al.,

FIGURE 2
Drug loading strategies of exosomes and exosome-mimics.
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2022). Pei et al. used cRGD-modified exosomes to deliver

siFGL1 and siTGF-β1, significantly increasing the number of

tumor-infiltrating T lymphocytes (Pei et al., 2021). Galectin-9 is a

β-galactoside-binding lectin, and its blockade could induce the

antitumor immune response (Moar and Tandon, 2021).

Galectin-9 was highly expressed in tumor tissues of patients

with pancreatic ductal adenocarcinoma (PDAC) (Seifert et al.,

2020). Zhou et al. developed exosomes modified with oxaliplatin

prodrug to deliver galectin-9 siRNA to PDAC tissues, which

induced immunogenic cell death (ICD) of tumor cells and

showed significant therapeutic effects on PDAC (Zhou et al.,

2021). Shtam et al. prepared exosomes to deliver RAD51-siRNA

and promoted the massive reproductive cell death of recipient

cancer cells (Shtam et al., 2013). KRAS is a signaling protein that

drives pancreatic cancer formation mutations (Diehl et al., 2021).

Exosomes delivering siRNA targeting the oncogene protein Kras

(KrasG12D) demonstrated unprecedented tumor regression and

promising potential for targeting pancreatic cancer (Zorde

Khvalevsky et al., 2013; Kamerkar et al., 2017).

3.1.3 mRNA
Many studies have shown that exosomes isolated from many

tumor cells contained tumor cell-specific mRNA, and exosomes

delivering mRNA has attracted considerable attention for cancer

treatment (Gutkin et al., 2016). Mizrak et al. reported that

mRNA-loaded exosomes could efficiently deliver mRNA and

show a combination therapy effect with other anti-cancer drugs

(Mizrak et al., 2013).

3.2 Chemotherapy drugs

Chemotherapy remains one of the primary cancer treatments

in the clinic. Unfortunately, many chemotherapy drugs are

associated with severe adverse events in clinical use (Cassidy

and Misset, 2002). Many studies have shown the decreased

toxicity of chemotherapeutics -loaded exosomes toward

normal tissues for improved cancer therapy (Hadla et al.,

2016; Li Y. et al., 2018b). Tian et al. developed iRGD-

modified exosomes derived from mouse immature dendritic

cells (imDC) to encapsulate doxorubicin for cancer treatment,

showing good antitumor efficacy with no toxicity observed (Tian

et al., 2014). Wang et al. purified exosomes from M1 type

macrophages by ultra-high speed centrifugation and loaded

paclitaxel into exosomes by ultrasound in a breast cancer mice

model. The paclitaxel-loaded exosomes demonstrated enhanced

tumor targeting and inhibited tumor growth compared with free

paclitaxel (Wang et al., 2019). Embryonic stem cell-derived

exosomes delivering paclitaxel also showed good antitumor

efficacy in glioblastoma (Zhu et al., 2019).

Curcumin, a polyphenol enriched in turmeric plants, has a

wide range of pharmacological effects, including anti-oxidative

stress and inhibition of cell proliferation of malignant tumors.

The poor water solubility greatly limited their further

applications (Anand et al., 2007). Exosomes derived from cow

milk and intestinal epithelial cells could improve the oral

bioavailability of curcumin (Carobolante et al., 2020).

Moreover, exosomes derived from milk could protect

curcumin from metabolism and improve its anti-cancer

activity of curcumin (González-Sarrías et al., 2022).

Gemcitabine is an effective chemotherapeutic drug for treating

pancreatic cancer, but it is often associated with several adverse

events in the circulatory system, gastrointestinal tract, and

kidneys (Cidon et al., 2018). Li et al. prepared gemcitabine-

loaded exosomes, which showed increased tumor accumulation

and better tumor inhibition than free gemcitabine (Li et al.,

2020). In addition, exosomes have been used to overcome the

drug resistance of tumors. Zhang et al. loaded cisplatin into

exosomes derived from M1 macrophages of human cord blood

(exoCIS) and found that exoCIS could significantly inhibit the

growth of cisplatin-resistant ovarian cancer cells (Zhang et al.,

2020). Exosome-modified targeting moieties significantly

enhanced the antitumor efficacy and reduced the toxicity to

normal tissues.

3.3 Others

Recently, exosomes have been used to deliver

photosensitizers to tumor tissues for cancer therapy (Zhu

et al., 2022). Pan et al. loaded PMA/Au-BSA@

Ce6 nanoparticles into urinary exosomes and constructed

passion fruit-like exosome nanoparticles, which achieved

targeted tumor imaging and photodynamic therapy (Pan

et al., 2020). Cao et al. prepared vanadium carbide quantum

dots-loaded exosomes, which showed a tumor-killing effect

through photothermal therapy (Cao et al., 2019). Fan et al.

used DNA hinges to connect quantum dots to exosome

surfaces (Exosome-DNA-QDs) and found that exosome-

DNA-QDs could be phagocytosed by tumor cells faster than

normal cells, suggesting the unique advantage of the exosome-

based delivery platform for cancer treatment (Fan et al., 2019).

4 Exosome-mimics

Exosomes have been an ideal platform to deliver various

drugs in treating cancers. However, their further application is

limited by the low production yield and lack of targeting

properties (Yong et al., 2019; Zhang H. et al., 2021b).

Therefore, artificially produced nanovesicles, which mimic the

structure of exosomes, have received extensive attention in drug

delivery (Nie et al., 2019; Fan et al., 2021; Oroojalian et al., 2021).

Exosome-mimics, prepared by extruding whole cells or cell

membranes through certain-sized filters, have similar

structures and characteristics to exosomes (Li et al., 2022).
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Synthetic exosome-mimics, retaining the natural properties of

cells, can be applied to developing novel therapeutic strategies

(He et al., 2021). Some studies have shown that exosome-mimics

can result in a 100-fold increase in production yield compared

with natural exosomes (Jang et al., 2013).

Until now, exosome-mimics prepared from various cell

membranes or platelet membranes could be used in

developing cancer vaccination and drug delivery systems

(Fang et al., 2014; Zhang et al., 2019). The exosome-mimics

encapsulating PLGA nanoparticles showed enhanced stability

compared with the bare nanoparticles (Kroll et al., 2017; Zhang

et al., 2017). The exosome-mimics prepared by the T cell

membrane, which retained T cell receptors on the surface,

could bind to HIV surface glycoprotein gp120 and inhibit

gp120-induced CD4+ T cell damage, suggesting a promising

therapeutic agent against HIV infection (Wei et al., 2018b).

Exosome-mimics prepared from gastric epithelial cell

membranes, macrophage membranes, platelet membranes,

and neutrophil membranes have also shown improved

efficacies in treating some diseases (Thamphiwatana et al.,

2017; Angsantikul et al., 2018; Wei et al., 2018a; Zhang Q.

et al., 2018a). Exosome-mimetic nanovesicles have similar

abilities as drug delivery systems compared with exosomes

(Pisano et al., 2020).

Cancer immunotherapy, which aims to eliminate cancer cells

by the host immune system, has attracted significant attention

during the past decade (Wang W. et al., 2022b; Peng et al., 2022).

Among different cancer immunotherapy strategies, immune

checkpoint blockade has shown significant clinical effects in

many tumors (Sharpe and Pauken, 2018). Zhang et al.

prepared engineered cellular nanovesicles presenting the

programmed death-1 (PD-1) receptor, which could selectively

bind to programmed death-ligand 1 (PD-L1). The PD-1

nanovesicles induced an antitumor immune response (Zhang

X. et al., 2018b). Zha et al. prepared gemcitabine-loaded PD-1

nanovesicles, which significantly suppressed tumor growth in

mice, showing the unique advantage of PD-1-decorated

exosome-mimics in cancer therapy (Zha et al., 2022). Signal

regulatory protein-α (SIRPα) could bind to CD47 molecules on

tumors and normal tissues and release a “do not eat me” signal to

prevent the phagocytosis of cells (Ring et al., 2017). Rao et al.

prepared SIRPα variant-presented extracellular vesicle mimics

(SαV-C-NVS), which could disrupt the CD47-SIRPα axis and

repolarize TAMs towards the M1 phenotype (Rao et al., 2020).

These studies demonstrated the potential of functional exosome-

mimics in drug delivery for cancer therapy.

5 Conclusion and perspectives

Exosomes and exosome-mimics have shown great potential

in delivering various drugs and nanoparticles for cancer therapy.

Exosomes derived from dendritic cells (DCs), mesenchymal stem

cells (MSCs), and patient tumor cells have been used to deliver

tumor antigens or anti-cancer drugs in some clinical trials (Chen

et al., 2020). However, many problems remain to be solved to

advance the further application of exosomes. For example, the

limited yield of exosomes could not satisfy the therapeutic

application in preclinical and clinical studies. Exosome-

mimics, prepared from cell membranes on a large scale,

showed promising potential in treating some diseases.

Moreover, the drug loading efficiency into exosomes,

especially for nucleic acid drugs, is relatively low. Developing

novel strategies with efficient drug loading is urgently needed (Li

S.-P. et al., 2018a). In addition, the unsatisfied transfection

efficiency of exosomes dramatically influences the final gene

regulation results in recipient cells. Further studies are

required to improve the exosomal yield and drug loading

efficiency. Exosomes and exosome-mimics have promising

prospects as ideal drug delivery systems in cancer therapy.
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