
����������
�������

Citation: Jung, A.; Gsell, M.A.F.;

Augustin, C.M.; Plank, G. An

Integrated Workflow for Building

Digital Twins of Cardiac

Electromechanics—A Multi-Fidelity

Approach for Personalising Active

Mechanics. Mathematics 2022, 10, 823.

https://doi.org/10.3390/math10050823

Academic Editor: Fernando Simoes

Received: 31 January 2022

Accepted: 28 February 2022

Published: 4 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

An Integrated Workflow for Building Digital Twins of Cardiac
Electromechanics—A Multi-Fidelity Approach for
Personalising Active Mechanics
Alexander Jung 1 , Matthias A. F. Gsell 1,2 , Christoph M. Augustin 1,3,* and Gernot Plank 1,3

1 Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging—Division of Biophysics,
Medical University Graz, 8010 Graz, Austria; alexander.jung@medunigraz.at (A.J.);
matthias.gsell@medunigraz.at (M.A.F.G.); gernot.plank@medunigraz.at (G.P.)

2 NAWI Graz, Institute of Mathematics and Scientific Computing, University of Graz, 8010 Graz, Austria
3 BioTechMed-Graz, 8010 Graz, Austria
* Correspondence: christoph.augustin@medunigraz.at

Abstract: Personalised computer models of cardiac function, referred to as cardiac digital twins, are
envisioned to play an important role in clinical precision therapies of cardiovascular diseases. A
major obstacle hampering clinical translation involves the significant computational costs involved
in the personalisation of biophysically detailed mechanistic models that require the identification
of high-dimensional parameter vectors. An important aspect to identify in electromechanics (EM)
models are active mechanics parameters that govern cardiac contraction and relaxation. In this study,
we present a novel, fully automated, and efficient approach for personalising biophysically detailed
active mechanics models using a two-step multi-fidelity solution. In the first step, active mechanical
behaviour in a given 3D EM model is represented by a purely phenomenological, low-fidelity model,
which is personalised at the organ scale by calibration to clinical cavity pressure data. Then, in
the second step, median traces of nodal cellular active stress, intracellular calcium concentration,
and fibre stretch are generated and utilised to personalise the desired high-fidelity model at the
cellular scale using a 0D model of cardiac EM. Our novel approach was tested on a cohort of seven
human left ventricular (LV) EM models, created from patients treated for aortic coarctation (CoA).
Goodness of fit, computational cost, and robustness of the algorithm against uncertainty in the
clinical data and variations of initial guesses were evaluated. We demonstrate that our multi-fidelity
approach facilitates the personalisation of a biophysically detailed active stress model within only a
few (2 to 4) expensive 3D organ-scale simulations—a computational effort compatible with clinical
model applications.

Keywords: patient-specific modelling; human left ventricular function; cardiac mechanics; precision
medicine; parameter estimation; global sensitivity analysis

1. Introduction

Cardiovascular diseases accounted for 32% of global deaths in 2019 and remain the
leading cause of death worldwide [1]. Improvements in diagnosis, therapy stratification,
and planning are needed to offer personalised precision therapies that are tailored to
individual patients. Computer modelling of cardiac functions show promise in this regard,
owing to its unique ability of integrating disparate clinical data into a quantitative and
mechanistic framework that facilitates, ultimately testing, the prediction of outcomes for
various therapeutic options [2–5].

Such advanced modelling applications rely on the ability to calibrate models to clinical
data, efficiently and robustly. The current, most advanced 3D multi-physics models of
cardiac functions incorporate representations of electrophysiology (EP), mechanics, and
haemodynamics, which cover multiple scales—from the protein up to the organ scale [6–12].
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However, in most current applications, these are, at least from a functional perspective,
rather generic, and do not account for the known inter-individual variability among
patients [13]. While such one-heart-fits-all modelling approaches are useful for gaining
generic mechanistic insights, they are limited in their ability to diagnose, stratify, or plan
therapies on a case-by-case basis, as evidence of correspondence between model and
physiological reality in a given patient is lacking. These limitations must be addressed
by creating personalised models that are calibrated to clinical data. The development of
techniques to create such personalised models, often referred to as digital twins [5,14],
models that replicate all available observations with high accuracy, constitute a significant
challenge as parameter spaces of biophysically detailed models are high-dimensional, and
available clinical data are afflicted with significant observational uncertainty and residual
variability [13]. Beyond the high-dimensional parameter space, many model parameters
cannot be observed clinically and, thus, must be estimated indirectly, based on quantities
that are clinical observable; a procedure that can become computationally expensive.

In general, calibration of 3D multi-physics models is typically attempted by calibrating,
in a first step, individual physics independently, and subsequent re-calibration, to account
for secondary effects due to bi-directional coupling. For models of cardiac electromechanics
(EM), typically EP components are calibrated first to match activation and repolarisation,
before mechanical components are calibrated to data on pressure, volume, motion, or strain.
Significant improvements in the personalisation of model components have been made re-
cently in terms of robustness, automation and fidelity, including EP [15–17], afterload [18],
and passive mechanics [19,20] models. In the present study, we focus on the fully auto-
mated personalisation of active mechanics models that characterise the active mechanical
behaviour through corresponding constitutive equations. These can either be described in
terms of stress (active stress approach) or in terms of strain (active strain approach) [21],
with the first being more commonly used. The constitutive equations of the active stress
approach involve the cellular active stress that is generated in cardiomyocytes through the
mechanisms of excitation–contraction coupling [22]. There are numerous models available
in the literature that describe the evolution of cellular active stress with varying degrees of
mechanistic detail. Purely phenomenological low-dimensional models are often preferred
in clinical modelling studies. These are able to account for salient phenomena, such as
length dependence underlying the Frank–Starling mechanism and are easier to constrain
with the limited data available in the clinic. They are simply driven by electrical activation
time to trigger the onset of contraction, whereas biophysically detailed models require
space-varying intracellular calcium concentration ([Ca2+]i) traces as input. For a review on
active mechanics models, the interested reader is referred to Niederer et al. [3].

Several fully automated personalisation approaches have been published for purely
phenomenological models [18,23–25]. Here, the number of parameters that have to be cali-
brated is typically small, hence, the personalisation is computationally tractable. However,
an increasing number of studies, e.g., pharmacological applications [26], look explicitly
at the excitation–contraction coupling mechanisms for which purely phenomenological
models are not suitable. For this reason, Longobardi et al. [27] introduced a fully automated
personalisation approach that can also be used for biophysically detailed models. They
applied Bayesian history matching (BHM) based on Gaussian process regression (GPR)
models that emulate the expensive 3D organ-scale simulations at low computational cost.
While this ensures that the actual personalisation process remains inexpensive, the cost
involved in the generation of training data are substantial, which poses a limitation.

The aim our study was to develop an alternative fully automated and computationally
efficient approach for the personalisation of biophysically detailed active mechanics models.
To this end, a two-step multi-fidelity solution is suggested in Section 2. In brief, the active
mechanical behaviour in a given 3D EM model is represented by a purely phenomenologi-
cal model (low-fidelity model, LFM), which is personalised at the organ scale by calibration
to clinical cavity pressure data. Then, median traces of nodal cellular active stress, [Ca2+]i,
and fibre stretch, are generated and utilised to personalise the desired biophysically de-
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tailed model (high-fidelity model, HFM) at the cellular scale using an 0D EM model. The
personalisation approach was tested for a cohort of seven patient cases for which 3D models
of human LV EM have been built previously [18], see Section 2.2. To be considered viable,
the personalisation approach must demonstrate sufficient robustness against clinical data
uncertainty, which we show for our approach in Section 3.3. Finally, we discuss the results
in Section 4 and conclude the paper with a brief summary Section 5. All required equations
to implement the methods in a software framework, as well as supplementary parameter
values, are given in the Appendix A.

2. Materials and Methods
2.1. Clinical Data

Clinical data of all (N = 7) aortic coarctation (CoA) patients from the CARDIOPROOF
cohort (NCT02591940), see [18], were used. The institutional Research Ethics Committee
approved the study following the ethical guidelines of the 1975 Declaration of Helsinki.
Written informed consent was attained from the patients or their guardians.

The data of each patient include anatomical 3D-whole-heart (3DWH) magnetic reso-
nance imaging (MRI) scans, an LV volume trace obtained from short-axis cine MRI scans,
and LV pressure traces of several beats obtained from invasive catheterisation. A detailed
description of the data acquisition process and clinical protocols used in this study are
reported in [28]. To account for inconsistencies in the LV pressure and volume traces, a
three-step pre-processing was performed previously [18]: firstly, the LV volume trace was
adjusted to match LV volume data points that were derived from 3DWH-MRI scans ac-
quired during diastasis; secondly, the LV pressure traces of all beats were averaged; thirdly,
the averaged LV pressure trace was synchronised with the smoothed LV volume trace.
The active mechanics personalisation approach is based on biomarkers and corresponding
biomarker values of the LV pressure and volume trace were obtained as described in
Appendix C.

2.2. 3d Model of Human Left Ventricular Electromechanics
2.2.1. Anatomical Model

A solid model of the LV and the aortic root (AR) was created based on 3DWH-MRI
scans that were acquired during diastasis. Classification tags were applied to allow for
local assignments of mechanical and electrical material properties and a finite element
(FE) mesh was generated (Table 1). Since the model is not in an unloaded configuration, a
backward displacement method [20,29] was applied first. Then, the unloaded configuration
was inflated to the configuration at the clinical end-diastolic pressure and this was deemed
the reference configuration [18]. To account for the unique fibre and sheet architecture of
the LV, the principal eigenaxes along the fibre direction f 0, the sheet direction s0, and the
sheet-normal direction n0 in the reference configuration were assigned to each element
of the LV mesh using a previously developed Laplace–Dirichlet rule-based method [30].
Details of the semi-automated workflow for building anatomical models are described
in [31,32].

2.2.2. Mechanical Model

The LV and the connected AR are represented by a deformable body B that consists of
particles in the configuration Ω ⊂ R3 with Lipschitz boundary ∂Ω. The deformation from
the reference configuration Ω0(X) to the current configuration Ωt(x) is described by the
deformation gradient F := Grad x and the Jacobian J := det F describes the change of the
body’s volume. Furthermore, the right Cauchy-Green tensor is introduced to be C = F>F.
The tissue of the LV and the AR is assumed to be hyperelastic and nearly incompressible. To
account for nearly incompressible behaviour, the deformation gradient is multiplicatively
decomposed into the volumetric (Fvol) and isochoric (F̄) parts [33]

Fvol = J1/3 I and F̄ = J−1/3F. (1)
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Table 1. Mesh information, CPU times, and iteration numbers for each patient case. Given is the
number of nodes and elements of the patient-specific FE mesh, the cardiac cycle length, and the times
per iteration and number of iterations for personalising the low-fidelity model (LFM) in the first step
(3D EM model) and the high fidelity model (HFM) in the second step (0D EM model). 3D simulations
in the first step were run on ARCHER2 using 128 cores and 0D simulations in the second step were
run on a desktop computer using 1 core.

# Nodes # Elements Cycle Length Time/It LFM Time/It HFM # It LFM # It HFMPatient Case (-) (-) (ms) (s) (s) (-) (-)

01-CoA 159,948 806,430 659 4834.7 0.033 2 13,211
02-CoA 162,188 835,516 1231 7945.4 0.061 3 16,061
03-CoA 63,804 301,146 917 2389.4 0.045 4 17,261
04-CoA 96,176 487,132 631 2249.1 0.031 9 8561
05-CoA 126,981 652,012 654 3434.8 0.032 3 16,211
06-CoA 165,508 853,717 697 5407.9 0.036 4 14,111
07-CoA 82,212 394,690 852 2591.8 0.042 3 20,766

The spatiotemporal evolution of the displacement U in the LV and the AR is governed
by Cauchy’s first equation of motion that reads

ρ0 d2U
dt2 −Div(FS) = 0 in Ω0 × (0, T), (2)

with initial conditions

U = 0 and
dU
dt

= 0 in Ω0 × {0}, (3)

where S is the second Piola–Kirchhoff stress, ρ0 is the density in the reference configuration,
d2U
dt2 is the acceleration, and dU

dt is the velocity. To enforce physiological motion and
to account for the cavity pressure that acts onto the endocardial surface, Robin spring
boundary conditions and Neumann boundary conditions (Figure 1) are imposed on the
boundaries Γ0

R and Γ0
N, respectively, with Γ0

R ∪ Γ0
N = ∂Ω0.

More specifically, Robin boundary conditions refer to omni-directional springs that
are applied to the aortic rim, and to uni-directional springs that are applied to the septum
and to the epicardium. Latter mimics the effect of the pericardium that restricts changes
of the outer shape of the heart. The pressure–volume relationship in the LV is described
as in [34] and afterload is accounted for through an 0D-lumped three-element Windkessel
model [35] (Figure 1) that describes the relationship between pressure and flow in the
arterial system. This is coupled to the mechanical model during the ejection phase and
patient-specific parameter values were already determined in previous work [18]. The
relationship between pressure and flow across the aortic and mitral valve is described
through a 0D diode representations (Figure 1) with forward resistances RAVf and RMVf, and
backward resistances RAVb and RMVb, respectively. The backward resistances were set to
1000 mmHg ms mL−1 to prevent backflow.

Stress in the AR is assumed to arise only from the passive mechanical behaviour of
the aortic tissue, i.e., S = Sp. The passive mechanical behaviour is modelled by

Sp = 2
∂Ψ
∂C

, (4)

where
Ψ = Ψvol(J) + Ψiso(C̄) (5)

is the strain energy function, where C̄ is the isochoric right Cauchy–Green tensor. The strain
energy function is additively decomposed into the volumetric contribution Ψvol =

κ
2 (J− 1)2
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with the penalty parameter κ and the isochoric contribution Ψiso. AR tissue is assumed to
be isotropic and is specified by the simple neo-Hookean strain energy function.

Stress in the LV arises not only from the passive but also from the active mechanical
behaviour of ventricular tissue. Motivated by Hill’s muscle model passive and active stress
are added (active stress approach) to obtain

S = Sa + Sp. (6)

The passive mechanical behaviour is modelled by Equations (4) and (5) and the
volumetric contribution is Ψvol = κ

2 ln(J)2. LV tissue is assumed to be mechanically
transversely isotropic and the isochoric contribution Ψiso is specified by the strain energy
function proposed by Guccione et al. [36]. Patient-specific values for the stiffness parameter
CGUC were already determined in previous work [18]. Active stress is assumed to occur
only in fibre direction f 0 and the active mechanical behaviour is thus modelled by

Sa = Sa( f 0 · C f 0)−1 f 0 ⊗ f 0, (7)

where Sa is the scalar cellular active stress. This is coupled to an 0D model describing the
cellular active stress evolution. Here, the purely phenomenological Tanh model [37,38]
and the biophysically detailed Land model [39] are used; detailed descriptions are given in
Appendices A.1 and A.2.

Figure 1. (Left), seven patient-specific anatomical models of the left ventricle (LV) and the aortic
root from patients treated for aortic coarctation (CoA); (right), mechanical and afterload boundary
conditions where Neumann-type pressure boundary conditions are illustrated in blue and Robin-
type boundary conditions are illustrated in green (uni-directional springs that mimic the effect of
the pericardium) and yellow (omni-directional springs). The mechanical model is coupled to a 0D
three-element Windkessel model (WK3) that accounts for afterload conditions. Here, R1, R2 are the
characteristic and peripheral resistances, respectively, and C is the arterial compliance. Pressure is
denoted by P and the relationship between pressure and flow q = dV

dt across the aortic valve (AV) is
represented by a 0D diode model, where RAV is the respective resistance. The diode model of the
flow across the mitral valve and the uni-directional springs that are applied to the septum are not
shown. See [18] for more details.

2.2.3. Electrophysiological Model

The tissue of the LV is assumed to be electrically orthotropic and the spatiotemporal
evolution of the transmembrane potential Vm is governed by the reaction-eikonal (R-E)



Mathematics 2022, 10, 823 6 of 35

model [40]. The eikonal equation models the spatiotemporal evolution of electrical activa-
tion (wavefronts) and reads√

(Gradta)>v(Gradta) = 1 in Ω0, (8)

with initial conditions
ta = t0 in Γ0∗ ⊂ Ω0, (9)

where v is the (wavefront) velocity tensor and ta is a positive function that gives the
electrical activation (wavefront arrival) times at the locations X ∈ Ω0. Electrical activation
is initiated at the locations X ∈ Γ0∗ in the vicinity of the septal, anterior, and posterior
fascicles [34]. The development of the action potential upon electrical activation is modelled
by the monodomain reaction–diffusion (R–D) equation

βCm
∂Vm

∂t
= Div(σGradVm) + Ifoot(ta)− βIion in Ω0 × (0, T), (10)

with initial conditions
Vm = Vmres in Ω0 × {0}. (11)

The electrical activation time determines the onset of a foot current density Ifoot,
which mimics a subthreshold electrotonic current density that initiates the action potential
starting out from the resting potential Vmres . Velocities and conductivities σ along the three
eigenaxes were set in accordance with [7].

The total ionic current density Iion is coupled to a 0D model that describes cellular EP.
This usually also integrates a model of the [Ca2+]i evolution that provides [Ca2+]i as input
for biophysically detailed models of cellular active stress evolution (Appendix A.2). The
mammalian ventricular cardiomyocytes model of Luo and Rudy [41], from now on referred
to as the LR1 model, was used. To produce a [Ca2+]i trace that is in line with available
experimental measurements in human cardiomyocytes, the purely phenomenological
model of Rice et al. [42] was used and the parameter values were estimated based on
experimental data reported in [43]. This model is from now on referred to as the Rice
model and detailed descriptions including the parameter estimation strategy are given in
Appendix A.4.

EP and mechanics are linked through various feedforward and feedback loops [44,45]. The
action potential triggers active stress evolution through an increase of [Ca2+]i (electromechanical
coupling) and the resulting deformation modifies the transmembrane potential (mechano-
electrical coupling). The latter can be caused through stretch-activated and stretch-modified ion
currents and by stretch-induced changes of [Ca2+]i. Stretch-induced changes of [Ca2+]i modify
not only the transmembrane potential but also the active stress (mechano-mechanical coupling).
This arises from a modified affinity of troponin C for Ca2+ and from a modified sensitivity
of the myofilaments to Ca2+. Electro- and mechano-mechanical coupling were considered
but for the sake of simplicity, mechano-electrical coupling was not.

2.2.4. Spatiotemporal Discretisation and Numerical Solution

The spatial discretisation of the mechanical and EP model equations was done based
on the Galerkin finite element (FE) method using tetrahedral elements. The same average
mesh resolution of approximately 690 µm was chosen for the two physics although EP
processes are governed by smaller spatial scales than mechanical processes. This was made
possible by the use of the R-E model that allows using a much coarser mesh resolution
without causing numerical conduction slowing or block as observed in standard R-D
models [40]. However, since EP processes are also governed by smaller temporal scales
than mechanical processes, a different temporal discretisation was chosen. The time step
for solving the EP and mechanical model equations were 0.025 ms and 1.0 ms, respectively.
This choice of time step size is motivated by previous works using the same meshes [18].
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To increase stability we considered Rayleigh damping of the generalised-α scheme used for
the time integration of Equation (2), see [11]. Additionally, we made use of an approach
developed by Regazzoni and Quarteroni [46] to stabilise velocity-dependent active stress
models of cardiac mechanics. The cellular models always started out from their steady
state computed for the clinical cardiac cycle length (duration of the clinical pressure trace;
(Table 1)). If parameters were modified, the novel steady state was computed immedi-
ately. The spatial and temporal discretisation of the model and the solution of the arising
systems of equations were realised in the FE framework Cardiac Arrhythmia Research
Package (CARPentry) [40,47], built upon extensions of the openCARP EP framework [48]
(http://www.opencarp.org, accessed on 30 January 2022). Numerical details for solving the
EP [40,47,49] and the mechanical model equations [7] have been described in detail else-
where. Both the solver components of the EP and the mechanical model have been verified
in N-version benchmark studies [50,51]. Simulations were run on ARCHER2 (UK Research
and Innovation) using 128 cores. The temporal discretisation of the cellular models and
the solution of the arising systems of ordinary differential equations were realised with the
tool bench included in openCARP. Simulations were run on a regular desktop computer
using one core.

2.3. Active Mechanics Personalisation Approach
2.3.1. Step 1: Low-Fidelity Model Personalisation at the Organ Scale

In the first step, the active mechanical behaviour in the 3D EM models is described
by a LFM. This is personalised at the organ scale by minimising the difference between
simulated (sim) and clinical (clin) pressure biomarker values that is obtained from available
clinical cavity pressure traces. Our specific choice of the LFM is the Tanh model [37,38].
The four major parameters maximum active stress, the time constants of the contraction
(rise) and relaxation (decay) phase (rise time constant), and the duration of the cellular
active stress transient are active stress biomarkers that are related to corresponding pres-
sure biomarkers. Then, the personalisation can be performed by solving the following
unconstrained minimisation problem:

min
pLFM

4

∑
j=1

(
Bclin,j

P − Bsim,j
P (pLFM)

Bclin,j
P

)2

, (12)

where pLFM = {Smaxref , τSRref , τSD, tCR} are the parameters of the Tanh model (Appendix A.1)
and BP = {Pmax, dP

dt |max, dP
dt |min, PTD90} are the pressure biomarkers (Appendix C) that

are widely used, e.g., [18,26,27,37,38]). The formulation of the minimisation problems
in this study is based on relative least squares as selected biomarkers vary significantly
in magnitude; this would introduce an unintentional weighting of the terms otherwise.
Owing to the relationship between parameters and biomarkers, a fixed point approach
can be used to solve the problem with few iterations at low cost. The following choice of
updates proved to be most promising for our application:

Si+1
maxref

= Si
maxref

· Pclin
max

Psim,i
max

,

τi+1
SRref

= τi
SRref
·

dPsim,i

dt |max
dPclin

dt |max
,

τi+1
SD = τi

SD ·
dPsim,i

dt |min
dPclin

dt |min
,

ti+1
CR = ti

CR ·
PTDclin

90

PTDsim,i
90

.

(13)

http://www.opencarp.org
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If, additionally, a clinical cavity volume trace is available, the personalisation can be
extended to valve flow models (VFM) that describe the relationship between pressure and
flow across valves. In this case, the minimisation problem reads

min
pLFM,pVFM

 4

∑
j=1

(
Bclin,j

P − Bsim,j
P (pLFM)

Bclin,j
P

)2

+
nVFM

∑
k=1

(
Bclin,k

V − Bsim,k
V (pVFM)

Bclin,k
V

)2
 (14)

where pVFM are the parameters of the VFM and BV are related volume biomarkers. Owing
to the relationship between parameters and biomarkers, a fixed point approach can be used
again for solving the problem. In the simple case of a diode valve with forward resistance
Rf, the additional update is:

Ri+1
f = Ri

f ·
τclin

V

τsim,i
V

, (15)

where BV = τV is the time constant of either the ejection (decay time constant τVD) or the
filling phase (rise time constant τVR), see Appendix C.

A simulation with the current set of parameter values is performed in each iteration i
until the minimisation problem is considered to be converged, i.e., the cost function reached
a predefined threshold. Subsequently, traces of cellular active stress, [Ca2+]i, and fibre
stretch (λ =

√
f 0 · C f 0) are extracted for each node of the LV FE grid. These traces are

first aligned by the respective nodal electrical activation times and then used to generate
median traces S∗a(t), [Ca2+]∗i (t), and λ∗(t). Here, the median was chosen to be more robust
against outlier traces.

In this study, the Tanh model and both the aortic and mitral VFM were personalised.
These were integrated in the patient-specific 3D model of human LV EM (Section 2.2)
and the required pressure and volume biomarker values were obtained from available
patient-specific LV pressure and volume traces (Section 2.1). Initial guesses of the Tanh
model are given in Table A1 and the forward resistances of the VFMs were initialised with
0.01 mmHg mL s −1. One heart beat was simulated in each iteration and the threshold
value for convergence of the minimisation problem was set to 0.1.

2.3.2. Step 2: High-Fidelity Model Personalisation at the Cell Scale

In the second step, the median nodal traces are used to personalise the desired 0D
HFM at the cell scale. Biophysically detailed models of cellular active stress evolution are
functions of [Ca2+]i, the fibre stretch, and the fibre stretch rate. In theory, the personalisation
could be performed by using the cellular active stress trace as target and the [Ca2+]i trace,
the fibre stretch trace, and the time derivative of the fibre stretch trace as input. However,
the distribution of nodal fibre stretch in the myocardium at a given time point is very
heterogeneous, which causes large errors in the personalisation. An exemplary distribution
of nodal fibre stretch traces is shown in Figure 2. To overcome this issue, we suggest using
an 0D EM models that is able to simulate the stretch of the cardiomyocyte, λ, during the
cardiac cycle based on the equilibrium of active (Sa) and passive stress (Sp):

Sa([Ca2+]i, λ,
dλ

dt
, t) + Sp(λ, t) = 0 for t ∈ (0, T), (16)

with initial conditions
λ(0) = λ0. (17)
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Figure 2. Conceptual illustration of the two-step multi-fidelity approach for personalising biophys-
ically detailed active mechanics models. In the first step, the active mechanical behaviour in the
given 3D EM model is described by a low-fidelity model (LFM). This is personalised at the organ
scale by minimising the difference between simulated (sim) and clinical (clin) pressure biomarker
values (BP) that are obtained from an available clinical cavity pressure trace. Median traces of nodal
cellular active stress (S∗a), intracellular calcium concentration ([Ca2+]∗i ), and fibre stretch (λ∗) are
then obtained from the simulation that was produced by the personalised 3D EM models. These are
utilised to personalise the high-fidelity model (HFM) at the cell scale in the second step. To this end,
the HFM model is integrated in an 0D EM model that simulates the stretch of the cardiomyocyte
during the cardiac cycle based on the equilibrium of active and passive stress. The median trace of
nodal [Ca2+]i is used as input but [Ca2+]i can also be generated from a coupled model of [Ca2+]i
evolution that is integrated in the chosen cellular EP model. Personalisation is done by minimising
the difference between simulated (sim) and target (tar) biomarker values that are obtained from the
median traces of nodal cellular active stress (BS∗a ) and fibre stretch (Bλ∗ ). The parameters of the LFM
and the HFM are denoted by pLFM and pHFM, respectively. Please note that the fibre stretch in the
relaxed state is 1 per definition (Section 2.3.1 and Appendix A.3).

The cellular active stress evolution is described by the HFM and the equilibrium
equation can be solved in line with [46] to obtain the stretch trace and the stretch rate trace
as time derivative. Here, the initial stretch λ0 was set to the initial value of the median
nodal trace and for an accurate personalisation of the active mechanics model it was found
to be sufficient to match the minima λmin. To describe the cellular passive stress evolution,
we used the three-element model of Land et al. [39] (Appendix A.3). Then, the minimum
stretch can be controlled solely by the stiffness parameter ap. Please note that ap may be far
from physiological when interpreted in the context of single cell stiffness. This is because
fibre stretch traces produced at the organ scale are not only functions of local active and
passive stress but also of the existing boundary conditions (Section 2.2.2) and deformations
in the vicinity (Section 2.2.3). The only purpose of ap here is to produce a minimum stretch
in line with the median nodal trace.
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The personalisation can be performed by solving the following constrained minimisa-
tion problem:

min
pHFM,ap

nHFM

∑
j=1

wj
Sa

Btar,j
S∗a
− Bsim,j

Sa
(pHFM, ap)

Btar,j
S∗a

2

+ wλ

(
Btar

λ∗ − Bsim
λ (pHFM, ap)

Btar
λ∗

)2


s.t. pmin ≤ p ≤ pmax,

Sares = 0,

0 ≤ Sa(t),

dSa(t)
dt

∣∣∣
t>tSamax

≤ 0

(18)

where tSamax
= argmaxt∈[0,T] Sa(t), pHFM are the parameters of the HFM, BSa are appropri-

ate active stress biomarkers, and Bλ∗ = λmin is the stretch biomarker. The target biomarkers
are obtained from the corresponding median nodal traces. In contrast to the first step,
constraints are required since parameters p = {pHFM, ap} and the traces of cellular active
stress and stretch can easily become non-physiological. The minimum requirements for
the cellular active stress trace is that the resting stress is zero; that all stresses are equal
or above zero; and that the stress rate is not positive after the maximum stress has been
reached. If these requirements are met, no further constraints are required for the stretch
trace. Non-negative weights wj

Sa
and wλ were found to be helpful to control the impact of

certain terms in order to obtain a physiological outcome.
Instead of using the median trace of nodal [Ca2+]i as input for the HFM, the HFM

can also be coupled to a model of [Ca2+]i evolution that is integrated in the chosen cellular
EP model. This comes with the advantage that the model of [Ca2+]i evolution can be
included in the personalisation process. In this case, the constrained minimisation problem
is extended to:

min
pHFM,ap,pCEM

nHFM

∑
j=1

wj
Sa

Btar,j
S∗a
− Bsim,j

Sa
(pHFM, ap, pCEM)

Btar,j
S∗a

2

+ wλ

(
Btar

λ∗ − Bsim
λ (pHFM, ap, pCEM)

Btar
λ∗

)2
,

s.t. pmin ≤ p ≤ pmax,

Sares = 0,

0 ≤ Sa(t),

dSa(t)
dt

∣∣∣
t>tSamax

≤ 0,

120 ms ≤ CTD50 ≤ 420 ms,

220 ms ≤ CTD90 ≤ 785 ms,

(19)

where pCEM are the parameters of the [Ca2+]i evolution model. In this case, above men-
tioned constraints on the parameters p = {pHFM, pCEM, ap} and the cellular active stress
trace were extended by constraints on the [Ca2+]i trace. More specifically, CTD50 and a
CTD90—the [Ca2+]i transient durations at the time of 50% and 90% decay from the max-
imum, respectively, measured from the electrical activation time—were required to be
within the range given in [43,52]. 0D cell-scale simulations are computationally much
less expensive than 3D organ-scale simulations which reduced the computational cost
of the personalisation approach substantially. Further improvement of computational
efficiency can be achieved by reducing the number of model parameters by means of a
global sensitivity analysis (GSA), see Section 2.4.

In this study, the 0D model of cellular EM consisted of the Land models of cellu-
lar active stress (Appendix A.2) and passive stress evolution (Appendix A.3), and the
Rice model that describes the evolution of [Ca2+]i on a purely phenomenological basis



Mathematics 2022, 10, 823 11 of 35

(Appendix A.4). Both the Land model of cellular active stress evolution and the Rice model
were personalised and to this end, the following active stress biomarkers were used to set
up the minimisation problem: BSa = {Samax , dSa

dt |max, STD30, STD50, STD90} (Appendix C).
In addition to the stiffness parameter ap, the nine most influential parameters that

were identified by means of a GSA (see Section 2.4), were considered for estimation. Initial
guesses and constraints on the parameters are given in Tables A2–A5 and the weights were
wSa = 5, 1, 5, 1, 1 and wλ = 100.

The constrained minimisation problem was solved as series of unconstrained problems
by application of the penalty method (Appendix D). For solving, the population-based
differential evolution method was used. This is a meta-heuristic global optimisation
method [53] that was developed for multi-dimensional real-valued functions. Several
studies [54,55] have demonstrated fast convergence, robustness, and good performance
in real-world problems. As the gradient of the problem is not required, it can also be
used for noncontinuous problems. This is advantageous for our application since some
parameter value combinations within the admissible range may lead to failure of the
0D cell-scale simulation. The implementation of the differential evolution method was
based on lmfit: non-linear least-squares minimisation and curve-fitting for Python [56] with
default settings. In more detail, a Latin hypercube sampling was used to generate an initial
population of candidate solutions that was then iteratively modified using the best1bin
variant until convergence.

The two-step multi-fidelity approach is conceptually illustrated in Figure 2 and the
general algorithm is given in Algorithm 1.

Algorithm 1 Two-step multi-fidelity approach for personalising biophysically detailed
active mechanics models.

1: Initialise counter i = 0 and parameters of the low-fidelity model p0
LFM, see

Appendix A.1.
2: do
3: Solve 3D organ-scale model with low-fidelity model and parameters pi

LFM.
4: Compute error between simulated (Bsim

p ) and clinically measured (Bclin
p ) pressure

biomarkers.
5: Update parameter set using fixed point approach, see Equations (13) and (15), to

get pi+1
LFM.

6: Update counter i = i + 1.
7: while error > threshold

8: Generate median nodal traces of active stress (S∗a(t)), intracellular calcium concentration
([Ca2+]∗i (t)), and fibre stretch (λ∗(t)) from low-fidelity model results.

9: Compute target biomarkers for active stress (Btar
S∗a

) and fibre stretch (Btar
λ∗ ) from S∗a(t)

and λ∗(t),
respectively.

10: Initialise counter j = 0 and parameters of the high-fidelity model p0
HFM, see

Appendix A.2.
11: do
12: Solve low-cost 0D cell-scale model with high-fidelity model using pj

HFM and
[Ca2+]∗i (t).

13: Compute error between simulated (Bsim
Sa

, Bsim
λ ) and target (Btar

S∗a
, Btar

λ∗ ) biomarkers.

14: Update parameter set based on differential evolution method to get pj+1
HFM.

15: Update counter j = j + 1.
16: while error > threshold
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2.4. Global Sensitivity Analysis

The variance-based Sobol’ GSA [57,58] was used to identify the parameters that the
chosen active stress biomarkers are most sensitive to in the 0D EM model. In general,
when the model inputs are varied, it measures the sensitivity of the model outputs to each
model input by the fraction of variance attributed to each model input alone (first-order
sensitivity index S1) or by the fraction of variance attributed to each model input including
interactions with the other model inputs (total-effect sensitivity index ST). The Sobol’ GSA
is based on an all-at-a-time sampling strategy and the sensitivity indices range from 0 (no
sensitivity) to 1 (maximum sensitivity).

In this study, the Sobol’ GSA was performed to identify the nine parameters of the
Land and the Rice model (inputs) that the five active stress biomarkers (Section 2.3.2;
outputs) are most sensitive to in the 0D EM model. Saltelli’s sampling scheme [59] with
N = 1024 was applied to generate 45,506 parameter samples. Lower and upper bounds
of the parameters were in line with the parameter constraints in the second step of the
personalisation approach (Section 2.3.2). The simulations were performed with a cardiac
cycle length of 1000 ms and to produce stretch traces in line with those seen in the organ-
scale simulations, the initial stretch λ0 was set to 1.1 and the stiffness factor ap was set to
42 kPa leading to comparable minima.

Samples that produced non-physiological cellular active stress traces were excluded.
The exclusion criteria were adopted from the cellular active stress constraints in the second
step of the personalisation approach (Section 2.3.2) with the only difference that the resting
stress was allowed to take values up to 10% of Samax to increase the number of data
points for the analysis. Since the number of output and input values must be equal, the
biomarkers of the non-physiological traces were set to the means of the biomarkers of the
physiological traces.

Finally, the parameters were ranked by their sensitivity. To this end, the total-effect
sensitivity indices with respect to each biomarker were added. The implementation of the
GSA was based on SALib—Sensitivity Analysis Library in Python [60].

2.5. Robustness Analyses
2.5.1. Clinical Data Uncertainty

To quantify the robustness of the active mechanics personalisation approach against
uncertainties that clinical data are afflicted with, their effect on the estimated parameter
values and consequences for the simulated pressure and volume traces were analysed
(uncertainty propagation). First, samples of clinical biomarker values were generated that
evenly filled a range of ±10% around the measured values. Then, the samples were used
to perform the active mechanics personalisation.

2.5.2. Initial Guess Variation

To quantify the robustness of the active mechanics personalisation approach against
variation of initial guesses, their effects on the estimated parameter values, and conse-
quences for simulated pressure and volume traces were analysed. For this purpose, sam-
ples of initial guesses that evenly filled a range of ±50% around the default values were
generated. This was done for both steps.

The sampling was performed using Latin hypercube sampling implemented in SALib [60].
Owing to the marked computational costs involved, the robustness analyses were carried out
only for the case 02-CoA and a sample size of ten and five, respectively.

3. Results
3.1. Global Sensitivity Analysis

Figure 3 shows the sensitivity of the chosen active stress biomarkers to the parameters
of the Land and the Rice model in the 0D EM model. The comparison of first-order (S1) and
total-effect indices (ST) demonstrate that the influence of the parameters on the active stress
biomarkers was primarily caused by interactions among them. For the given admissible
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parameter ranges, the Land model parameters [Ca2+]50ref and nTRPN were most influential
across all biomarkers, followed by the Rice model parameters [Ca2+]res and [Ca2+]max.
This highlights the role of troponin C kinetics and the [Ca2+]i dynamics in the evolution of
cellular active stress. The role of the [Ca2+]i dynamics is further emphasised by the fact that
all parameter of the Rice model were among the nine most influential parameters: τCD was
ranked sixth and τCR was ranked eight. The list was completed by the Land parameters
β0, nTm, and kUW. These nine parameters were considered in the second step of the active
personalisation approach.

Figure 3. Global sensitivity of active stress biomarkers to parameters of the Land and the Rice model
in the 0D EM model. The Sobol global sensitivity analysis was performed and first-order (S1) and
total-order sensitivity indices (ST) are shown.

3.2. Patient Cohort Results

The active mechanics personalisation approach, as described in Section 2.3, was
applied to all N = 7 patient cases: 01-CoA–07-CoA. In the first step, LV pressure traces
were used to personalise the Tanh model and LV volume traces were used to include the
aortic and the mitral VFM in the personalisation process. This was done based on the 3D
model of human LV EM. For six out of seven cases, two to four iterations were needed for
convergence (Table 1). For case 04-CoA, the simulation aborted at the tenth iteration and
therefore, the results of the ninth iteration were taken. The convergence behaviour for this
particular case is shown in Figure A2. The estimated parameter values for all models are
given in Table A6.

Figure 4 compares simulated and clinical LV pressure–volume loops and the individual
LV pressure and volume traces. Moreover, Table 2 compares simulated and clinical values
of relevant pressure and volume biomarkers (Pmax, dP

dt |max, dP
dt |min, PTD90, SV). The

personalised models were able to reproduce the clinical pressure with good agreement.
The relative differences between the simulated and clinical values of Pmax and PTD90 had
means (standard deviations; SD) of 5.4% (SD: 3.4%) and 1.4% (SD: 2.2%), respectively.
For dP

dt |max and dP
dt |min, the mean relative differences were slightly larger with 13.6% (SD:

8.0%) and 7.7% (SD: 8.0%), respectively. The brief pressure drop after the first peak seen
in the clinical data are considered a measurement artefact. Except for case 04-CoA, the
personalised models were also able to reproduce the clinical volume with good agreement,
albeit the agreement in the systolic phase was better than in the diastolic phase. The mean
relative difference between the simulated and clinical SV was 10.0% (SD: 5.9%). However,
simulated end-diastolic volumes were substantially smaller than clinical end-diastolic
volumes. Except for case 04-CoA, the good agreement between simulated and clinical
pressure and volume translated into a good agreement in the pressure–volume relationship.
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Figure 4. Comparison of simulated and clinical left ventricular pressure and volume after personali-
sation. The blue/red lines represent the simulation data Sim1/Sim2 that were produced by the 3D
model of human left ventricular EM in the first/second step of the active mechanics personalisation
approach. The black dots represent clinical data (Clin). (a) Pressure–volume loops, (b) pressure traces,
and (c) volume traces are shown.

Median traces of nodal cellular active stress and fibre stretch obtained from the sim-
ulations of the personalised 3D models of human LV EM were then used as targets to
personalise the Land model and the Rice model in the second step. The personalisation
was done based on the 0D model of cellular EM and together with the stiffness parameter, a
total number of ten parameters were included in the fitting. The number of iterations until



Mathematics 2022, 10, 823 15 of 35

convergence was between 8561 and 20,766 (Table 1). The estimated parameters are given in
Table A7. Figure 5a compares the median nodal cellular active stress traces obtained in the
first step with the cellular active stress traces obtained in the second step. For all cases, the
maximum active stresses and transient durations at 30% decay from the maximum were in
line with each other. This is a consequence of the weighting in the cost function. In contrast,
the shapes in the plateau phase were slightly different and the resting value was achieved
later after personalisation in the second step. Figure 5b compares the [[Ca2+]i traces. Please
note that the median traces of nodal [Ca2+]i are not targets for the personalisation in the
second step. For all cases, the resting value after personalisation in the second step was
at the lower bound and the maximum value was at the upper bound. This allowed larger
transient durations of the cellular active stress traces. The stretch traces are not shown since
the only important information is whether the minimum could be matched. Minimum fibre
stretches of the median nodal traces ranged from 0.82 to 0.86 and matches were found for
all cases. To this end, the stiffness parameter ap of the Land model of cellular passive stress
evolution was fitted between 47.3 kPa and 86.5 kPa with a mean of 62.4 kPa (SD: 12.5 kPa).

Table 2. Simulated and clinical LV pressure and volume biomarker values for each patient case.
Clinical data are given in the first panel and results of the first and the second step of the active
mechanics personalisation approach are given in the second and third panel. The goodness of fit is
measured as relative difference between simulated and clinical value and given in brackets.

Pmax
dP
dt |max

dP
dt |min PTD90 SV

Patient Case (mmHg) (mmHg ms−1) (mmHg ms−1) (ms) (mL)

01-CoA
119 2.7 −2.9 309 100

115 (3.0%) 1.9 (30.9%) −2.2 (26.7%) 330 (6.7%) 90 (10.4%)
125 (5.1%) 2.8 (3.7%) −1.2 (59.4%) 316 (2.1%) 92.6 (7.4%)

02-CoA
105 1.3 −1.5 452 115

105 (<0.1%) 1.2 (5.3%) −1.5 (2.5%) 460 (1.9%) 123 (6.8%)
107 (1.5%) 1.5 (18.5%) −0.9 (39.8%) 446 (1.2%) 126 (8.6%)

03-CoA
121 1.9 −1.2 450 46

114 (5.7%) 1.7 (12.7%) −1.3 (5.4%) 448 (0.3%) 46 (0.1%)
112 (7.8%) 2.5 (28.7%) −1.2 (1.2%) 431 (4.1%) 44 (4.0%)

04-CoA
129 3.6 −3.1 290 68

126 (2.7%) 3.2 (12.0%) −3.1 (0.9%) 290 (<0.1%) 53 (20.9%)
126 (2.6%) 3.8 (5.7%) −1.3 (55.8%) 302 (4.1%) 52 (23.6%)

05-CoA
133 2.7 −2.3 309 92

120 (10.1%) 2.4 (13.8%) −2.5 (5.7%) 309 (0.2%) 81 (11.5%)
123 (7.4%) 3.4 (22.9%) −1.1 (54.1%) 310 (0.5%) 83 (10.1%)

06-CoA
152 3.2 −2.7 332 100

139 (8.7%) 2.7 (15.2%) −2.8 (6.3%) 332 (0.1%) 87 (12.5%)
142 (6.4%) 3.4 (6.8%) −1.2 (54.4%) 345 (4.1%) 83 (16.5%)

07-CoA
110 1.2 −1.2 412 55

101 (7.7%) 1.3 (5.2%) −1.2 (6.3%) 409 (0.6%) 60 (7.6%)
101 (7.5%) 2.1 (71.2%) −1.0 (14.7%) 394 (4.3%) 59 (7.5%)

Finally, the personalised models were incorporated in the 3D EM model to simulate
one heart beat and to compare pressure and volume traces. The simulated pressure–volume
loops and the individual pressure and volume traces were in good agreement with those
produced by the personalised models in the first step and consequently also with the clinical
data (Figure 4). The mean relative differences between the simulated and clinical values
of Pmax and PTD90 remained almost unchanged: 5.5% (SD: 2.3%) and 2.9% (SD: 1.5%),
respectively. For dP

dt |max and dP
dt |min, the mean relative differences increased 22.5% (SD:

21.8%) and 39.9% (SD: 21.3%), respectively. The mean relative difference between the
simulated and clinical SV also remained almost unchanged 11.1% (SD: 6.2%).
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Figure 5. Comparison of simulated cellular active stress and intracellular calcium concentration.
The blue lines represent the median nodal traces obtained from the simulations that were produced
by the 3D model of human left ventricular EM in the first step (Sim1). The red lines represent the
traces that were produced by the 0D model of cellular EM in the second step of the active mechanics
personalisation approach (Sim2). (a) Cellular active stress traces (solid line represents a target for
the personalisation), (b) intracellular calcium concentration traces (dashed line does not represent a
target for the personalisation).

3.3. Robustness Analyses
3.3.1. Clinical Data Uncertainty

The robustness against clinical data uncertainty was analysed for the case 02-CoA. For
this purpose, the active mechanics personalisation was performed based on ten samples of
clinical biomarker values that were within a range of ±10% around the measured values.
Tables 3–6 give the estimated parameter values, the resulting pressure and volume biomarker
values, and the respective differences relative to the original values for the first and the
second step. In the first step, the mean relative differences of the Tanh model parameter
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values were all below 8.0% and the mean relative differences of the VFM parameter values
were similar with 10.8% (SD: 8.1%) for RAVf and 5.0% (SD: 3.3%) for RMVf. The relative
differences of the resulting pressure and volume biomarker values were all below 6.5%. In
the second step, the mean relative difference for the Land parameters [Ca2+]50ref and β1 was
comparable to the mean relative difference for the Tanh parameters: 1.3% (SD: 3.3%) and 0.3%
(SD: 0.2%). For the Land model parameters kUW, nTRPN, nTm, the mean relative difference
was larger: 32.7% (SD: 40.4%), 27.0% (SD: 16.4%), 11.5% (SD: 12.4%). The mean relative
differences of the Rice parameter values and the stiffness parameter ap (results not shown)
were all below 5.4%. The relative differences of the resulting pressure and volume biomarker
values were below 7.0% except for dP

dt |max (10.5%; SD: 7.3%). The pressure–volume loops
and the individual pressure and volume traces are compared in Figure 6.

Table 3. Results of the clinical data uncertainty robustness analysis for the patient case 02-CoA.
Estimated model parameter values of the first step of the active mechanics personalisation approach
are given. The original values are listed in the first row and means (M), standard deviations (SD),
minima (Min), and maxima (Max) of ten samples are listed in the subsequent rows. Means, standard
deviations, minima, and maxima of the relative differences are given in brackets below.

Smaxref τSRref
τSD TCR RAVf RMVf

(kPa) (ms) (ms) (ms) (mmHg mL s−1) (mmHg mL s−1)

Original 103.2 30.1 48.8 529.3 0.0125 0.0794

Mean 103.4 30.7 48.3 524.9 0.0112 0.0795
(7.8%) (8.0%) (4.6%) (5.0%) (10.8%) (5.0%)

SD 9.4 2.6 2.7 30.3 0.0015 0.0048
(4.8%) (3.2%) (3.2%) (2.9%) (8.1%) (3.3%)

Min 88.9 26.5 43.7 478.9 0.0090 0.0728
(0.9%) (2.8%) (0.1%) (0.4%) (0.4%) (<0.1%)

Max 118.8 33.6 51.9 572.2 0.0138 0.0878
(15.1%) (13.9%) (10.4%) (9.5%) (23.0%) (10.6%)

Table 4. Results of the clinical data uncertainty robustness analysis for the patient case 02-CoA.
LV pressure and volume biomarker values of the first step of the active mechanics personalisation
approach are given. The original values are listed in the first row and means (M), standard deviations
(SD), minima (Min), and maxima (Max) of ten samples are listed in the subsequent rows. Means,
standard deviations, minima, and maxima of the relative differences are given in brackets below.

Pmax
dP
dt |max

dP
dt |min PTD90 SV

(mmHg) (mmHg ms−1) (mmHg ms−1) (ms) (mL)

Original 105 1.2 −1.5 460 123

Mean 105 1.2 −1.5 457 122
(3.6%) (6.5%) (4.7%) (5.4%) (4.3%)

SD 4 0.1 0.1 28 6
(2.2%) (3.4%) (2.5%) (2.9%) (2.8%)

Min 99 1.1 −1.6 416 112
(0.3%) (1.5%) (0.7%) (0.9%) (0.2%)

Max 112 1.3 −1.4 502 132
(6.5%) (12.0%) (9.2%) (9.6%) (9.2%)
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Table 5. Results of the clinical data uncertainty robustness analysis for the patient case 02-CoA. Esti-
mated model parameter values of the second step of the active mechanics personalisation approach
are given. The original values produced by the default initial guesses are listed in the first row and
means (M), standard deviations (SD), minima (Min), and maxima (Max) of ten samples are listed in
the subsequent rows. Means, standard deviations, minima, and maxima of the relative differences
are given in brackets below.

nTRPN β1 nTm [Ca2+]50ref kUW [Ca2+]res [Ca2+]max τCR τCD
(-) (-) (-) (µM) (ms−1) (µM) (µM) (ms) (ms)

Original 3.22 −1.21 5.47 0.501 0.046 0.076 0.900 164.4 149.0

Mean 3.60 −1.20 4.94 0.507 0.055 0.075 0.900 158.1 154.0
(27.0%) (0.3%) (11.5%) (1.3%) (32.7%) (1.6%) (<0.1%) (5.4%) (4.8%)

SD 0.94 <0.01 0.76 0.017 0.022 <0.001 <0.001 7.0 6.2
(16.4%) (0.2%) (12.4%) (3.3%) (40.4%) (0.4%) (<0.1%) (2.1%) (2.4%)

Min 2.42 −1.21 3.01 0.500 0.036 0.075 0.899 147.7 141.7
(9.1%) (0.0%) (1.8%) (0.1%) (1.1%) (0.8%) (<0.1%) (2.0%) (0.3%)

Max 5.00 −1.20 5.79 0.557 0.109 0.076 0.900 173.5 162.2
(55.1%) (0.5%) (44.9%) (11.2%) (138.8%) (2.0%) (0.1%) (10.2%) (8.8%)

Table 6. Results of the clinical data uncertainty robustness analysis for the patient case 02-CoA. LV
pressure and volume biomarker values of the second step of the active mechanics personalisation
approach are given. The original values produced by the default initial guesses are listed in the first
row and means (M), standard deviations (SD), minima (Min), and maxima (Max) of ten samples
are listed in the subsequent rows. Means, standard deviations, minima, and maxima of the relative
differences are given in brackets below.

Pmax
dP
dt |max

dP
dt |min PTD90 SV

(mmHg) [mmHg ms−1] (mmHg ms−1) (ms) (mL)

Original 107 1.5 −0.9 446 126

Mean 108 1.6 −1.0 442 124
(5.2%) (10.5%) (7.0%) (4.0%) (4.3%)

SD 6 0.2 0.1 20 6
(3.6%) (7.3%) (4.6%) (2.3%) (2.7%)

Min 100 1.3 −1.1 412 115
(0.2%) (0.5%) (1.2%) (0.2%) (0.2%)

Max 119 1.8 −0.8 473 135
(11.3%) (23.2%) (16.8%) (7.6%) (8.6%)

3.3.2. Initial Guess Variation

The robustness against variation of initial guesses was analysed for case 02-CoA.
Five samples of initial guesses within a range of ±50% around the default values were
used to perform the active mechanics personalisation. Tables 7–10 give the estimated
parameter values, the resulting pressure and volume biomarker values, and the respective
differences relative to the results produced by the default initial guesses for the first and
the second step.

In the first step, the mean relative differences for the Tanh model parameters Smaxref ,
τSD, TCR, and the VFM parameter RMVf were below 2.9%. For τSRref (10.9%; SD: 11.5%) and
in particular for RAVf (30.4%; SD: 28.5%), they were larger.

In the second step, the mean relative differences for the Land model parameters β1
and [Ca2+]50ref , for the Rice model parameters [Ca2+]res, [Ca2+]max, and for the stiffness
parameter ap (results not shown) were below 2.8%. For the remaining half of the parameter



Mathematics 2022, 10, 823 19 of 35

set, they were up to 59.3%. Large relative differences were mainly due to outliers in
individual samples which is also indicated by the corresponding large standard deviations
(up to 85.2%). The mean relative differences of the resulting pressure and volume biomarker
values were below 3.4% in the first step and below 12.8% in the second step.

Figure 6. Effect of clinical data uncertainty on simulated left ventricular pressure and volume in the two
steps of the active mechanics personalisation approach. The blue/red lines represent the simulation data
(Sim1, Sim2) that were produced by the 3D model of human left ventricular EM in the first/second step
of the active mechanics personalisation approach. The active mechanics personalisation was performed
based on ten samples of clinical biomarkers (±10% around the measured value) and the resulting
pressures and volumes (light colours) are compared to those that resulted from the personalisation based
on the measured values (bold colours). (a) Pressure–volume loops, (b) pressure traces, (c) volume traces.

Table 7. Results of the initial guess variation robustness analysis for the patient case 02-CoA. Esti-
mated model parameters of the first step of the active mechanics personalisation approach are given.
The original values produced by the default initial guesses are listed in the first row and means
(M), standard deviations (SD), minima (Min), and maxima (Max) of five samples are listed in the
subsequent rows. Means, standard deviations, minima, and maxima of the relative differences are
given in brackets below.

Smaxref τSRref τSD TCR RAVf RMVf
[kPa] [ms] [ms] [ms] [mmHg mL s−1] [mmHg mL s−1]

Original 103.2 30.1 48.8 529.3 0.0125 0.0794

Mean 102.3 27.6 48.0 517.6 0.0142 0.0817
(1.2%) (10.9%) (2.0%) (2.2%) (30.4%) (2.9%)

SD 1.4 3.7 0.9 2.3 0.0036 0.0001
(1.1%) (11.5%) (1.5%) (0.4%) (28.5%) (0.1%)

Min 100.4 20.7 46.9 514.1 0.0101 0.0815
(0.2%) (1.1%) (0.1%) (1.7%) (0.5%) (2.7%)

Max 104.0 31.2 49.2 520.2 0.0192 0.0817
(2.7%) (33.0%) (3.9%) (2.9%) (70.6%) (3.0%)
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Table 8. Results of the initial guess variation robustness analysis for the patient case 02-CoA. Pressure
and volume biomarker values of the first step of the active mechanics personalisation approach are
given. The original values produced by the default initial guesses are listed in the first row and means
(M), standard deviations (SD), minima (Min), and maxima (Max) of five samples are listed in the
subsequent rows. Means, standard deviations, minima, and maxima of the relative differences are
given in brackets below.

Pmax
dP
dt |max

dP
dt |min PTD90 SV

[mmHg] [mmHg ms−1] [mmHg ms−1] [ms] [mL]

Original 105 1.2 −1.5 460 123

Mean 106 1.2 −1.5 451 122
(1.0%) (3.4%) (3.1%) (1.9%) (1.4%)

SD 106 <0.1 <0.1 1 1
(0.5%) (3.6%) (2.6%) (0.3%) (0.6%)

Min 104 1.2 −1.6 449 121
(0.3%) (0.5%) (0.9%) (1.5%) (0.3%)

Max 107 1.3 −1.5 453 123
(1.6%) (10.4%) (8.1%) (2.4%) (1.9%)

Table 9. Results of the initial guess variation robustness analysis for the patient case 02-CoA. Esti-
mated model parameters of the second step of the active mechanics personalisation approach are
given. The original values produced by the default initial guesses are listed in the first row and means
(M), standard deviations (SD), minima (Min), and maxima (Max) of five samples are listed in the
subsequent rows. Means, standard deviations, minima, and maxima of the relative differences are
given in brackets below.

nTRPN β1 nTm [Ca2+]50ref kUW [Ca2+]res [Ca2+]max τCR τCD
[] [] [] [µM] [ms−1] [µM] [µM] [ms] [ms]

Original 3.22 −1.21 5.47 0.501 0.046 0.076 0.900 164.4 149.0

Mean 3.55 −1.21 4.35 0.512 0.071 0.075 0.900 142.4 151.5
(33.6%) (0.5%) (23.6%) (2.3%) (59.3%) (0.1%) (2.8%) (28.3%) (10.4%)

SD 1.21 <0.01 1.13 0.014 0.004 <0.001 <0.001 52.3 18.8
(19.4%) (0.3%) (17.2%) (2.8%) (85.2%) (0.6%) (0.1%) (19.7%) (7.4%)

Min 2.32 −1.22 3.00 0.500 0.042 0.075 0.897 77.2 123.3
(2.9%) (0.2%) (4.7%) (<0.1%) (1.1%) (0.2%) (<0.1%) (6.9%) (1.3%)

Max 4.99 −1.20 5.90 0.538 0.149 0.077 0.900 192.4 178.8
(54.8%) (1.1%) (45.1%) (7.4%) (226.9%) (2.0%) (0.3%) (53.1%) (20.0%)

Table 10. Results of the initial guess variation robustness analysis for the patient case 02-CoA.
Pressure and volume biomarker values of the second step of the active mechanics personalisation
approach are given. The original values produced by the default initial guesses are listed in the first
row and means (M), standard deviations (SD), minima (Min), and maxima (Max) of five samples
are listed in the subsequent rows. Means, standard deviations, minima, and maxima of the relative
differences are given in brackets below.

Pmax
dP
dt |max

dP
dt |min PTD90 SV

[mmHg] [mmHg ms−1] [mmHg ms−1] [ms] [mL]

Original 107 1.5 −0.9 446 126

Mean 112 1.7 −0.9 422 120
(6.6%) (12.8%) (5.5%) (9.7%) (10.7%)

SD 9 0.3 0.1 47 15
(7.4%) (15.6%) (3.3%) (6.6%) (6.5%)

Min 105 1.4 −1.0 351 100
(0.4%) (0.2%) (0.8%) (3.6%) (1.5%)

Max 127 2.1 −0.8 473 137
(19.4%) (41.6%) (9.5%) (21.3%) (20.6%)
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4. Discussion

This study describes a novel approach for the fully automated personalisation of
biophysically detailed active mechanics models in 3D EM models. Motivated by the aim
to keep the computational cost low, we suggest a two-step multi-fidelity solution based
on clinical cavity pressure data. Here, the purely phenomenological Tanh model [37,38]
was used as LFM and the biophysically detailed Land model [39] was used as HFM. The
personalisation approach was tested for seven patient cases with previously built 3D models
of human LV EM. These account for all cases in the CARDIOPROOF cohort presented
by Marx et al. [18] for which invasively measured LV pressure data were recorded. Since
volume traces were also available, the personalisation of the Tanh model in the first step
was extended to an aortic and a mitral VFM. The personalisation of the Land model in
the second step was extended to the Rice model [42] that represents [Ca2+]i evolution on
a purely phenomenological basis. This was done because information on [Ca2+]i traces
in vivo are missing but can have considerable influence on the parameter estimation in
biophysically detailed models as demonstrated in Tøndel et al. [61].

4.1. Computational Cost

For the six successfully converged patient cases, only two to four 3D organ-scale
simulations were required in the first step to personalise the Tanh model and the aortic
and a mitral VFM (Table 1). The Land and the Rice model were personalised based on
computationally much less expensive, single-core 0D cell-scale simulations. Here, we
achieved a reduction of computational costs by reducing the number of considered model
parameters to those that the cellular active stress trace is most sensitive to. To this end,
a GSA was performed which demonstrated that the active stress is most sensitive to
parameters related to the troponin C kinetics and [Ca2+]i dynamics (Figure 3). This is in
line with previous observations by Tøndel et al. [61]. Overall, ten parameters were included
in the fitting and the number of 0D cell-scale simulations was between 8561 and 20,766
(Table 1).

4.2. Goodness of Fit and Robustness

For the six successfully converged patient cases, the agreement between simulated and
clinical LV pressure and volume traces was good for both the personalised Tanh model and
the personalised Land model (Figure 4, Table 2). Substantial differences were only found
for end-diastolic volumes; this was to be expected because the 3D model of human LV EM
does not account for the atrial kick. This limitation could be addressed by coupling the
3D model of human LV or biventricular (biV) EM to a closed-loop lumped 0D model, see,
e.g., [11,12], which represents the function of the remaining chambers and the circulation.
However, this would require estimation of additional parameters of the closed-loop model
which is beyond the scope of this work.

Mirams et al. [13] highlighted the importance of considering uncertainty in real-world
data when calibrating models. In specific, observational uncertainty accounts for errors
in the measurement process and residual uncertainty describes intrinsic and extrinsic
variability in the biological system that is studied. We therefore tested the robustness of the
presented personalisation approach against clinical data uncertainty which was estimated
to be around ±10% of the measured values in line with previous work [18,20]. While
variations in the estimated parameter values and resulting biomarkers are to be expected,
these should ideally be not larger than the input data variation. Indeed, the mean differences
relative to the original values were below 8.0% for the Tanh model parameters, below 10.8%
for the VFM parameters (Table 3), and below 5.4% for the Rice model parameters and the
stiffness parameter ap. Mean relative differences of all but two Land model parameters
(Table 5) were below 11.5%. The maximum was 32.7%. Moreover, the consequences for
the pressure and volume biomarkers were small: mean differences relative to the original
values were below 6.5% in the first step (Table 4) and below 10.5% in the second step of the
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personalisation approach (Table 6, Figure 6). Overall, this demonstrates a high robustness
against clinical data uncertainty.

In addition, the robustness against variation of initial guesses (by ±50%) was tested. It
was found to be high in the first step. Except for the Tanh model parameter τSRref (10.9%) and
the VFM parameter RAVf (30.4%), the mean differences relative to the results produced by
the default initial guesses were below 2.9% (Table 7) and the consequences for the pressure
and volume biomarkers were small with mean differences below 3.8% (Table 8). The
robustness was found to be lower in the second step. For two Land model parameters (β1,
[Ca2+]50ref ), two Rice model parameters ([Ca2+]res, [Ca2+]max), and the stiffness parameter
ap, the mean relative differences were below 2.8%, but they were up to 59.3% for the
other parameters. However, large mean relative differences resulted mainly from outliers
(Table 9). The consequences for the pressure and volume biomarkers were larger with
mean differences up to 12.8% (Table 10). The robustness to initial value variation of the
second step may be improved by considering other variants of the differential evolution
method [53].

4.3. Comparison to Other Active Mechanics Personalisation Approaches

Kayvanpour et al. [23] presented an personalisation approach for an active mechanics
model that was integrated in 3D models of human biV EM. They used a purely phenomeno-
logical model published in Sermesant et al. [62] to describe the evolution of cellular active
stress. The parameter that controls the maximum was estimated together with a param-
eter of the passive stress based on clinical ejection fraction, stroke volume, end-diastolic
and end-systolic volume, and end-diastolic and end-systolic pressure. Asner et al. [24]
presented a personalisation approach for an active mechanics model that was integrated
in 3D models of human LV mechanics and the cellular active stress was multiplicatively
decomposed into a reference stress and a factor that accounts for stretch dependency. They
treated the reference stress as parameter, which they estimated for various time points in
the cardiac cycle based on clinical wall displacements and cavity pressures. In contrast
to the wall displacements, the cavity pressures were not measured but derived from an
empiric reference trace [63] that was adjusted based on estimates of the end-diastolic and
the maximum pressure, and the time points of mitral and aortic valve opening and closing.
Finsberg et al. [25] presented a personalisation approach for an active mechanics model
that was integrated in 3D models of human biV mechanics. They estimated the local
cellular active stress directly over time based on clinical cavity volumes and circumfer-
ential strains. Moreover, they presented an analogue for the active strain approach and
estimated the local cellular active strain over time instead. Marx et al. [18] presented a
personalisation approach similar to the first step of our approach. Integrated in the 3D
models of human LV EM that were also used in this study, they estimated the parameters of
the Tanh model [37,38] based on the corresponding clinical pressure biomarkers. However,
in contrast to our approach, they set the duration of the cellular active stress transient to be
the RT interval of an available clinical electrocardiogram because they were only interested
in the systolic phase.

The vital difference between our approach and the described previous works is that
it cannot only be used for purely phenomenological but also for biophysically detailed
models. To the best of the authors knowledge, only one other approach for that purpose has
been published. Longobardi et al. [27] applied BHM based on GPR models to personalise
an active mechanics model that was integrated in a 3D model of rat biV EM. The evolution
of cellular active stress was described by the biophysically detailed model published
in Land et al. [64]. While GPR models are even cheaper to solve than 0D models, the
generation of a sufficiently large training data set for highly accurate GPR models requires
a high number of 3D organ-scale simulations. This limits the efficiency as the number
of 3D organ-scale simulations predominantly determines the computational cost of the
personalisation approach. (Considering eight parameters), Longobardi et al. [27] reported
on 1024 simulations to generate training data for the GPR models being used in the first
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wave of BHM and at each successive wave, the GPR models were updated by training data
that is generated by another 256 simulations. In comparison, only between two and four
3D organ-scale simulations were required in the presented approach.

4.4. Limitations

While the results of this study are very promising to further the development of car-
diac digital twins, some limitations have to be considered. First, the clinical cavity pressure
data used for the personalisation approach can only be collected invasively which not
only entails considerable efforts but is also associated with certain risks for the patient.
Nevertheless, as was done previously for the LV [24], the required data could also be
derived by utilising an empiric reference pressure trace that is adjusted based on non-
invasive measurements [63]. For patient-specific adjustments, [63] used the time points
of aortic and mitral valve opening and closing determined by echocardiography and [24]
further used estimates of the end-diastolic [65,66], and the maximum pressure [67] based on
phase-contrast MRI and cuff pressure measurements, respectively. Second, the parameter
constraints were selected based on two studies [39,61] or were set to ±50% of the original
values. Constraining parameters in personalisation approaches is crucial and, therefore,
it is desirable to extend the database in the future. Third, the approach was tested for
a rather small cohort of seven patient cases and only for the active mechanics of the LV.
Kayvanpour et al. [23], Finsberg et al. [25], Longobardi et al. [27] applied their personalisa-
tion approach to the active mechanics of both ventricles and an extension of our approach
to multiple chambers could also be done straightforwardly. Yet, this work focuses on the
methodology of the novel multi-fidelity approach and tests for larger cohorts and more
chambers will be left to future studies. In this regard, machine learning techniques could be
employed to handle the challenges that arise in big data [68] and, hence, to further speed
up parameter calibration. Fourth, as data and results were used from a previous work by
Marx et al. [18], we also applied active stresses only in fibre direction. However, several
studies [69–71] have shown that active stresses in the cross-fibre direction can be as large
as 40% of those in fibre directions due to a dispersion of cardiomyocytes in tissue. This was
already considered in Finsberg et al. [25] and recently in a mechanistically more accurate
mechanical framework in Augustin et al. [11] and we see no obstacle in using other active
mechanical models for the presented approach. Fifth, the representation of cellular EP and
the [Ca2+]i evolution was simplified. There are numerous biophysically detailed models of
cellular EP and [Ca2+]i evolution available, e.g., [72], and if mechanistic detail is crucial
for the study purpose, the simplified models have to be substituted. Finally, although we
could show that the approach is widely robust to variations of initial guesses, we cannot
prove uniqueness of the estimated parameters. Further, we cannot provide a rigorous proof
that the fixed point approach given in Section 2.3.1 will always converge. In one case, we
also encountered parameter values that caused the 3D organ-scale simulation to fail. Here,
parameter constraints may improve the stability.

5. Conclusions

A novel approach for the fully automated personalisation of biophysically detailed
active mechanics models was presented. The great strength of this approach lies in its
efficiency with only a few 3D organ-scale simulations needed. Further, the application to
a cohort of seven patient cases demonstrated an accurate and robust estimation of model
parameters that resulted in good agreement of simulated and clinical LV pressure and
volume traces. This also holds true when uncertainty in the clinical data and variations of
initial guesses were taken into account. Thus, the presented workflow constitutes a further
step forward towards the personalised modelling of active mechanical behaviour in the
heart. As such, this approach is considered highly suitable for integration in workflows for
building digital twins of cardiac EM—from a single patient to an entire cohort.
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GSA global sensitivity analysis
GPR Gaussian process regression
HFM high-fidelity model
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Appendix A. Models of Cellular Mechanics and the Intracellular Calcium
Concentration Evolution

Appendix A.1. Tanh Model of Cellular Active Stress Evolution

The Tanh model [37,38] describes the evolution of cellular active stress as function of
fibre stretch and the electrical activation time:

Sa(ta, λ) =


0 if t ≤ ts(ta, temd)

Smaxref φ tanh2
(

t
τSR

)
tanh2

(
tCR−t

τSD

)
if ts(ta, temd) < t ≤ te

0 if t ≥ te.

(A1)

http://www.archer2.ac.uk/
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Here, Smaxref is the maximum isometric cellular active stress and

φ = tan
(
a6(λ− a7)

)
(A2)

is a nonlinear function that describes stretch effects on the generated active stress. The
coefficient a6 corresponds to the degree of the stretch dependency and the coefficient a7 is
the fibre stretch below which no active stress can be generated. Furthermore,

τSR = τSRref + a4(1− φ). (A3)

is the time constant of the contraction phase (rise time constant) that accounts for stretch
effects. The isometric value is τSRref and the coefficient a4 corresponds to the degree of the
stretch dependency. The time constant of the relaxation phase (decay time constant) is
denoted by τSR and tCR is the duration of the entire contraction–relaxation cycle (transient).
The contraction–relaxation cycle starts at ts and ends at te. The starting time is the electrical
activation time ta plus some electromechanical delay temd to account for the time lag
between electrical activation and the onset of contraction. The parameter values are given
in Table A1.

Table A1. Parameters of the Tanh model [37,38].

Parameter Unit Value

Saref (kPa) 100
τSR (ms) 40
τSD (ms) 110
tCR (ms) 550
a4 (ms) 500
a6 (-) 5
a7 (-) 0.7

temd (ms) 15

Appendix A.2. Land Model of Cellular Active Stress Evolution

The Land model [39] describes the evolutionn of cellular active stress as function of
[Ca2+]i and both the fibre stretch λ and the fibre stretch rate dλ

dt . It is composed of a model
of thin filament kinetics and a model of the cross bridge cycle. The model of thin filament
kinetics describes the interactions of Ca2+, troponin C, troponin I, and tropomyosin that
control the availability of myosin binding sites on actin. The dynamics of the interaction
between Ca2+ and troponin C is described by

dCaTRPN
dt

= kTRPN

(( [Ca2+]i
[Ca2+]50(λ)

)nTRPN
(1− CaTRPN)− CaTRPN

)
, (A4)

where CaTRPN is the fraction of regulatory troponin C sites with bound Ca2+, kTRPN
represents the unbinding rate of Ca2+ from troponin C, and nTRPN is the cooperativity of the
binding between Ca2+ and troponin C. The value of [Ca2+]i at which half of the maximum
active stress generated is denoted by [Ca2+]50. Stretch effects are phenomenologically
captured by

[Ca2+]50 = [Ca2+]50ref + β1(min(λ, 1.2)− 1), (A5)

where [Ca2+]50ref is the isometric value that is scaled by β1. The fraction of regulatory
troponin C sites with bound Ca2+ drives the unblocking of tropomyosin:

dB
dt

= kBCaTRPN
−nTm

2 U − kUCaTRPN
nTm

2 B, (A6)
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where B is the fraction of blocked myosin binding sites on actin,

kB =
kUCaTRPNnTm

1− rS − (1− rS)rW
(A7)

and kU are the troponin I and tropomyosin rate constants, respectively, nTm is the steady-
state relation between CaTRPN and the fraction of unblocked binding sites (1− B), and U
is the fraction of the unblocked myosin binding sites with no cross bridges formed.

The model of the cross bridge cycle accounts for three states: the unbound, the weak
(pre-powerstroke), and the strong (post-powerstroke) state. It reads

U = (1− B)− S−W,
dW
dt

= kUWU − kWUW − kWSW − γWUW,

dS
dt

= kWSW − kSUS− γSUS,

(A8)

where W and S are the weak, and the strong states, respectively, and kUW, kWU, kWS, kSU
and are transition rates. Latter are defined by

kWS = kUW
1

rW − 1
− kWS,

kSU = kWSrW
1

rS − 1
,

(A9)

with the steady-state ratios

rW = steady-state
W

U + W
,

rS = steady-state
S

U + W + S
.

(A10)

The distortion-depending unbinding rates of the cross bridges are

γWU = γW|ξW|,

γSU =


γS(−ξS − 1) if ξS + 1 < 0
γSξS if ξS + 1 > 1
0 otherwise,

(A11)

and these are coupled to a distortion-decay model given by

dξW

dt
= AW

dλ

dt
− cWξW,

dξS

dt
= AS

dλ

dt
− cSξS.

(A12)

Here, ξW and ξS are the stretch rate-dependent mean distortions and

AW = AS =
AeffrS

(1− rS)rW + rS
(A13)

are related to the magnitude of the instantaneous response to the distortion with some
scaling Aeff, whereas

cW = ΦkUW
U
W

,

cS = ΦkWS
W
S

(A14)
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are related to the magnitude of the decay rate of the distortion. The introduction of Φ
eliminates a parameter by reducing two parameters (cW, cS) to one.

Finally, the active stress is given by

Sa([Ca2+]i, λ,
dλ

dt
) = h(λ)

Smaxref

rs
[(ξS(

dλ

dt
) + 1)S + ξW(

dλ

dt
)W], (A15)

where Smaxref is the maximum isometric active stress and fibre stretch effects on the gener-
ated active stress are phenomenologically captured by

h = 1 + β0(λ + min(λ, 0.87)− 1.87), (A16)

where β0 represents the change in maximum active stress based on changes in filament
overlap. The parameter values are given in Table A2.

Table A2. Parameters of the Land model [39] (active).

Parameter Unit Value

kTRPN (ms−1) 0.1
nTRPN (-) 2

[Ca2+]50ref (µM) 0.805
kU (ms−1) 1

nTm (-) 5
TRPN50 () 0.35

kUW (ms−1) 0.182
kWS (ms−1) 0.012
rW (-) 0.5
rS (-) 0.25
γS (-) 0.0085
γW (-) 0.615
Φ (-) 2.23

Aeff (-) 25
β0 (-) 2.3
β1 (-) −2.4

Smaxref (kPa) 120

Appendix A.3. Land Model of Cellular Passive Stress Evolution

The Land model [39] describes the evolution of cellular passive stress by a three-
element model similar to a standard linear solid. It consists of an elastic spring (E1) in
parallel to another elastic spring (E2) in series with a viscous dashpot (V) and reads

Sp(λ) = SE1 + SE2 = SE1 + SV, (A17)

with the stress components

SE1 = ap(ebpC − 1), SE2 = apkpCS, (A18)

SV =

{
apηl

dCV
dt if dCV

dt > 0
apηS

dCV
dt if dCV

dt < 0
, (A19)

the series strain constraint
C = CS + CV, (A20)

and the series stress constraint
SE2 = SV. (A21)
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Strain C is defined as C = λ− 1 with stretch defined as the ratio of the current and
initial cardiomyocyte length. The stiffness parameter ap is included in all stress components,
such that it is suitable for scaling the passive stress. The parameter values are given in
Table A3.

Table A3. Parameters of the Land model [39] (passive).

Parameter Unit Value

ap (kPa) 2.1
bp (-) 9.1
kp (-) 7
ηl (ms−1) 200
ηS (ms−1) 20

Appendix A.4. Rice Model of the Intracellular Calcium Concentration Evolution

The Rice model [42] describes the evolution of [Ca2+]i as a function of the electrical
activation time by

[Ca2+]i(ta) =

[Ca2+]res if t ≤ ta
[Ca2+ ]max−[Ca2+ ]res

β exp
(
− t−ts

τCR

)
exp

(
− t−ts

τCD

)
+ [Ca2+]res if t > ta,

(A22)

with

β =

(
τCR

τCD

) −1(
τCR

τCD−1

)
−
(

τCR

τCD

) −1(
1− τCR

τCD

)
, (A23)

where [Ca2+]res and [Ca2+]max are the resting and the maximum [Ca2+]i, respectively, and
τCR and τCR are the time constants during the rise and the decay phase of the [Ca2+]i
transient, respectively. Starting time of the transient is the electrical activation time: ts = ta.
The model was calibrated based on an experimentally measured [Ca2+]i trace in human
cardiomyocytes [43]. To this end, the unconstrained minimisation problem

min
pRice

n

∑
j=1

(
[Ca2+]exp,j − [Ca2+]sim,j(pRice)

)2
, (A24)

was solved to estimate the parameters pRice. Here, j = 1, . . . , n are all data points of the
trace. Powell’s method implemented in the library lmfit: Non-linear least-squares minimisation
and curve-fitting Python library [56] was used. The estimated parameter values are given in
Table A4.

Table A4. Parameters of the Rice model [42].

Parameter Unit Value

[Ca2+]res (µM) 0.15
[Ca2+]max (µM) 0.6

τCR (ms) 129
τCD (ms) 128

Appendix B. Parameter Bounds

Physiological lower and upper bounds were applied to the parameters of the Land
model of cellular active and passive stress evolution and the Rice model. The bounds
for the parameters of the Land model of cellular active stress evolution were either set
according to Tøndel et al. [61] or according to Land et al. [39] or they were set to ±50%
of the original value if no information were available. The bounds for the Rice model
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parameters were set to ±50% of the original value in agreement with the [Ca2+]i traces of
the experimentally calibrated model cohort shown in Passini et al. [52]. The range of the
stiffness factor in the Land model of cellular passive stress evolution was set to be very
wide as this parameter has no physiological meaning in the context of the second step of
the active mechanics personalisation approach. All bounds are given in Table A5.

Table A5. Parameter bounds used in this study. Lower bounds are denoted by LB and upper bounds
are denoted by UB. If applicable, the source is given.

Parameter Unit LB UB Source

Land model (active)
kTRPN (ms−1) 0.05 0.4 [61]
nTRPN (-) 1 5 [61]
[Ca2+]50ref (µM) 0.5 2.0 [61]
ku (ms−1) 0.01 2.00 [39]
nTm (-) 3 7 [39]
TRPN50 (-) 0.3 0.5 [61]
kUW (ms−1) 0.026 0.312 [39]
kWS (ms−1) 0.004 0.048 [39]
rW (-) 0.25 0.75 [39]
rS (-) 0.10 0.25 [39]
γS (-) 0.005 0.020 [39]
γW (-) 0.05 3.00 [39]
Φ (-) 0.1 4.0 [39]
Aeff (-) 12.5 37.5
β0 (-) 1.15 4.60
β1 (-) −3.6 −1.2
Smaxref (kPa) 90 140 [61]
Land model (passive)
ap (kPa) 1 100
Rice model
[Ca2+]res (µM) 0.075 0.225
[Ca2+]max (µM) 0.3 0.9
τCR (ms) 64.5 192.5
τCD (ms) 64 192

Appendix C. Biomarker Definitions

The definitions of the biomarkers used in this study are illustrated in Figure A1.
Based on the cavity pressure trace, the pressure biomarkers are defined as:

Pmax = max P(t),
dP
dt
|max = max

t<t2

dP
dt

,

dP
dt
|min = min

t>t2

dP
dt

,

PTD90 = t3 − t1.

(A25)

Here, Pmax is the maximum, dP
dt |max and dP

dt |min are the maximum and minimum rates,
and PTD90 is the transient duration at 90% decay from the maximum, measured between
the time points at 10% of the amplitude.
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Figure A1. Biomarker definition and critical time points. (a) Pressure biomarkers, (b) volume
biomarkers, and (c) active stress biomarkers.

Based on the cavity volume trace, the volume biomarkers are defined as:

SV = max V(t)−min V(t),

τVD = − 1
sVD

,

τVR = − 1
sVR

.

(A26)

Here, SV is the stroke volume, τVD is the decay time constant during the ejection
phase, and τVR is the rise time constants for the filling phase until the beginning of the
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atrial kick, which is defined to be the time point at 80% volume recovery, in line with [73].
The slope sVD is computed by an ordinary linear regression of

ln
(

V(t)−min V(t)
SV

)
(A27)

against t from t4 to t5 and the slope sVR is computed by an ordinary linear regression of

ln
(

1− V(t)−min V(t)
V(t7)−min V(t)

)
(A28)

against t from t6 to t7.
Based on the cellular active stress trace, the active stress biomarkers are defined as:

Samax = max Sa(t),
dSa

dt
|max = max

t<t10

dSa

dt
,

STD30 = t8 − t12,

STD50 = t9 − t13,

STD90 = t10 − t14.

(A29)

Here, Samax is the maximum, dSa
dt |max is the maximum rate, and STD30, STD50 and

STD90 are the transient durations at 30%, 50%, and 90% decay from the maximum, mea-
sured between the time points at 70%, 50%, and 10% of the amplitude.

Appendix D. Penalty Formulation of the Constrained Minimisation Problem in the
Second Step of the Active Mechanics Personalisation Approach

The constrained minimisation problem Equation (19) was solved as a series of uncon-
strained problems by application of the penalty method:

min
pHFM,ap,pCEM

nHFM

∑
j=1

wj
Sa

Btar,j
S∗a
− Bsim,j

Sa
(pHFM, ap, pCEM)

Btar,j
S∗a

2

+

wλ

(
Btar

λ∗ − Bsim
λ (pHFM, ap, pCEM)

Btar
λ∗

)2
+ pen.

(A30)

where the penalty term reads as follows:

pen =S2
ares+∫ T

0

[
min(0, Sa(t))

]2
dt+∫ T

tSamax

[
max

(
0,

dSa(t)
dt

)]2
dt+

[min(0, CTD50 − 120)]2 + max(0, CTD50 − 120)]2+

[min(0, CTD90 − 220)]2 + max(0, CTD90 − 785)]2.

(A31)

Since the differential evolution method was used for solving, the parameter constraints
were enforced by limiting the populations of candidate solutions to the admissible ranges.

Appendix E. Estimated Parameter Values of the Personalised Models

The values of the Tanh model parameters and the values of the VFM parameters
that were estimated in the first step are given in Table A6. The values of the Land model
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parameters and the Rice model parameters that were estimated in the second step are given
in Table A7.

Table A6. Estimated parameter values of the personalised Tanh model and the personalised valve
flow models for each patient case.

Smaxref τSRref τSD TCR RAVf RMVfPatient Case (kPa) (ms) (ms) (ms) (mmHg mL s−1) (mmHg mL s−1)

01-CoA 108.4 20.5 36.5 376.4 0.0068 0.0444
02-CoA 103.2 30.1 48.8 529.3 0.0125 0.0794
03-CoA 182.3 7.0 77.5 514.8 0.0028 0.0562
04-CoA 220.4 0.89 35.0 330.0 0.0001 0.0646
05-CoA 145.2 12.5 39.2 352.4 0.0040 0.0472
06-CoA 172.1 6.1 40.3 376.0 0.0026 0.0324
07-CoA 146.8 26.1 64.9 475.5 0.0069 0.0593

Table A7. Estimated parameter values of the personalised Land model and the personalised Rice
model for each patient case.

nTRPN β1 nTm [Ca2+]50ref kUW [Ca2+]res [Ca2+]max τCR τCDPatient Case (-) (-) (-) (µM) (ms−1) (µM) (µM) (ms) (ms)

01-CoA 3.88 −1.20 3.01 0.615 0.147 0.076 0.895 105.6 120.0
02-CoA 3.22 −1.21 5.47 0.501 0.046 0.076 0.900 164.4 149.0
03-CoA 4.99 −1.20 6.02 0.500 0.250 0.075 0.900 162.9 152.8
04-CoA 5.00 −1.20 5.68 0.500 0.031 0.075 0.899 140.4 67.6
05-CoA 4.82 −1.24 3.00 0.505 0.031 0.082 0.898 103.6 93.4
06-CoA 4.99 −1.20 3.48 0.511 0.029 0.076 0.899 113.8 114.5
07-CoA 4.98 −1.20 4.12 0.500 0.097 0.076 0.899 139.4 142.6

Appendix F. Convergence Behaviour for Patient Case 04-CoA in the First Step

Figure A2 illustrates the convergence behaviour in the first step of the personali-
sation approach for patient case 04-CoA. It shows that parameter values and cost both
converge, however, after the ninth iteration, the required convergence threshold is still not
reached. Ultimately, the updated set of parameter values after the ninth iteration caused
the simulation to fail.

Figure A2. Convergence behaviour of the parameter value and the cost. For each iteration, the
parameter values relative to their respective maxima (left y-axis; solid coloured lines) and the cost
(right y-axis; solid black line) are plotted. In addition, the convergence threshold (0.1, dotted black
line) is given.
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