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Abstract: Mechanosensitive channels respond to mechanical forces exerted on the cell membrane
and play vital roles in regulating the chemical equilibrium within cells and their environment. High-
resolution structural information is required to understand the gating mechanisms of mechanosensi-
tive channels. Protein-lipid interactions are essential for the structural and functional integrity of
mechanosensitive channels, but detergents cannot maintain the crucial native lipid environment for
purified mechanosensitive channels. Recently, detergent-free systems have emerged as alternatives
for membrane protein structural biology. This report shows that while membrane-active polymer,
SMA2000, could retain some native cell membrane lipids on the transmembrane domain of the
mechanosensitive-like YnaI channel, the complete structure of the transmembrane domain of YnaI
was not resolved. This reveals a significant limitation of SMA2000 or similar membrane-active
copolymers. This limitation may come from the heterogeneity of the polymers and nonspecific
interactions between the polymers and the relatively large hydrophobic pockets within the transmem-
brane domain of YnaI. However, this limitation offers development opportunities for detergent-free
technology for challenging membrane proteins.

Keywords: YnaI; SMA2000; NCMN; cryo-EM; Mechanosensitive Channel

1. Introduction

Living organisms survive by relying on their adaptability to ever-changing environ-
ments. Many elegant mechanisms for adaptability have evolved in the long history of life
on earth. Single-cell organisms such as bacteria often confront drastic osmolarity changes
in their surroundings, leading to harmful turgor pressure changes on the bacterial cell
membrane. Bacteria survival must keep the cell membrane turgor pressure in an acceptable
range to avoid cell lysis [1–3]. It is well known that bacteria respond to this environmental
change through mechanosensitive channels present on their cell membrane. However,
activation mechanisms of mechanosensitive channels at the atomic level are fundamental
questions that remain incompletely understood.

In bacteria, two major mechanosensitive families were identified and classified ac-
cording to their conductance: the mechanosensitive channels of large conductance (MscL)
and small conductance (MscS). In Escherichia coli, six different MscS-like channels were
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characterized: MscS (286 aa), MscK (1120 aa), YbdG (415 aa), YnaI (343 aa), YbiO (741 aa),
and YjeP (1107 aa) [4–6]. The MscS-like channels are homoheptamers, with each monomer
comprising a cytoplasmic domain and a transmembrane (TM) domain. The number of
helices in the TM domain of the monomer varies across the family, viz., three (MscS), five
(YbdG and YnaI), and eleven (YbiO, YjeP, and MscK). In addition, YbiO, YjeP, and MscK
carry additions to their cytoplasmic domains [7,8].

Protein-lipid interactions play a crucial role in gating mechanosensitive channels [9–14].
Recently, Perozo and colleagues determined the cryo-EM structure of MscS in nanodisc
in the near-native lipid bilayer environment. They discovered that “hook” lipids interact
with the TM2-TM3 hairpin and play a role in force sensing. They also found that a bundle
of acyl chains of lipid molecules occlude the permeation path [15]. Walz and colleagues
systematically investigated the effects of different lipid species and used P-cyclodextrin to
remove lipids from the nanodiscs to mimic the natural cell membrane tension on the MscS
channel [16].

While substantial progress has been made in our understanding of MscS gating, we
still understand little about the role and function of many other members of the MscS
family. For instance, we do not know what gives these channels different gating thresholds
and conductances. A potential reason is that the MscS family with larger transmembrane
domains are more difficult to purify, reconstitute in vitro, and obtain structural data.

We reasoned that a limiting factor might have been the use of detergents to extract
these proteins, which may have resulted in the irreversible denaturation of the proteins’
transmembrane region and possibly in the destabilization of the water-soluble domains as
well [17,18]. Sometimes detergents can drive the protein far from its native-like structure,
not only for the transmembrane region but also for the water-soluble region. More im-
portantly, these effects are also seen in the juxtamembrane area [19]. For instance, several
structures of YnaI have been solved by cryo-EM, using DDM, LMNG, and DIBMA as
solubilizing agents [20–22]. However, these structures appear to be missing pore and hook
lipids observed in MscS. In an attempt to circumvent those issues and shed light on the
structure, function, and modulation of mechanosensitive channels of the MscS family,
we have expressed, solubilized, and purified YnaI using the membrane-active polymer
SMA2000 and solved their structure by cryo-EM.

We have successfully used the membrane-active polymer, SMA2000, to determine
the high-resolution single-particle cryo-EM structure of a native lipid-bilayer patch with
a membrane protein transporter, AcrB [23]. Our rationale was that by solubilizing these
channels with SMA2000, their conformation and associated lipids would be retained. These
attempts also allowed us to test whether this styrene-maleic acid copolymer could be of
general use for the high-resolution structure determination of membrane proteins.

Here we report the cryo-EM structures of the SMA2000-purified wild-type YnaI at an
overall resolution of 2.4 Å. We found seven native lipid molecules at the interface between
the transmembrane and cytoplasmic regions of the structure. However, we were only able
to partially resolve the structures of the transmembrane domain, which appeared very
flexible and heterogeneous in the SMA2000 preparation. Together with the similar results
obtained with MscS (to be reported separately), this points to limitations in using SMA2000
as a tool for solubilizing membrane proteins for biophysical studies.

2. Materials and Methods
2.1. Protein Expression and Purification for Cryo-EM

The wild-type low-conductance mechanosensitive channel-like (YnaI) was constructed
into pRSFDuet-1 with an N-terminal deca-histidine tag. The plasmid was transformed into
Escherichia coli strain BL21 (DE3) pLysS and grown on Luria broth agar plates in the presence
of both ampicillin (100 mg/mL) and chloramphenicol (25 µg/L). The plates were incubated
overnight at 37 ◦C. A single colony was chosen from each plate and transferred into 10 mL
of Terrific broth (TB) in the presence of the antibiotics. The pre-culture was incubated at
37 ◦C and 220 rpm and kept shaking overnight. The following day, the cells were diluted
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1:1000 in TB medium and grown at 37 ◦C to an OD600 of 0.8–1.0. The cell culture was
cooled down to 20 ◦C, and protein expression was induced with 1.0 mM isopropyl β-D-1-
thiogalactopyranoside (IPTG). The cells were grown overnight at 20 ◦C and then harvested
by centrifugation at 7500× g for 15 min at 4 ◦C. Some cells were frozen at −80 ◦C for later
use, and others were immediately resuspended in NCMN Buffer A and homogenized
using a high-pressure homogenizer (Avestin EmulsiFlex-C3, ATA Scientific, Taren Point,
Australia). The analyzed cells were then pelleted by centrifugation at 15,000× g for 30 min
at 4 ◦C. Finally, the cell membrane was isolated by centrifugation at 250,000× g for 1 hour
at 4 ◦C. Two grams of this membrane fraction were then resuspended in NCMN Buffer
A and homogenized with a glass Dounce homogenizer. The membrane-active polymer
SMA2000 (NCMNP1-1 as indexed in our NCMN polymer library) was mixed with the
homogenized membrane fraction for a final concentration of 2.5% (w/v) and incubated for
2 h at 20 ◦C. Insoluble material was then pelleted down by ultracentrifugation (150,000× g
for 1 h at 20 ◦C). The clarified supernatant was loaded onto a 5 mL Ni-NTA column (GE
Healthcare, Chicago, IL, USA). After washing with 30 mL of NCMN Buffer B and 30 mL of
NCMN Buffer C, the protein was eluted with 20 mL of a 1:1 v/v buffer mixture of NCMN
Buffer C and NCMN Buffer D. Fractions containing YnaI were loaded onto a Superose
6 increase 10/300 column (GE Healthcare, Chicago, IL, USA) and eluted with 30 mL of
NCMN Buffer E. YnaI fractions were pooled together and concentrated using Amicon
Ultra 15 mL 30 kDa cut-off centrifugal filters (Millipore Sigma, Burlington, MA, USA)
until the desired concentration. All washing and elution buffers contained 0.05% w/v of
the polymer.

All buffers with compositions in detail are listed below:
NCMN Buffer A: 50 mM HEPES, pH 8.4, 500 mM NaCl, 5% glycerol, 20 mM imidazole,

0.1 mM TCEP
NCMN Buffer B: 25 mM HEPES, pH 7.8, 500 mM NaCl, 40 mM imidazole, 0.1 mM TCEP
NCMN Buffer C: 25 mM HEPES, pH 7.8, 500 mM NaCl, 75 mM imidazole, 0.1 mM TCEP
NCMN Buffer D: 25 mM HEPES, pH 7.8, 500 mM NaCl, 500 mM imidazole, 0.1 mM TCEP
NCMN Buffer E: 40 mM HEPES, pH 7.8, 100 mM NaCl, 0.1 mM TCEP

2.2. Negative-Stain Electron Microscopy

Briefly, 3.5 µL of the sample (~0.1 mg/mL) was applied to a glow-discharged 10 nm
thick carbon grid; after 1 min, it was blotted with Grade 1 Whatman filter paper and
briefly rinsed with a drop of 5 µL pure water. Rinses were repeated three times. The grid
surface was then rinsed with two 5 µL drops of filtered 1% uranyl acetate consecutively,
followed by another 5 µL drop of 1% uranyl acetate. After one min, the stain solution
was then absorbed with a Whatman filter paper and dried in the air for another min.
Negatively stained grids were stored in a grid box for later visualization on a 200 keV TEM
(Tecnai F20, Thermo Fisher Scientific, Waltham, MA, USA) at 62,000× magnification at the
specimen level.

2.3. Cryo-EM Specimen Preparation, Data Collection, and 3D EM Map Reconstruction

Samples were prepared for cryo-EM by applying 3 µL of freshly purified YnaI to
glow-discharged holey carbon grids 1.2/1.3 with ultrathin carbon (300 mesh). The sample
was blotted for 2 s with a force of 3 and then flash-frozen in liquid ethane and stored in
liquid nitrogen using a Vitrobot Mark IV (Thermo Fisher Scientific, Waltham, USA) with
the environmental chamber set at 100% humidity, 4 ◦C.

Cryo-EM specimen grids were imaged on a Titan Krios operated at 300 kV with a K2
Summit direct electron director (Gatan) in counting mode at 22,500× nominal magnification
with a pixel size of 1.0733 Å/pix. The dose rate was 7.0 e-/Å2/s, with 40 frames s−1

collected for a total exposure time of 8.0 s and a final dose of 56 e-/Å2. An initial data set
of 2155 micrographs for YnaI was obtained by automated data collection using Leginon,
with nominal defocus values ranging between −1.5 and −2.5 µm [24]. Drift correction and
dose weighting were performed using Motioncor2, and CTF correction was performed
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using CTFFIND4.1 [25,26]. A total of 330,000 particles were extracted, and several rounds
of 2D classification were performed in Relion 3.0 [26,27]. The best-looking 2D classes
and their respective particles were then subjected to 3D classification with no symmetry
imposed. Three-dimensional auto-refinement was then performed on 142,000 particles
with C7 symmetry imposed. The final map of YnaI had a resolution of 2.4 Å according to
the gold-standard Fourier shell correlation. The local map resolution was calculated with
ResMap [28].

2.4. Atomic Modeling, Refinement, and Validation

The map obtained with C7 symmetry was used to build and stereochemically refined
atomic model for YnaI. An initial model was generated using the available EM structure
of YnaI (PDB ID: 5Y4O) and placed into the sharpened density map using Chimera fit
in the map [29]. The all-atom model of YnaI was built into the cryo-EM density using
COOT [30]. Models were subjected to real-space refinement in Phenix with secondary
structure restraints [31]. The additional densities were attributed to lipid molecules and
built as phosphatidylethanolamine (PDB ID: PTY) in COOT.

2.5. YnaI Structural Comparison

Structures were downloaded from the Protein Data Bank (PDB), and Chimera was
used for the structural comparison. The MatchMaker [32] extension of Chimera was used
to superimpose the structures. The chains to match were explicitly specified, and the
default settings were used: the Needleman–Wunsch algorithm with BLOSUM-62 and 30%
weighting of the secondary structure with a gap penalty of 1. The sequence alignment was
opened in Multialign Viewer, and the regions of interest were colored based on the RMSD
values calculated for the alpha carbon atoms.

2.6. HINT Lipid-Protein Analysis

Hydrogens were added to the structures, and atomic charges were set with Gasteiger-
Hückel, followed by proton-only energy-minimization using SYBYL-X-2.1.1 (Certara USA,
Inc., Princeton, NJ, USA). The interatomic interactions between lipid and protein were
evaluated using the HINT forcefield and score model [33,34] that uses atom-centered
parameters, ai and Si, the hydrophobic atom constant, and SASA, respectively, for atom
i. Generally, ai > 0 for a hydrophobic atom and ai < 0 for a polar atom. Si is larger for
solvent-exposed frontier atoms but near zero for atoms at the center of functional groups.
The score between atoms i and j is:

bij = ai Si aj Sj Tij e−r + Lij,

where r is the distance (Å) between atoms i and j, Tij is a descriptor function for polar-polar
interactions, and Lij is an implementation of the Lennard–Jones potential function. By
convention, bij > 0 indicates favorable interactions, e.g., hydrophobic-hydrophobic or Lewis
acid-Lewis base, and bij < 0 indicates unfavorable interactions, e.g., hydrophobic-polar or
Lewis acid-Lewis acid.

3. Results

We overexpressed the full-length YnaI in E. coli strain BL21(DE3)pLysS and purified
the protein with SMA2000 (Figure 1a) [23,35]. The gel filtration chromatography of YnaI
did not show a symmetrical peak, probably due to its tendency to aggregate, as shown in
the negative-stain micrograph (Figure 1b,d). The YnaI sample on the SDS-PAGE image
shows both monomer and heptamer (Figure 1c). Two-dimensional classification of the
cryo-EM data shows heptameric particles with well-defined cytoplasmic domains, but the
transmembrane domain displays different conformations and order levels. Some of the
side-view classes display a few well-defined transmembrane helices (Figure 1f). Table 1
summarizes the data collection and processing. All the refinement and validation statistics
are available in Table 2.
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Figure 1. Purification and analysis of YnaI single particles. (a) SMA 2000 inactive form (styrene-maleic anhydride
copolymer) and active form (styrene-maleic acid copolymer) (b) Size exclusion column purification profile of YnaI. (c) SDS-
polyacrylamide gel electrophoresis (SDS-PAGE) analysis of YnaI. Lane M shows the protein marker (Bio-Rad prestained
protein). YnaI is ~38 kDa (monomer) and ~265 kDa (heptamer). Lane 1–3: fractions of the second SEC peak. (d) Representa-
tive raw micrograph images showing negative-stain particles of YnaI. (e) Representative micrograph of YnaI on a cryo-EM
thin carbon grid. (f) Representative 2D classes with side, top, and high angle views.

Table 1. Cryo-EM data collection and processing.

Microscope Titan Krios (FEI)

Voltage (kV) 300
Detector Gatan K2 SUMMIT

Nominal magnification 22,500
Electron exposure (e- Å-2) 56.18

Defocus range (µm) −0.1–3.1
Pixel size (Å2 per pixel) 1.07
Dose rate (e-/s/pixel) 7.02

Exposure time (s) 8
Movies stacks (no.) 2155

Boxsize (pixels) 256
Final particle images (no.) 142,000

Symmetry imposed C7
Map resolution 2.4 Å
FSC threshold 0.143
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Table 2. Structure refinement and validation statistics.

PDB ID 7N4T
EMDBID EMD-24177

Non-hydrogen atoms 12,887
Protein residues 1603

Ligands 7
R.m.s. deviations

Bonds (Å) 0.003
Angles (◦) 0.483
Validation

MolProbity score 1.72
Clashscore 5.48

Poor rotamers (%) 0.22
Ramachandran plot

Most favored (%) 93.64
Allowed (%) 6.36

3.1. The Structure of YnaI Solubilized with SMA2000 Shows Native Lipids Bound at
the Juxtamembrane

Consistent with the previously reported structures, 3D reconstruction of YnaI directly
extracted from the cell membrane with SMA2000 reveals a heptamer. YnaI is paralogous to
MscS with a similar architecture. YnaI’s most distinct feature is that its transmembrane
domain contains five TMs instead of three for MscS. We could reconstruct the soluble
portion for YnaI at high resolution; however, we could only resolve TM5 and TM4 of its
transmembrane region (Figure 2). EM density for seven potential lipid molecules was
found in the hydrophobic pockets defined by TMs 4–5 and the cytoplasmic region (Figure 2).
In the E. coli inner cell membrane, phosphatidylethanolamine (PE) is the predominant lipid
species, and this molecule also fits well into those densities [36]. This is also consistent with
our lipid analysis results (section below). Therefore, we tentatively built PE molecules into
the corresponding densities. Similar to our previous study on AcrB, we found no evidence
of ordered SMA copolymer molecules around the transmembrane domain. Overall, YnaI
appears in a closed state defined by the minimal diameter of the pore formed by TM5a
~13 Å, similar to the closed state of YnaI in DIBMA (14 Å) [37].

3.2. Protein-Lipid Interactions Affect Channel Conformation at the Juxtamembrane

The lipid observed is bound in the juxtamembrane area defined by two TM5b helices
and a loop from the β-domain, which forms a protein-lipid interface (Figure 3a). The
TM5 kink (MscS TM3) marks the beginning of the second half of the TM5b helix, I163 to
F175, which is amphipathic and lies parallel to the membrane bilayer. It functions as a
conjunction between the membrane and the cytoplasmic domain. The electrostatic surface
potential between the soluble and transmembrane regions shows protein-lipid interactions.
The negatively charged phosphate head fits well within the positively charged pocket
formed by R116, S119, R120, K123, Y174, W201, and R202 (Figure 3b).

Protein-lipid interactions were found within YnaI (Figure 4) and were quantified using
the Hydropathic INTeraction (HINT) scoring tool that exploits LogP, a thermodynamic
parameter representing solute transfer into a mixed solvent system (water and 1-octanol),
to calculate the free energy of association. HINT analysis was conducted on the lipid-
protein complex, in which all the non-covalent interactions were scored and ranked, giving
a positive score for favorable and negative score for unfavorable interactions. Note that
the HINT score has previously been shown to correlate well with binding free energy,
i.e., ~500 HINT score units represent ∆∆G = −1 kcal mol−1 [37]. This analysis showed
numerous favorable hydrophobic interactions between the tail of the lipid and M118, I121,
I163, L164, F167, F168, I171, and M172 for a total of 1177 HINT units (~2.2 kcal mol−1).
Likewise, the lipid head showed as many polar interactions, including hydrogen bonds,
with W201, R202, and R120 for a total of 913 HINT units (~0.9 kcal mol−1). Considering
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both favorable and unfavorable interactions, the final score for our HINT analysis is 987,
suggesting tight and strong interactions between the lipid molecule and the protein of
about 2.0 kcal mol−1.
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and masked map.
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surface of the binding pocket of lipid within YnaI that interacts with a lipid molecule. Electrostatic surface potentials were
calculated using PyMol and APBS [38] with the non-linear Poisson–Boltzmann equation. Negatively and positively charged
surface areas are colored in red and blue, respectively.
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Figure 4. Structural comparison between the cryo-EM structure of SMA2000-YnaI with published structures focused on
the protein-lipid interactions. Top, different orientation of TM4 between the SMA2000 structure (PDB ID: 7N4T, cyan) and
(a) DDM structure reconstituted in amphipols (PDB ID: 5Y4O, purple); (b) LMNG structure (PDB ID: 6URT, green); and
(c) DIBMA (PDB ID: 6ZYD, gold). Bottom, protein-lipid interactions comparison with specific amino acids colored by
per-residue RMSD value. RMSDs less than 0.8 Å are shown in blue, RMSDs between 0.8 and 1.6 Å are shown in white, and
RMSDs greater than 1.6 Å are shown in red.

To quantitatively assess the differences in lipid stability between the different struc-
tures, we calculated the HINT score for the protein-lipid interactions in YnaI purified
using DIBMA, a detergent-free method (PDB ID: 6ZYD), and YnaI purified with lauryl
maltose neopentyl glycol (LMNG; PDB ID: 6URT), a detergent-based method. In the HINT
analysis for the protein-lipid interaction of the LMNG structure, the O-{(R)-hydroxy[(2R)-
3-(icosyloxy)-2-(tetradecanoyloxy) propoxy] phosphoryl}-L-serine (PDB ID: QGD) lipid
molecule is scoring only 173 (~0.3 kcal mol−1) for favorable hydrophobic interactions (e.g.,
with F40, L96, F101, F175). This is probably due to the fact that one of the tails is sticking
out into the solvent without making suitable interactions with any residue. In contrast, the
head group of QGD scores 1269 (~2.5 kcal mol−1) for favorable polar interactions, of which
the strong hydrogen bond with R120 (score = 620, ~1.2 kcal mol−1) particularly stands
out. Even with this strong hydrogen bond, the overall score between the lipid and YnaI in
LMNG is the lowest (209, ~0.4 kcal mol−1) among the three we analyzed due to its overall
very unfavorable total hydrophobic/polar interactions. For the YnaI structure in DIBMA,
the resolved PE has very strong favorable hydrophobic interactions (with V156, G160, I163,
L164, F167, F168, M172, W201) (Figure 4c). Remarkably, due to the lipids’ geometries and
placement, no hydrogen bonds were found between its head group and the protein, not
even the R120 interaction that was found in both our reported structure and the LMNG one
or the interaction with K108, since its sidechain is pointing away from the phospholipid
head group (Figure 4).

Given that juxtamembrane lipid is bound to the same pocket in all three structures,
we reasoned that the different orientations observed for those lipids might impact the
conformation of this functionally important domain of the channel. To this end, we
calculated root mean square deviation values between pairs of structures to highlight the
areas of most change and made pairwise comparisons of those structures. RMSD values
were calculated between our structure (PDB ID: 7N4T) and each of the above described
structures (DDM (5Y4O) = 0.845 Å; LMNG (6URT) = 0.763 Å; DIBMA (6ZYD) = 0.622 Å).
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In all of them, the significant differences are located in the TM4 helix and the TM5b (MscS
TM3b). In our structure of YnaI solubilized in SMA2000, TM4 (MscS TM2) is shifted
by about ~15◦ or ~2.8 Å compared to the other published structures (Figure 4a–c). A
distinct feature in the newly solved YnaI structure is the presence and position of the
juxtamembrane lipid. We do not know whether this conformational difference is solely
due to the different lipid positions.

4. Discussion

The gating of mechanosensitive channels depends on cell membrane tension [15,16,39–41].
However, the unique nature of these channels makes structural and functional study
in vitro difficult and full of bias because of the difficulty of mimicking the natural lipid
bilayer environment. The predominantly used detergent-based approaches damage the
natural protein-lipid interactions that are crucial for understanding the conformational
changes accompanied by opening and closing the channels [42,43]. Although nanodiscs
have been used successfully for reconstituting MscS into a lipid bilayer environment, the
initial purification of MscS still requires detergents, which could potentially remove essen-
tial native lipids from the transmembrane domain, i.e., hook lipids or pore lipids [15,42,43].
Further, the reconstituted lipid bilayer is artificial, which may be very different from the
native structure of the cell membrane. The reconstituted lipids could also interact with the
protein with different orientations and geometries, causing the stabilization of a non-native
protein conformation. This is the case with AcrB, where we had reported a high-resolution
single-particle cryo-EM structure of a lipid bilayer patch within the channel. Reconstitu-
tion of AcrB in nanodiscs could not faithfully restore this patch even using E. coli total
lipids [44]. Thus, once protein-lipid interactions are damaged, they can be difficult to
restore in vitro. On the cell membrane, membrane proteins have the advantage of having
adequate time to interact with the native cell membrane lipid bilayer and thus form specific
interactions at equilibrium. In vitro reconstitution is a very different process because the
lipid environment is artificial; While we are accounting for some degree of membrane
protein interactions with this approach, lipid nanodisc has significant limitations due to
the absence of native lipids. Biological membranes are typically protein-crowded, and
their lipid compositions vary in composition, i.e., PE, phosphatidylglycerol, cardiolipin,
cholesterol, etc. Thus, it is probable that the local properties in the lipid bilayer significantly
vary region by region, causing different interactions with the protein [45,46]. Therefore,
biological membranes are more complicated than the lipid bilayer simulated within the
lipid nanodisc. In principle, this process would not likely support the restoration of the
natural lipid-protein interaction patterns.

4.1. Native Lipids Alter the Structure’s Morphology in the Membrane-Soluble Region Interface
of YnaI

The structural analyses of the reported YnaI structures (Figure 4) revealed the impor-
tance of having a purification system able to co-purify native lipid molecules together with
the protein. The presence of a lipid molecule in the structure can drastically change the
model in the transmembrane region. Although the lipid is present in these three structures,
the phospholipid head’s different orientation appears to provoke a drastic change in the
TM4, causing a completely different orientation of this alpha-helix in our model. Therefore,
lipid geometries and conformation are essential in stabilizing the final lipid-protein struc-
ture. The HINT scoring analysis supports this finding, which shows that the seven lipids
in the structure reported here (PDB ID: 7N4T) contribute ~14 kcal mol−1 of the system
stabilization, demonstrating their crucial role.

4.2. Limitation of SMA Copolymer

Although styrene-maleic acid copolymer SMA2000 enables us to determine cryo-
EM structures of MscS and YnaI with some unique structural features, we also found
a significant limitation of these polymers for membrane protein structural biology. We
observed that SMA2000 could not maintain the transmembrane domains of mechanosensi-



Membranes 2021, 11, 849 10 of 14

tive channels, MscS and YnaI, as stably as detergent or nanodiscs could [15,16,21]. These
results point to this polymer’s potential limitations as a general “agent” resource for
membrane protein research. SMA copolymers have well-known limitations, such as their
incompatibility with divalent ions and low pH conditions [47]. Here, we point to another
possible restriction of SMA copolymers: they appear to work well in maintaining the
native structure and function of only a subset membrane proteins: proteins with more rigid
transmembrane domains, such as AcrB, appear to be better suited to SMA copolymer solu-
bilization than more flexible proteins, such as MscS and YnaI. Mechanosensitive channels
have a flexible transmembrane domain and intricate protein-lipid interactions. We found
that SMA copolymers (specifically SMA2000, this may also be true for other commercial
SMA polymers) could extract YnaI single particles; however, they could not maintain
the structure of the transmembrane domain in a stable conformation suitable for high-
resolution structure determination. This could be explained by the heterogeneity of the
SMA2000 polymer and nonspecific interactions between SMA2000 polymer molecules and
the transmembrane helices. SMA molecules may be substituting for some lipid molecules
in the lipid pockets and interacting with the transmembrane helices non-specifically. The
SMA2000 polymer heterogeneity may yield very different interactions between SMA2000
and otherwise equivalent transmembrane helices. For YnaI, only the core TM helices TM4
and TM5 were resolved. Although some native lipids were retained in the transmembrane
domain, many others may have been washed away similarly as from using detergents [21].
Compared with the DIBMA or LMNG solubilized YnaI, SMA copolymers fare worse in
keeping the TM helices as ordered structures of this particular channel [21,22]. Many
factors may cause the differences: the heterogeneity of SMA2000 polymers is much higher
than the Anatrace grade of LMNG; The rigidity of packing of the polymer lipid-protein
particles could be different between SMA2000 prepared sample and DIBMA prepared
samples; the differences of the extraction efficiency between DIBMA and SMA2000 may
lead to different polymer lipid-protein particle sizes and protein-lipid ratios.

4.3. The Need for a Large Membrane-Active Polymer Library for High-Resolution Structure
Determination of Membrane Proteins

The necessity of structural information of native protein-lipid interaction in under-
standing the active mechanisms of mechanosensitive channels requires a detergent-free
system for high-resolution structure determination. Detergents are not ideal for maintain-
ing the native protein-lipid interactions [17,48]. While nanodisc reconstitution provided
some protein-lipid interaction information, because of the artificiality of the reconstitu-
tion process, it is not guaranteed that native protein-lipid interaction can be restored
precisely like that of the native cell membrane. A recent case study of AcrB demon-
strated the limitation of nanodisc reconstitution compared with a detergent-free NCMN
system [44]. However, although SMA2000 works well for AcrB, it did not work that well
for mechanosensitive channels.

The failure to maintain the ordered structure of the transmembrane domain by SMA
polymers may reflect the complexities of the cell membrane structure and the protein-
lipid-SMA copolymer interactions. The complexity and variety of cell membrane systems
from bacteria, fungus, plants, animals, and human cells make it extremely difficult, if
not impossible, to obtain a single membrane-active polymer that can maintain the native
structures of membrane proteins in their native cell environments. Each specific group
of membrane proteins thus may need a particular class of membrane-active polymers
for structural and functional studies due to this diversity. An extensive membrane-active
polymer library will be required to identify the best membrane-active polymers for studying
corresponding groups of membrane proteins.

4.4. Structural Study of Membrane Proteins Using SMA Copolymers Should Be Accompanied by
Functional Validation

Functional studies using the SMA-extracted sample might not be relevant to the na-
tive structure. This may be especially true for membrane protein enzymes, channels, or
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transporters. Membrane protein activity may rely on the native structure and specific
protein-lipid interactions. If the SMA copolymer damages the specific protein-lipid in-
teractions and the native structures, the membrane protein may lose its function. For
example, we found that KcsA can be purified with SMA2000. The particles appear to be
homogenous; however, when SMA2000-prepared KcsA nanoparticles were reconstituted
into proteoliposomes, we could not detect any channel activity using patch-clamp. On
the contrary, when NCMNP7-1 polymer was used for proteoliposome reconstitution, the
KcsA channel remained active [49]. This may reflect some limitations of SMA2000, and
considering the incapability of SMA2000 in maintaining the ordered transmembrane do-
main of YnaI. It is possible that SMA2000 damaged the essential protein-lipid interaction
within YnaI particles. Furthermore, while membrane proteins solubilized in detergent
often precipitate, they rarely do so in the SMA polymer solution. This may be explained
by the overall negative charges on the SMA polymers. However, while still kept in solu-
tion, the membrane proteins may not have retained their native and functional condition.
The suitable solubility and stability may be deceptive and allow misplaced confidence in
sample quality because we are used to evaluating the sample quality by the solubility and
stability of membrane protein samples prepared using detergent-based approaches.

4.5. Mass Spectrometric Analysis of Lipids Using Samples from SMA Copolymer Prepared
Samples Should Be Accompanied by Structural Validation

Ideally, membrane-active polymers can maintain membrane proteins in their native
structures with concomitant native functions. If this is the case, mass spectrometry (MS)
analysis of the protein samples may reveal native-associated lipid species on the mem-
brane protein. However, this may not be true in practice because of the limitations of
membrane-active polymers such as SMA. With the MscS or YnaI samples prepared with
SMA copolymers, our structural analysis revealed that many lipids were not visible in the
transmembrane domain. For example, the pore lipids located in the channel path of MscS
appear crucial in keeping the mechanosensitive channel in a close state [15]. Without the
pore lipid plug, the minimum diameter of the pore is about 9 Å, which is not compatible
with a closed state. This might also be true for YnaI since the minimal pore diameter
of YnaI is almost the same as that of MscS. If those lipids are indeed washed away, the
lipid analysis of such samples will not reflect the true nature of the lipids associated with
mechanosensitive channels in the native cell membrane, which is likely to be true for many
other membrane proteins. To avoid biased interpretation of the protein-lipid interactions,
we need high-resolution structures of studied membrane proteins to confirm the reliability
of the sample for mass spectrometric analysis.

5. Conclusions

Currently, both detergent-based and detergent-free approaches such as DIBMA,
SMALP, or NCMN system could not retain potential crucial lipid molecules, such as
the hook lipids, pore lipids, onto the transmembrane domain of YnaI [20–22]. This presents
a significant challenge for developing an understanding of its gating mechanism. However,
this challenge is, at the same time, an opportunity. With the continuing rapid advancements
of the SMALP, DIBMA, NCMN, and other detergent-free systems [44], hopefully, in the
near future, we will be able to determine the single-particle cryo-EM structure of YnaI with
all essential lipids intact.
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