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Low-dimensional materials exhibit many exceptional properties and functional-
ities which can be efficiently tuned by externally applied force or fields. Here we
review the current status of research on tuning the electronic and magnetic prop-
erties of low-dimensional carbon, boron nitride, metal-dichalcogenides, phos-
phorene nanomaterials by applied engineering strain, external electric field and
interaction with substrates, etc, with particular focus on the progress of computa-
tional methods and studies. We highlight the similarities and differences of the
property modulation among one- and two-dimensional nanomaterials. Recent
breakthroughs in experimental demonstration of the tunable functionalities in
typical nanostructures are also presented. Finally, prospective and challenges for
applying the tunable properties into functional devices are discussed. © 2016 The
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INTRODUCTION

The past two decades have seen a bloom of
research activities in nanoscience and a rapid

development in delivering the potential of nanotech-
nology into diverse applications.1 The major driving
force for these activities and development is that nan-
oscale materials can offer novel electronic, magnetic,
optical, mechanical, and chemical properties, which
lead to distinguished performance in many techno-
logical fields, such as mechanic engineering, electron-
ics, information, and energy technologies. The most
intriguing behavior of nanomaterials is that their
intrinsic properties are amenable to efficient

modulation by applying various physical fields, in
contrast to macroscopic systems.

In continuum, the functionality predominantly
relies on the materials’ bulk properties and thus only
a small number of materials have useful responses to
applied physical fields. As the materials and devices
scale down to nanoscale, the timescale can be down
to nanosecond (10−9 s), pico-second (10−12 s), and
even femto-second (10−15 s). Accordingly, the energy
scale changes from Joule (N∙m) in macroscopic sys-
tems to 10−18 Joule (nN∙nm, aJ) in nanosystems,
which approaches the level of electron-volt (eV),
namely the characteristic energy scale of local fields
constituted by charge, molecular orbits, electron
spins, and structures. Therefore, the physical fields
(e.g., strain, electric and magnetic fields and sub-
strates) applied to nanomaterials is prone to a strong
coupling with the local fields and thereby remarkably
changes the properties of systems, as shown in
Figure 1(a). At nanoscale, the coupling between local
and external fields can be remarkable even in materi-
als that are featureless in their bulk counterparts,2

*Correspondence to: wlguo@nuaa.edu.cn

State Key Laboratory of Mechanics and Control for Mechanical
Structures and Key Laboratory for Intelligent Nano Materials and
Devices (MOE), Nanjing University of Aeronautics and Astronau-
tics, Nanjing, China

Conflict of interest: The authors have declared no conflicts of inter-
est for this article.

324 Volume 6, July/August 2016
© 2016 The Authors. WIREs Computational Molecular Science published by John Wiley & Sons, Ltd.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in
any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.



hatching out a series of tunable properties and func-
tionalities and offering a wealth of opportunities for
the development of nanoscience and the innovation
in nanotechnology.

In terms of dimensionality, nanomaterials can
exist in forms of zero-dimensional (0D) nanoclusters
and nanoparticles, one-dimensional (1D) nanowires,
nanotubes and nanoribbons, two-dimensional
(2D) atomic crystals and nanofilms and 3D super-
structures made of nanoscale components. In particu-
lar, the 1D and 2D nanomaterials, termed as
low-dimensional materials, are the ideal systems for
studying the peculiar nanoscale effects, which are of
benefit not only for understanding fundamental phe-
nomena under these dimensionalities but also for
developing functional nanodevices with high perfor-
mance. The 2D materials, represented by semi-
metallic graphene, insulating hexagonal boron nitride
(h-BN) and semiconducting transition metal dichal-
cogenides MX2 family (M = Mo, W; X = S, Se), have
attracted most research attentions during the past
decade. Graphene, a single-layer of graphite, pos-
sesses a number of extraordinary properties owing to
its Dirac-like band dispersion at the Fermi level,
but it has no bandgap to enable logic operation.3

The h-BN monolayer, isostructural to graphene, is
electrically insulating owing to the lack of inversion
symmetry.4 Differently, the semiconducting 2D MX2

has metal-ligand bonding and a three-atom thickness,
with the M atoms sandwiched between layers of X
ligands. A notable technological advantage of these
2D materials is that they can be wrapped into cylin-
drical nanotubes and tailored into nanoribbons
(Figure 2(a)). Quantum confinement effects enrich
the nanotubes and nanoribbons with even more

fascinating functionalities and promise enhanced effi-
ciency for electronic devices. Tuning the electronic and
magnetic properties of these low-dimensional systems is
always the object of extensive research, as tunable
properties are highly desirable to allow great flexibility
in design and optimization of functional devices. In this
review, we focus on the mechano-electro-magnetic cou-
pling effect and discuss the influence of strain, external
electric fields and substrates on the electronic and mag-
netic properties of these materials (Figure 1(b)).

Since low-dimensional materials are structurally
flexible and easy to deform, strain proves to be effec-
tive to tune their properties. In nanomaterials, strain
not only changes atomic configurations, but also
modifies the overlap of electron orbitals, charge dis-
tribution and bonding strength, providing a fertile
ground for hatching novel properties. This behavior
contrasts that of bulk materials where strain is
related mostly simply to mechanical deformation.
Nevertheless, the nanoscale strain effects differ from
material to material and from 1D to 2D, and we are
still in the dark about a universal mechanism for
these effects in low-dimensional materials. Moreover,
applied strain could also interplay with other physi-
cal quantities, such as electron spins in magnetic
materials and electric polarization in polar materials,
resulting in unusual piezomagnetic and piezoelectric
effects. Achieving high efficiency and sensitivity for
these effects is always pursued in related fields and
calls for a development of current theoretical views.

Applying electric field is another common way
toward achieving tunable properties. This is particu-
larly suitable for low-dimensional materials since
strong electric fields (e.g. from gates or interfaces)
with strength in order of V/nm are prevalent in
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FIGURE 1 | (a) Coupling between local and external fields (F-force, E-electric field, M-magnetic field, O-optical, T-thermal) at nanoscale.
(b) Tunable properties of typical low-dimensional materials, graphene, h-BN and MoS2 by mechano-electro-magnetic coupling.

WIREs Computational Molecular Science Tunable electronic and magnetic properties of two-dimensional materials

Volume 6, Ju ly /August 2016 © 2016 The Authors. WIREs Computational Molecular Science published by John Wiley & Sons, Ltd. 325



nanosystems. The electric field, either applied or
built-in, can shift and split the energy levels of
nanostructures, which, in turn, sensitively tunes the
electronic structures. Also, external electric fields
could drive charge transfer to electrically polarize
the materials. In magnetic nanomaterials, the charge
transfer alters the local spin population so as to
modulate the magnetism of system. Moreover, the
field-induced polarization can also couple to lattice
structures, deforming the chemical bonds to induce
electrostrictive effect. The progress on the electric
field effects applies especially to theory-oriented
works, while experimental research is still lingering
behind. The major reason is that the involved electric
field strength is too strong. Moreover, a great chal-
lenge remains in efficiently applying the fields to a
target nanostructure. These issues stimulate further
study of new principles and paradigms that are
more feasible for achieving electric-field-tunable
properties.

Strain and electric field effects in low-
dimensional materials form the basis of mechano-
electro-magnetic coupling at nanoscale. These effects
enable precise control of material properties that is

ideally suited for designing on-demand devices. While
many exotic properties can stem from this nanoscale
multiple-field coupling, they may be influenced by
substrates or metal contacts that are unavoidable for
device fabrication. Thus, fully understanding the
impact of substrates on the material properties is also
of central importance. The mechano-electro-magnetic
coupling and substrate effects are essential for realiz-
ing functionality-oriented nanodevices. Toward this
goal, experimentalists and theorists are required to
make concerted efforts. Especially, for the sake of
materializing many theoretically proposed concepts,
it is important to improve the production and fabri-
cation techniques that enable the realization of nano-
materials with atomic precision. In this contribution,
we present a comprehensive state-of-the-art review
on the tunable electronic and magnetic properties of
low-dimensional materials and thoroughly summa-
rize valuable achievements with respect to promising
functionality modulation, novel device concepts, and
prospective applications. We focus on 2D graphene
and h-BN sheet and their 1D derivatives. Other
newly emerged 2D materials, such as MX2, phos-
phorene and MXenes will be accounted as well.
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FIGURE 2 | Graphene nanostructures. (a) Atomic structures of graphene, which can be tailored into 1D nanoribbons and rolled into 1D
nanotubes. (b) Schematic illustration of opening a bandgap in graphene, by tailoring into nanoribbons, breaking sublattice symmetry and chemical
functionalization.
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GRAPHENE NANOSTRCUTURES

Graphene

Single-Layer Graphene
Graphene exhibits many excellent properties, such as
high electron mobility and long coherence length,
due to a linear, Dirac-like energy dispersion near the
Fermi level (Figure 2(b), left).5 The charge carriers in
graphene behave as massless Dirac fermions that can
be sensitively modulated by electric, magnetic and
strain fields. A major obstacle for graphene-based
electronics is the inability to electrostatically confine
electrons in graphene, which is semimetallic without
a bandgap.3 There are primarily three ways toward
opening a bandgap in graphene (Figure 2(b)). The
first way is to tailor graphene into graphene nanorib-
bons (GNRs).6,7 A bandgap induced by quantum
confinement effect can be opened in GNRs, whose
edges can be further functionalized and shaped in
various ways to achieve colorful properties,8 as will
be reviewed later; yet an efficient bandgap that suf-
fices to allow logic operation at room temperature
requires the ribbon width to be less than 10 nm9 and
the edges to be atomically smooth, which impose sig-
nificant challenge on the fabrication. The second way
is to form functionalized pattern in graphene by che-
misorbing atomic species or forming antidot lat-
tices.10,11 The bandgap opened in this way can be up
to 3 eV but the electronic mobility of graphene is
sacrificed to a large extent by unintended localized
electronic states. The third way is to break the sym-
metry between two sublattices by putting graphene
onto a solid substrate12 or applying electric fields to
bilayer graphene.13,14 Electrically gated bilayer
graphene allows a good trade-off between the high
carrier mobility and acceptable bandgap and also
benefits from being compatible with traditional
device architectures.

Gap opening in graphene is also amenable to
applied magnetic fields, under which the Dirac fer-
mions undergo an energy quantization,3,15 mani-
fested as a series of quantized Landau levels that can
be expressed as

Ei = vF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eℏBjij

p

where vF is the Fermi velocity of graphene, B is the
magnetic field strength and i is the index of the Lan-
dau levels. According to this expression, a vertical
magnetic field of 45 T can open an energy gap of
approximately 0.2 eV, which has been experimen-
tally measured.16 The magnetic-field-induced unusual
quantum phenomena in graphene, such as the

relativistic quantum Hall effect and electron correla-
tion effects, have been thoroughly discussed in a
recent review.17 Of more interest is that the effect of
vertical magnetic fields on the electronic properties of
graphene can be mimicked by a distributed strain,
which induces a pseudomagnetic field. Being
designed to smoothly vary on the atomic scale, the
strain deforms the Brillouin zone and shifts the Dirac
cones away from the zone vertices (similar effect
exists in carbon nanotubes (CNTs), as discussed
later), resembling the effect of magnetic field induced
on the charge carriers in graphene. Analytically, a 2D
strain field leads to gauge-field vector potential A,
which yields a pseudomagnetic field as B = ∂Ay/∂x −
∂Ax/∂y, where A is expressed as a tensor of strain
gradient. Recent theories predicted a pseudomagnetic
field of 10 T in graphene strained with triangular
symmetry18 and of 160 T in twisted GNRs hundreds
of nanometers wide.19 It has been experimentally
reported that highly strained nanobubbles in graph-
ene can induce a pseudomagnetic field greater than
300 T.20 However, unlike a real magnetic field, the
pseudomagnetic field does not break the time reversal
symmetry in graphene since the strain-induced
gauge-field vector potential always has opposite sign
at the two graphene valleys (at K1 and K2 of the Bril-
louin zone).

In contrast to the effect of nonuniform strain,
graphene can persist with its semi-metallic nature
under a uniform isotropic strain up to 25%21 or under
a uniform shear strain up to 10%,22 as these uniform
strains cannot break the graphene inversion symmetry.
Yet, uniaxial strain can bring evident anisotropy to
the Fermi velocity of graphene, and, meanwhile, sub-
stantially increases the work function of graphene due
to the raised vacuum level.

Bilayer Graphene
Bilayer graphene is special in that it can open a band-
gap under applied vertical electric fields.23 The
electrically tunable bandgap only exists in Bernal
(AB)-stacked bilayer graphene, rendering the con-
trolled synthesis of high-quality bilayer graphene
highly appealing.24 In an electrically gated bilayer
graphene, the measured carrier mobility reaches
approximately 1000 cm2 V−1 s−1 and the opened
bandgap is up to 0.25 eV25 (Figure 3(a) and (b)).
The electronic properties of bilayer graphene are very
sensitive to interlayer coupling. Guo et al. reported
by ab initio calculations surprisingly high sensitivity
of the field-induced bandgap of bilayer graphene to
the change in interlayer spacing (Figure 3(c) and
(d))26: a 10% compression of the spacing enhances
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the field-induced bandgap by 80% under a moderate
field strength, suggesting that the electric-field-
induced asymmetry in bilayer graphene can
be enhanced by nanomechanical modulation. When
epitaxially grown on a substrate, as in most device
applications, bilayer graphene exhibits new behaviors
due to interactions with substrate. The bottom
layer chemically interacts with the substrate by hybri-
dizing its π state with dangling bonds of the
substrate,13,27,28 whereas the top layer is usually n-
doped due to charge transfer from the bottom layer
and substrate. Structural defects or interlayer interac-
tion with the bottom layer can open a small bandgap
at the Dirac point of the top layer.13 Further, apply-
ing bias voltage to bilayer graphene on C-terminated
SiC substrate could induce a n-to-p-type transition,
and vertical compression leads to an increase of the
bandgap of the top layer.29

GNRs
GNR, a strip of graphene of nanometers in width
(Figure 2(a)), exhibits richer properties and behaviors
because of its edge states and width effects . GNRs
with armchair edges (AGNRs) are semiconducting,
mainly attributed to quantum confinement effect;
GNRs with zigzag edges (ZGNRs) show magnetic
edges states, which induce a staggered sublattice
potential on the hexagonal lattice and result in a
bandgap near the Fermi level.7 The peculiar edge
magnetism of ZGNRs has been experimentally
confirmed, evidenced by a sharp change in the width-
dependent bandgap in ZGNRs settled on a Cu sub-
strate.30 In reality, the edges of GNRs often show
roughness, with many atomic steps protruded out of
the edges.31 Electronic and magnetic properties of the
GNRs with periodic protruded edges are shown to
depend on the length of the protruded step and step-
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FIGURE 3 | Electrically tunable bandgap in bilayer graphene. (a) Schematic illustration of a side view of the electrically gated bilayer
graphene. (b) Bandgap opened in graphene bilayer as a function of effective field strength. Theoretical results from self-consistent TB and ab initio
methods are compared with experiments. (Reprinted with permission from Ref 25 Copyright 2009 Nature). (c) Bandgap as function of the field
strength at different interlayer spacings d. The gray line on the left side of the curves indicates a universal linear scaling of the gap at low fields
(below 0.3 V/nm) with a slope of 0.294 eV per V/nm for d ≤ 0.4 nm. (d) Bandgap as a function of d at different electric fields. The shaded/clear
regions on the left/right side correspond to compression/expansion of the spacing d from the equilibrium 0.334 nm. The inset in (d) shows the
variation of interlayer force. (Reprinted with permission from Ref 26 Copyright 2008 American Institute of Physics).
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to-step distance along the ribbon edge.32 With a
small step length, the GNR evolves from a nonmag-
netic semiconductor, via metal, to a magnetic
semiconductor with increasing inter-step distance.
Electronic transport study of GNRs with edge irregu-
larity showed that the edge roughness increases the
minimal leakage current due to the localized states
induced in the bandgap and decreases the on current
due to smaller quantum transmission,33 from which,
however, a transistor switching behavior is survived.

Tunable Magnetism in GNRs
Tuning the electronic and magnetic properties of
GNRs is of special interest from both fundamental
and technological perspectives. The ZGNRs have
been intensively studied in this aspect. Applying
transverse electric field (Figure 4(a)) or decorating the
edges with different chemical groups is predicted to

make half-metal from ZGNRs.34,37,38 Still, there is no
experimental support to the half-metallic ZGNRs. The
major issues contain: (1) the magnetic state in ZGNRs
is very sensitive to edge quality and termination; (2) the
magnetism is relatively weak and easy to be quenched
by thermal activation; (3) it is challenging to effectively
apply a strong electric field required for the half-metal
to a target ZGNR. Very recently, Yu et al. proposed a
new paradigm (Figure 4(b)) that can realize the half-
metal in ZGNRs by applying bias voltages. They sand-
wiched a ZGNR between two h-BN nanoribbons
(BNNRs); then applied bias voltage or vertical com-
pression can tune the system into half-metal,35 due to
increased electric polarization by the h-BN layers which
enhances the exchange potential across the GNRs.

The semiconductor to half-metal transition can
also be induced in bilayer GNRs. Guo et al. found
that a bilayer ZGNR with antiferromagnetic coupling
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between the opposite edges can be tuned into half-
metal by applying transverse electric field or strain.39

The bandgap of a bilayer ZGNR decreases with
decreasing interlayer spacing until it is closed. To pro-
mote applications, Zhang et al. placed the bilayer
ZGNR on silicon substrate and found tunable magne-
toelectric effect (Figure 4(c)).36 They showed that an
applied bias voltage drives charge transfer between the
nanoribbons and substrate, which controls the
exchange splitting of magnetic edge states and hence
the edge magnetic moment. In particular, the bias
induced n-to-p-type transition in the top ribbon layer
can switch the magnetoelectric coefficient from nega-
tive to positive. For a monolayer ZGNR adsorbed on
Si(001) substrate, the edge magnetism completely dis-
appears due to the formed Si–C bonds at ribbon
edges40; yet the ZGNR can be semiconducting or
metallic depending on the ribbon width and adsorp-
tion orientation. These findings pave the way for fabri-
cating graphene-based electronic and spintronic
devices by integrating with existing silicon technology.

Strain Effect in GNRs
The electronic structure of GNRs is tunable by strain.
Theoretical studies showed that the electronic proper-
ties of ZGNRs are insensitive to uniaxial strain, while
the bandgap of AGNRs changes in a zigzag pattern
with uniaxial strain.41,42 This stands in stark contrast
to graphene, whose semimetallic nature can persist at a
uniaxial strain up to 25%.21 In addition, twisting
AGNRs can also couple the conduction and valence
bands and linearly modulate the bandgap, with the
slope of gap versus twist angle depending on the ribbon
width.43 Moreover, in suspended GNRs, twisting cou-
ples with axial tensional strain and therefore leads to
larger modulation of bandgap that manifests as a non-
linear function of twist angle.44 The underlying physics
for the strain-tunable bandgap in AGNRs is similar to
that in CNTs, since the bandgaps in both CNTs and
AGNRs essentially share the same origin that is due to
the quantized momentum along the transverse or cir-
cumferential direction (see related discussion on CNTs
later). The electromechanical responses in the AGNRs
could be exploited in switches and sensor applications.

CARBON NANOTUBES

Basic Properties

Single-Walled CNTs
CNTs were first characterized by Iijima in 1991
using electron microscopy.45 A single-walled CNT

(SWCNT) is geometrically made up by rolling a
graphene sheet into a cylinder along a specific direc-
tion. The structure of a SWCNT can be characterized
by a chiral vector, Ch = na1 + ma2, or a chirality
index (n,m), where a1 and a2 are two basic vectors
of graphene lattice. SWCNTs with a specific
chirality have been realized by controlled synthesis
methods.46,47 The chiral angle θ can be obtained by
sinθ = √3 m/(2√(n2 + nm + m2)). Armchair and zig-
zag CNTs correspond to θ = 30� and 0�, respectively,
as shown in Figure 5(a). The CNT diameter can be
geometrically expressed as D = a√(n2 + nm + m2)/π,
where a is the lattice constant of graphene. In early
CNT synthesis, the CNT diameter can vary from hun-
dreds of nanometers to sub-nanometer. In 2000, small
CNTs with diameters of 0.549 and 0.4 nm50 were
reported. Meanwhile, Peng et al. observed a small
SWCNT with diameter of 0.33 nm, which exists as a
tiny branch on a parent CNT.51 Three years later,
Zhao et al. observed a 0.3-nm-diameter (2, 2) CNT as
the innermost wall of a multi-walled CNT
(MWCNT),52 which should be the smallest CNT
reported thus far. Along the longitudinal dimension,
the longest CNTs can reach 2 mm in 199853 and
recently this record was updated to 550 mm,54 render-
ing the CNTs a bridge connecting the nanoscale mat-
ters to the macroscopic world.

Multi-Walled Carbon Nanotubes
A MWCNT is comprised of two or more concentri-
cally aligned SWCNTs, being either periodic or ape-
riodic depending on the interwall commensurability.
An important topic on MWCNTs is the chirality cor-
relation of different tube walls. A number of experi-
ments using different synthesis methods yield
MWCNTs with identical or nearly identical chiral-
ities when the growth temperatures are relatively
low.55–57 Using molecular dynamics simulations with
chirality-related potential, Guo et al. found58 that,
for a MWCNT with a diameter more than 12 nm,
nearly identical chiralities correspond to the energy
optimum; for a MWCNT with diameter less than
10 nm, the chiral angle ratio of the outer to inner
walls decreases with decreasing tube diameter, and
the nearly identical zigzag chiralities are preferred
when the tube diameter becomes very small.

Electronic Structures of Carbon Nanotubes
Understanding electronic structures of CNTs needs
to start from graphene, which has a zero bandgap
with the valence and conduction bands met at two
vertexes of the Brillouin Zone, K1 and K2 (Figure 5
(b)). The dispersion around the vertex is a cone.
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Upon wrapping into a CNT, the electronic wave vec-
tor in the circumferential direction, kc, is quantized
and satisfies a boundary condition πDkc = 2πj, where
j is an integer; the as-allowed values of k are repre-
sented by the horizontal lines in Figure 5(b) that
miss K1 or K2 by an amount Δkc. The CNT elec-
tronic structure near the Fermi level is determined by
the Conic section of the dispersion cones by allowed
kc (Figure 5(c)). When n-m is a multiple of 3, Δkc = 0,
thus the corresponding CNT is metallic; otherwise it
is a semiconductor. The energy distance between the
upper and lower branches of the Conic
section defines the CNT’s bandgap.48 The semicon-
ducting CNT has its bandgap decreasing with
increasing tube diameter D and in the limit of D
! ∞ it converges to the semi-metallic graphene.
When D < 0.5 nm, all CNTs become metallic inde-
pendent of chirality due to curvature-induced rehy-
bridization of σ and π orbitals.59

In mechanical aspect, a pristine SWCNT pos-
sesses an extremely high elastic modulus over
1 TPa,60,61 comparable to that of diamond. A
SWCNT can also withstand >12% tensile strain, two
orders higher than that of steel. The tensile strength
of CNTs can range from 20 to 63 GPa62 depending
on diameter while the compressive strength can reach

up to 100 GPa.63 In the radial direction, CNTs are
rather flexible and the compressive strength is esti-
mated to be over 5.3 GPa.64 However, CNTs usually
contain defects, such as dislocation (5|7) defects,
vacancies, or impurities, which can dramatically
influence the electronic and mechanical properties of
CNTs. For example, a 5|7 defect can produce two
quasi-bound states and reduce the conductance by
one quantum unit at the corresponding energy.65 The
tensile strength can degrade to 60% of the ideal
value in the presence of vacancies.66

Mechano-Electro-Magnetic Coupling
Effect in Carbon Nanotubes

Electromechanical Coupling
SWCNTs can be subject to various deformations,
which are able to induce remarkable electromechani-
cal coupling. As discussed, the electronic structure of
a SWCNT is determined by chirality-dependent posi-
tion of quantized wave vectors k (along the tube cir-
cumference) relative to the Fermi point kF at K1 and
K2. Applied uniaxial and torsional strains shift the
Fermi point away from the K1 and K2, change |k-kF|
or Δkc and thus modify the bandgap of CNTs
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FIGURE 5 | Structure and electronic properties of CNTs. (a) Schematic diagram showing how a graphene sheet is wrapped to form a CNT
along a chiral vector na1 + ma2, where a1 and a2 are the basic vectors of graphene. The insets show atomic structures of an armchair, a chiral
and a zigzag CNT. (b) Hexagonal Brillouin zone of graphene and the quantized wave vector kc (horizontal lines) along the CNT circumference. The
allowed kc miss the vertexes K1 and K2 of the Brillouin zone by an amount ΔkC. (c) Slicing the dispersion cones by allowed kc gives the electronic
structure of a CNT near the Fermi level. (Reprinted with permission from Ref 48 Copyright 2004 Nature).
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(Figure 6(a) and (b)). The electronic structure of
deformed CNTs depends on the chirality and defor-
mation mode, which can be well described by the
Hückel tight-binding (TB) model67

Hj k,ξð Þ=H0
j kð Þτj expik•Δrj

� � ð1Þ

where ξ represents a 2D strain tensor, Δrj is the
deformation of jth ( j = 1,2,3) bond vector, and H0 is
the Hamiltonian matrix element for an undeformed
SWCNT. From this model, the change of CNT band-
gap versus strain exhibits a zigzag pattern, with a
periodicity reversely proportional to the tube diame-
ter (Figure 6(c)). Specifically, the bandgap of zigzag
CNTs is most sensitive to uniaxial strain yet most
impervious to torsional strain; the opposite holds for

the armchair CNTs. The strain-tunable bandgap of
CNTs was confirmed in subsequent experiments,
which showed that a uniaxial strain can open a
bandgap in a metallic CNT and increase the electric
resistance of CNTs (Figure 6(d)).68 The strong elec-
tromechanical coupling in CNTs has opened poten-
tial applications for nanoelectromechanical devices.70

Compared to high axial stiffness, a SWCNT is
much more flexible in the radial direction and pone
to radial deformations. Early in 1999, Park
et al. reported with ab initio calculations that the
CNT bandgap can be easily opened or closed by
radial deformations.71 Later on, using a TB molecu-
lar dynamics, Lu et al. found a metal-to-
semiconductor transition in squashed armchair
CNTs,72 attributed to a combined effect of broken
mirror symmetry and bond formation between flat-
tened regions of tube wall. In 2005, a more
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conclusive analysis on the squashed armchair CNTs
was performed by Mehrez et al.,73 showing that the
squashed armchair CNTs can restore to metallic at
sufficiently high deformation even if the CNTs
undergo a breaking of mirror symmetry, thanks to
strong π-σ hybridization. A metal–insulator CNT
junction can be designed via local collapse of the
nanotubes by, for example, depositing insulating
layers. In addition, CNTs are easy to bend, in either
local or uniform manner. The local bending leads to
the mixing of σ and π states yet without gap opening
in metallic CNTs. The electronic transport through a
locally bent CNT is essentially unaffected unless the
bending is large enough to introduce backscattering
to decrease the conductivity.74,75 In contrast, a uni-
form bending keeps the states delocalized over the
entire CNTs76 and modifies the bandgap, depending
on the chirality as analyzed by Chibotaru et al.77

Transport study also supported that uniform bending
decreases the conductivity through a metallic CNT
but increases that through a semiconducting CNT78;
as the bending becomes severer, kink structures
appear at the inner side of the CNT and break the
monotonic dependence of the conductivity on
deformation.

The electromechanical coupling can also mani-
fest as the interaction between electric fields and
CNT lattices. First, electric fields strongly affect the
structure and strength of CNTs. Several theoretical
studies79,80 showed that the CNT failure under elec-
tric fields79 or charge80 preferentially occurs at tube
ends, to which adding caps can enhance the nano-
tube stability. Under a tensile load, Guo et al. found
that the CNT breaks near its middle and its critical
tensile strength declines significantly with increasing
field strength.81 Subsequent experiments confirmed
these theoretical results and further showed that the
tube failure could also occur at defects on the tube
wall.82 On the other hand, the mechanical and elec-
tric behaviors are always coupled with each other in
CNTs. The design of CNT nanomemory is just based
on the coupling of mechanical bending and electro-
static attraction.83 Under applied electric fields, the
charge density in a CNT will be redistributed because
of electric polarization near the ends so that the tube
is locally not electrically neutral. This in turn causes
the CNT to be stretched by electric fields. Guo
et al. found that a SWCNT can be axially stretched
up to 10% under a field strength less than 1 V/Å69

(Figure 6(e)). The giant electrostrictive deformation,
together with the high stiffness of CNTs, opens a
promising prospect for developing high-efficiency
energy conversion devices. Another behavior worth
mentioning is that CNTs can stretch (by ~1%) upon

charge injection, contributed by a uniform deforma-
tion of C–C bonds due to the change in the popula-
tion of electron orbitals.84 CNT actuators and
sensors have been designed based on this effect.85

Electromagnetic Coupling in Carbon
Nanotubes
In CNTs, the electron and hole sub-bands have 1D
feature, and their electronic states resemble semiclas-
sical electron orbits encircling the nanotube. An elec-
tron moving along these orbits has an orbital
magnetic moment μorb,

86 expressed as μorb = DevF/4,
where vF is the Fermi velocity of electrons. According
to Zeeman effect, an applied axial magnetic
field can shift the energy of sub-bands by ΔE = −
μorb

.B = �DevFBk/4.
48 This equation provides a sim-

ple relationship between the CNT bandgap and the
magnetic field strength and accounts for experimental
observations of giant magnetoresistance and metal–
insulator transition in CNTs under axial magnetic
fields.87 However, this equation cannot give the
detailed electronic structures of CNTs under a mag-
netic field, which are necessary for understanding
other important magnetic properties, such as mag-
netic susceptibility. For this purpose, the effective-
mass approximation and TB model have been
employed. Since the effective-mass approximation is
valid only at the charge-neutral state and only pro-
vides the information about the electronic states near
the Fermi level,88 we focus on the progress based on
the TB model. For a CNT under a magnetic field
with strength B, the vector potential is A = (ϕ/|Ch|,
0), where ϕ denotes the magnetic flux threading the
CNT. Accordingly, the single-orbital nearest-
neighbor TB Hamiltonian is modified by a phase
factor,12

Hj k,ϕð Þ =H0
j kð Þexp i2πΛi=ϕ0ð Þ ð2Þ

where ϕ0 is the flux quantum and Λi =
Ð
riA � dr.

Analytically solving the Hamiltonian yields the elec-
tronic spectra of CNTs, E(k,ϕ), which can be used to
further calculate the free energy of CNTs by using
Fermi–Dirac function. Then, the orbital magnetic
susceptibility can be obtained from the second deriv-
ative of free energy. This TB model reveals rich mag-
netic properties for CNTs: (1) Axial magnetic field
induces periodic Aharonov-Bohm oscillations in
CNT electronic structures, following a metal–
insulator transition depending on tube diameter and
chirality (Figure 7(a)–(c)). (2) A magnetic field per-
pendicular to the CNT axis does not change the
bandgap, but can cause quantized Landau levels in
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the electronic spectra of CNTs. (3) Under an axial
magnetic field, metallic CNTs are paramagnetic while
semiconducting CNTs are diamagnetic (Figure 7(e)),
whereas under the perpendicular magnetic fields all
CNTs are diamagnetic; moreover, magnetic suscepti-
bility linearly scales with the tube diameter. These
theoretical results well support early transport mea-
surements of CNTs, such as giant magnetoresist-
ance87 and conductance oscillation91 under axial
magnetic fields. In particular, the periodic magnetic
flux modulation of the CNT bandgap has been
unambiguously observed independently by Coskun
et al.92 and Zaric et al.89 from different experimental
groups. Note that the conductance oscillation is
easier to be observed in MWCNTs, since the oscillat-
ing period is 4ϕ0/πD,2 around several Tesla for a nor-
mal MWCNT with D = 20 nm.91 For a SWCNT
with D normally being approximately 2 nm, the cor-
responding period is up to 103 Tesla, unattainable in
current experiments. However, a beating phenome-
non in Aharonov-Bohm type of interference was
found to enable effective conductance modulations in
SWCNTs under a much smaller magnetic field.93

Mechano-Electro-Magnetic Coupling Effect
in Carbon Nanotubes
The rich electromechanical and electromagnetic cou-
pling behaviors raise an interesting question regard-
ing how the CNT electronic states are coupled to
both strains and magnetic fields. To clarify this issue,
Zhang et al.90 developed a theory based on the TB
model by taking into account the uniaxial and tor-
sional strains and magnetic fields. The corresponding
Hamiltonian becomes

Hj k,ξ,ϕð Þ=H0
j kð Þτj expik•Δrj

� �
exp i 2π=ϕ0ð Þ

ð
rj

A•dr

2
64

3
75

ð3Þ

Solving Equation 4, they found strong mechano-elec-
tro-magnetic coupling effect in SWCNTs. First, the
critical magnetic field required for the metal–
insulator transition in CNTs shows a linear yet
chirality-dependent modulation with strains (Figure 7
(d)). Second, the susceptibility displays strain-induced
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peaks, whose values and distributions rely on both
the chirality and tube diameter; interestingly, a
switch between paramagnetism and diamagnetism
can be realized at certain strain values (Figure 7(e)).
Similar analyses have also been carried out by Zhang
et al.,94 who studied the beating of Aharonov-Bohm
interference in strained SWCNTs and found that the
beating pseudoperiod can be modulated by strain, in
a way sensitive to the CNT chirality. Nevertheless,
owing to the challenge in concurrently applying
strain and magnetic field to CNTs, very limited
experimental progress is found in this aspect. Cai
et al.95 measured magnetoresistance of SWCNT bun-
dles under hydrostatic pressure up to 10 GPa and
observed a pressure-induced transition in magnetore-
sistance from positive to negative under high fields,
which should be the first evidence of mechano-elec-
tro-magnetic coupling effect in CNTs. Strain-tunable
magnetic properties of CNTs could open a range of
applications, such as pressoelectronic and magnetoe-
lectronic devices.

Contact Effects with Substrates
and Electrodes
While CNTs possess a number of exceptional proper-
ties in vacuum, the inclusion of CNTs into electronic
devices requires integration with substrates, such as
dielectric layers, gates and metal contacts. The CNTs
can experience massive changes of their properties
when put on substrates, posing uncertainty to the
performance of CNT-based devices. On the other
hand, integrating CNTs and substrates to form
hybrid structures may provide properties complemen-
tary to those of components. It is thus of both funda-
mental and technological importance to understand
modification of CNT properties by various
substrates.

Carbon Nanotube on Metals
In most devices, CNTs need to form contacts with
various metal surfaces, such as Pt, Au, Ca, Al and
Cu. The properties of CNT devices are found to
depend on the contact metals. For example, a semi-
conducting CNT in field-effect transistors (FETs)
exhibits n-type properties with Ca electrodes but p-
type with Pd electrodes.96 Ballistic n-type CNT-based
FETs have also been fabricated by contacting semi-
conducting SWCNTs using Sc or Y, which, combined
with the ballistic p-type CNT FETs using Pd con-
tacts, enable doping-free fabrication of CNT-based
ballistic complementary metal-oxide semiconductor
devices.97 The origin of the doping character of semi-
conducting SWNTs has been a subject of intensive

debate, and several mechanisms have been proposed
for the p-type conduction: (1) the doping directly by
the contacts,98 which usually occurs for the metals
with high work function, such as Pt; (2) the chemical
doping by processing the CNTs in oxidizing acids99;
(3) the doping by adsorption of atmospheric oxy-
gen.100 Any of these mechanisms can in principle
influence the transistor performance. As for the con-
tact itself, the design of high-performance CNT
devices is contingent upon knowing the physics at
metal–CNT interfaces, which correlates with the
contact area,101 the metal work function,102 and the
tube diameter and chirality103 etc. Theoretical ana-
lyses on this topic have revealed that the interface
conductance scales with contact length, in agree-
ment with an earlier experiment104; and an arm-
chair tube couples better than a zigzag tube to
ordered Au/Ag contacts.105 The CNT diameter is
another important factor. Both metallic and semi-
conducting SWCNTs have been demonstrated to
form high-quality ohmic contact with Pt, Rh, Pt and
Y when the tube diameter is larger than 1.6 nm.106

For CNTs with diameter smaller than 1.0 nm,
ohmic contact proves to be difficult even for metallic
CNTs, possibly because small CNTs tend to form
stronger CNT-metal bonding that results in larger
height of the tunnel barrier at the interfaces. Using
large-scale Landauer transport calculations, Nemec
et al. revealed that the superiority of Pd is correlated
with the nature of CNT-metal interaction, mani-
fested as weak hybridization with a large contact
length.107 Further progress in this area calls for
computationally more effective methods that could
bridge the gap between experimental and theoretical
scales of systems.

Carbon Nanotube on Non-Metal Substrates
The non-metal substrates include insulating and sem-
iconducting substrates. Compared to metal sub-
strates, the non-metal substrates often have less
charge exchange with CNTs. On insulating sub-
strates, such as SiO2 and h-BN, CNTs have little
change in electronics, except for possible radial
deformation induced by substrate adsorption.108

Some interesting behaviors can arise in CNTs
adsorbed on semiconducting substrates, on which the
electronic properties of CNTs are sensitive to local
chemical environments. First-principles calculations
showed that armchair CNTs can be chemisorbed on
clean Si(001) via the formation of Si–C bonds, which
enhance the metallic character of the nanotubes.109

In another work, the CNTs on Si(001) were shown
to have different favorable adsorption sites depend-
ing on the nanotube directions and the local
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substrate geometry, entailing distinctly different elec-
tronic structures to the CNTs.110,111 Zigzag CNTs
were also predicted to strongly adsorb on InAs, pri-
marily by the hybridization between the carbon π
orbitals and cation dangling-bonds of substrate; dif-
ferently aligned CNTs on nonpolar InAs surfaces
form almost the same band alignment while on polar
surfaces the CNTs can be auto-doped into n or
p type due to large surface dipoles,112 suggesting that
CNTs can acquire richer functionalities on binary
substrates. Integrating CNTs with semiconductor
surfaces will inherit huge expertise from current sem-
iconductor technology and will benefit the develop-
ment of nanoscale hybrid electronic and
optoelectronic devices.

GRAPHENE-LIKE
NANOSTRUCTURES

h-BN Nanostructures
Monolayer h-BN sheet is an isostructural and isoelec-
tronic analogue to graphene, and could serve as an
excellent substrate for high-performance graphene
electronics.113 Scalable growth of quality h-BN
monolayers has been achieved through chemical
vapor deposition on a range of substrates.114–116 The
h-BN monolayer is featured by its bond ionicity,
which localizes the electronic states and results in
enhanced chemical and thermal stabilities. Thus, h-
BN sheet shows unique potential of fabricating nano-
scale devices operable in harsh environments. On the
other hand, the bond ionicity breaks the symmetry of
electronic states and opens a large bandgap near the
Fermi level, rendering all h-BN nanostructures elec-
trically insulating. The insulating properties severely
hinder the applications of h-BN in functional devices.
Extensive research efforts have been devoted to mod-
ifying the electronic properties of h-BN nanostruc-
tures, in particular those of nanotubes and
nanoribbons.

Boron Nitride Nanotubes
BN nanotubes (BNNTs) are isostructural to
CNTs.117,118 Mechanically, BNNTs possess excellent
mechanical properties with a Young’s modulus up to
0.7 TPa119 as well as superb yield strength against
axial tension.120,121 Electronically, the BNNTs
remain insulating with a bandgap approximately
5.5 eV independent of the tube chirality, in contrast
to CNTs. Another unique feature is that most
BNNTs are in zigzag type because of the preference
of aligning tube axes along the (1010) direction of h-
BN during synthesis.122 When the tube diameter is

less than 0.95 nm, strong rehybridization effect can
rapidly reduce the bandgap of zigzag BNNTs with
decreasing diameter.123 Moreover, zigzag BNNTs
experience an axial deformation approximately 1%
under an applied external electric field of 1 V/Å,
attributed to both electrostrictive effect and converse
piezoelectric effect, and the deformation ratio
increases with decreasing tube diameter.124 In recent
years, the interest of pushing BNNTs toward elec-
tronic applications has been boosted by a variety of
methods of tuning their insulating bandgap. Mechan-
ically, Kim et al., found that a radial deformation at
a transverse pressure of about 10 GPa can decrease
the bandgap of zigzag BNNTs down to 2 eV,125 due
to the downshift of π* states. Electrically, the band-
gap of BNNTs can be significantly reduced by trans-
verse electric fields126,127 and the gap modulation is
more notable with increasing the tube diameter,
showing a giant Stark effect as confirmed in subse-
quent experiment.128 The bandgap modulation in
BNNTs by strain or electric field is superior to that
by means of chemical routes, such as dopants129 or
functionalizations,130 in a sense that the latter incurs
localized states detrimental to device performance.
Chemically, fluorination proves to be effective to
enrich the functionalities of BNNTs, such as inducing
p-type doping129 and long-ranged ferromagnetic spin
ordering that is even tunable by radial
deformation.131

The experimentally synthesized BNNTs tend to
be multiwalled, mostly even walls.132 The interwall
interaction can significantly affect the electronic
properties of multiwalled BNNTs. For example, the
bandgap of a multiwalled BNNT is found to be
remarkably narrower than any of its single-walled
constituents; the valence band maximum (VBM) and
conduction band minimum (CBM) are distributed on
the outermost and innermost tubes, respectively.133

Thus, the multiwalled BNNTs can serve as a coaxial
semiconductor junction with type II band alignment
across the radial direction. Zhang et al. predicted
that the band alignment between the inner and outer
walls of a double-walled BNNT can be tuned from
type II to type I by radial deformation, following a
direct to indirect bandgap transition and a substan-
tial gap reduction134; moreover, the bandgap of a
squashed double-walled BNNT can be further signifi-
cantly reduced by a transverse electric field. Zhang
et al. further showed that small double-walled
BNNTs could be natural homogeneous nanocables
as injected electrons prefer abnormally to concentrate
on the inner wall while the outer wall keeps electri-
cally neutral, breaking the tradition of heterogeneous
coaxial structures for common cables.135
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BN Nanoribbons
BNNRs have also been the focus of much research
attention (see Figure 8(a) and (b) for structures).
BNNRs can be synthesized with high quality by lon-
gitudinally splitting of BNNTs137 or by morphology
control of metal catalysts during chemical vapor dep-
osition.138 The BNNRs with standard armchair
(A-BNNRs) and zigzag edges (Z-BNNRs) are of
particular interests. Without edge passivation, the
A-BNNRs are nonmagnetic semiconductors while the
Z-BNNRs have a magnetic ground state with
extended spin ordering along the edges. With hydro-
gen passivation, all BNNRs become nonmagnetic
insulators4; the Z-BNNRs have decreased bandgap
with increasing ribbon width due to enhanced

transverse electric polarization. In the past few
years, extensive theoretical efforts have been devoted
to narrowing the bandgap of hydrogen-passivated
BNNRs. Zhang et al. showed for the first time that
the bandgap of BNNRs can be reduced by applying
transverse electric fields, resulting in giant Stark effect
due to reduced electric field screening4; it is of practi-
cal importance that the gap modulation is more sen-
sitive in a wider BNNR (Figure 8(c)–(d)). Later on,
similar results were reported for large-width BNNRs
by Louie et al.139 External electric fields could also
couple with the spin ordering along the edges of bare
BNNRs, giving rise to magnetic metal–semiconduc-
tor-half-metal transitions.140 However, the field
strength required for desirable bandgap modulation

FIGURE 8 | Tunable electronic properties of BN nanoribbons. (a,b) Atomic structures of (a) zigzag and (b) armchair nanoribbons, with widths
of nz = 8 and na = 15, respectively. (c,d) Bandgap as a function of field strength for the (c) zigzag and (d) armchair nanoribons. Dot lines in
(c) are for the modulation under reversed electric field (pointing from the N edge to the B edge). (Reprinted with permission from Ref 4 Copyright
2008 American Physical Society). (e) Band structures and partial charge densities (0.006 e/Å3) for the VBM (green) and CBM (violet) in aligned
zigzag nanoribbons with different ribbon numbers. (Reprinted with permission from Ref 136 Copyright 2013 Royal Society of Chemistry).
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reaches the level of V/nm, which remains too strong
for practical application. Alternatively, introducing
impurity states into the BNNRs by either chemical
decoration at the edges or defect engineering proves
to be an effective way. The Z-BNNRs can be functio-
nalized into metallic, magnetic and even half-metallic
materials by partial hydrogenation,141 or embedding
line defects142,143 or edge attachment of oxygen or
sulfur atoms.144 However, manufacturing these func-
tionalized BNNRs still requires sophisticated fabrica-
tion processes which render the demand for mass
production impractical. Also, the bandgap of both A-
and Z-BNNRs can be effectively modulated by uni-
axial strain.145,146 In particular, the spontaneous
electric polarization in Z-BNNRs can strongly couple
with the elastic strain, offering not only more sensi-
tive strain modulation in a wider ribbon but also a
novel piezoelectric behavior.

Functional BN Nanostructures
Given the experimental subtlety in realizing strong
electric field and mechanical strain, a concept of
intrinsic Stark effect induced by built-in electric
polarization was demonstrated by Zhang et al. to
spontaneously tune cubic BN nanofilms into semi-
conductor and even metal.147 Using hybrid DFT cal-
culations with van der Waals correction, Zhang
et al. further showed that polar BNNRs can be favor-
ably aligned edge-by-edge via substantial hydrogen
bonding at the interfaces,136 which induces signifi-
cant interface polarizations and sharply reduces the
bandgap of BNNRs well below silicon range
(Figure 8(e)). Chemically, fluorination could trans-
form a h-BN multilayer into a semiconducting c-BN
nanofilm, which possesses substantial ferromagne-
tism upon electron doping.148 Substrates also modify
the intrinsic properties of h-BN sheet in a significant
way. It was predicted that an oxidized h-BN sheet
supported on Cu substrate exhibits metallic proper-
ties when O adatoms vertically bond with B
atoms.149 Further study showed that, upon chemi-
sorption of ozone molecules or O-H groups on B
atoms, the h-BN sheet on Cu exhibits ferromagnetic,
antiferromagnetic or ferrimagnetic ordering depend-
ing on the adsorption density and configuration of
functional groups.150

Metal Dichalcogenide Nanostructures
As one of inorganic analogues of graphene, single-
layer transition metal dichalcogenides (TMDs) MX2

(M=Mo, W, Ta, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Nb;
X=S, Se, Te) have sparked tremendous research inter-
est as they can be superior to graphene in certain

respects (also summarized in recent reviews151,152).
Of particular interest is the MoS2 monolayer, in
which one Mo layer is sandwiched between two S
layers in a trigonal prismatic lattice (Figure 9(a)). The
crystal field splitting of Mo d orbitals combined with
reduced dimensionality yields a direct bandgap of
1.8 eV at the K point (Figure 9(d)),156 which is desir-
able for fabricating FETs, photo detectors, photoelec-
tronic devices. In contrast, few-layer and bulk MoS2
have indirect bandgap, with the VBM at the Γ point
and CBM at a point in the Γ-K path.157 The direct–
indirect transition is believed to stem from the inter-
layer van der Waals interaction.156,158

In-Plane Strain Effect
Electronic structures of monolayer or few-layer
MoS2 are very sensitive to elastic strains, which can
be realized by putting MoS2 samples on a flexible
substrate and then deforming the substrates, or
directly on a piezoelectric substrate (Figure 9(b) and
(c)).153,154 Among different forms of strains, the
biaxial strain is most effective for tuning the band-
gap. For monolayer MoS2, DFT studies showed that
a direct-to-indirect bandgap transition can occur at a
biaxial tensile strain of approximately 1% (Figure 9
(e)), as a result of the downshift of the topmost
valence band at the K point with respect to that at
the Γ point.155,159 Meanwhile, as shown in Figure 9
(e), both the direct gap at the K point and the indirect
bandgap between the K and Γ points are reduced,
caused by the rapid downshift of the CBM. Further,
the monolayer MoS2 can become metallic at a biaxial
tensile strain over 10% or compressive strain over
15%.160 Tensile strain could also enhance the carrier
mobility in monolayer MoS2 by increasing the band
dispersion. Applied uniaxial tensile and shear strains
also dramatically reduce the bandgap of monolayer
MoS2.

161 For few-layer MoS2, photoluminescence
spectra revealed that the bandgap decreases by
120 meV per 1% uniaxial tensile strain in bilayer
MoS2

153 and increases by approximately 300 meV
per 1% biaxial compressive strain in trilayer
MoS2.

154 It appears that the strain-tunable bandgap
is more sensitive in thicker MoS2 layers, thanks to
the coupled effect of the in-plane strain and the out-
of-plane deformation due to the Poisson effect.
Moreover, biaxial compressive strain causes a signifi-
cant increase of photoluminescence intensity in tri-
layer MoS2.

154

Out-of-Plane Strain Effect
We now discuss the effect of out-of-plane strain. Dou
et al. detected that under hydrostatic pressure the
optical transition of a bilayer MoS2 changes from
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direct (K-K) to indirect (Λ-K), due to a changeover of
the CBM from the K point to the Λ point.162 Peña-
Álvarez observed that under vertical compression the
monolayer MoS2 experiences a direct-to-indirect gap
transition at 0.5 GPa and ends up with semimetal at
3 GPa.163 Hydrostatic pressure could also induce a
semiconductor–metal transition in multilayer MoS2
due to an overlap of valence and conduction bands
as the interlayer distance decreases.164,165 In contrast,
Tongay et al. found that the interlayer interactions in
few-layer MoSe2 can be weakened by thermal expan-
sion, which leads the system properties close to the
limit of monolayer.166

Magnetic 2D TMDs
As mentioned, 2D TMDs can also exist as MX2 with
M=Sc, Ti, V, Cr, Mn, Fe, Ni, Nb, W, Ta, Sn and
X=S, Se. These TMDs have lattice structures similar
to MoS2. Specifically, the CrS2, CrSe2, FeS2, FeSe2,
MoS2, MoSe2, WS2, WSe2, TaS2 and TaSe2

energetically favor the 2H phase, while TiS2, TiSe2,
MnS2, MnSe2, NbS2, SnSe2 and SnS2 favorably
adopt the 1-T phase (see Figure 9(a), right); whereas
the ScS2, ScSe2, VS2, VSe2, CoS2, CoSe2, NiS2, NiSe2
and NbSe2 can be stable in both phases with compet-
itive stability.167 The subgroup of 2D MX2 with
M=Mo, W and X=S, Se are very similar to the 2D
MoS2 in terms of lattice and electronic structures; the
rest can exhibit distinct properties, such as magnet-
ism. Straining 2D magnetic TMD monolayers could
weaken the metal-ligand bonding and localize metal-
lic electronic states therein. This will change the
exchange interaction between local spin moments
and result in remarkable mechano-magnetic cou-
pling. Ab initio study showed that the magnetism in
the 2D VSe2 monolayer can be enhanced by applying
a biaxial tensile strain,168 and the ferromagnetic
ordering is robust against deformation. In contrast,
the ground state of 2D NbSe2 can be switched from
antiferromagnetic to ferromagnetic when a biaxial
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tensile strain over 4% is applied,169 as energetically
reflected in Figure 10 by energy. Also, a biaxial strain
over 6% switches the ground state of 2D TaS2 and
TaSe2 from Pauli-paramagnetic to ferromagnetic.170

Both SnSe2 and SnS2 monolayers are semiconducting
with indirect bandgaps, which can be closed under
an applied biaxial strain of approximately 10%.171

Currently, experimental progress of fabricating
the 2D TMDs is advancing rapidly, and the syntheses
of 2D WS2, WSe2, VS2, NbSe2, TaSe2, NbSe2 and
NiTe2 have been reported successively.172–175 Unfor-
tunately, the reports of magnetism in these 2D TMDs
are very few, possibly because the synthesized sam-
ples are not sufficiently thin. So far, only the ultrathin
VS2 nanosheets was reported to be ferromagnetic by
Gao et al.,173 and all other magnetic 2D TMDs
remain to be confirmed by dedicated experiments.

Phosphorene Nanostructures
Phosphorene, a monolayer of black phosphorus, has
been a rising star material since the first demonstra-
tion of using it for fabricating high performance
FETs.176,177 In contrast to the honeycomb lattice of
graphene, h-BN and TMDs, the lower-symmetry
puckered structure of phosphorene (Figure 11(a))
leads to superior mechanical flexibility180 and

anisotropic electronics.181,182 The band structure of
phosphorene shows direction-dependent dispersion
near the Fermi level (Figure 11(b)), giving rise to ani-
sotropic electric conductance and carrier mobility.178

Structural flexibility of phosphorene offers a
great opportunity to tune its electronic properties by
elastic strain. Theoretically, a single-layer phosphor-
ene can withstand a tensile stress and strain up to
10 N/m and 30%, respectively.183 The electronic
states near the band gap show different distributions
in their wave function, so that they response differ-
ently to strain (Figure 11(b)), leading to an effective
modulation of the conductance anisotropy. For
instance, a moderate biaxial or uniaxial strain
(4–6%) causes a 90� rotation of the preferred con-
ducting direction, as supported by the change of elec-
tron effective mass shown in Figure 11(c),178 which
is attributed to the changeover of the lowest conduc-
tion bands with different anisotropic dispersions
(Figure 11(b)). Regarding the bandgap, biaxial com-
pressive strain decreases the gap value and induces a
semiconductor–metal transition at −9% strain;
whereas biaxial tensile strain first increases the gap
to a peak at 4% strain and decreases it thereafter
(Figure 11(d)),179 just as a result of the preceding
changeover of the lowest conduction band at 4%
strain. Upon applying a uniaxial strain, the bandgap
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of phosphorene can experience a direct–indirect–
direct transition; moreover, the conduction band
extreme converges at some critical strain, yielding
enhanced thermoelectric performance.184

In addition to strain, external electric fields
have also been adopted to tune the electronic proper-
ties of phosphorene. A recent theoretical study
revealed a Stark effect in phosphorene under electric
fields applied along the normal of the basal plane,
showing continuous gap modulation.179 In few-layer
phosphorene, applied vertical electric field leads to
even richer functionalities as increasing field strength
not only decreases the bandgap but induces a transi-
tion from normal insulator to topological insulator
and finally to metal.185

Research attention has also been paid to phos-
phorene nanoribbons, nanotubes and van der Waals
multilayers. Both armchair and zigzag phosphorene
nanoribbons with H-passivated edges inherit the sem-
iconducting nature of phosphorene, and their band-
gaps depend on the ribbon width w.186 The bandgap
of the armchair phosphorene nanoribbon scales as
1/w2, while that of the zigzag phosphorene nanorib-
bon exhibits a 1/w2 behavior.187 As for the

multilayers, bilayer phosphorene under a small verti-
cal compression exhibits a high electron mobility of
7 × 104 cm2 V−1 s−1 at room temperature as a result
of a newly emerged conduction band extreme.188

Other Newly Emerged 2D Material
and Related Nanostructures
All above 2D materials are naturally lamellar in their
bulk forms, with the component layers assembled by
van der Waals interaction. Recently, the research
enthusiasm on 2D materials has been extended to
those, whose bulk forms are not layered in nature.
These 2D materials include hexagonal MXenes, sili-
cene, germanene, ZnO sheets and tetragonal TiC
monolayer, etc, which need special conditions for sta-
bilization, such as structural buckling, chemical pas-
sivation and support on substrates.

MXenes
MXenes can be obtained by etching out the A layers
from MAX materials at room temperature, where M
is an early transition metal, A can be a group IIIA or
IVA element, X is C and/or N.189 The MXene family
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includes 2D Ti2C (Figure 12(a)), Ti3C2 (Figure 12
(b)), Nb2C, V2C, (Ti0.5,Nb0.5)2C, (V0.5,Cr0.5)3C2,
Ti3CN and Ta4C3. All bare MXene monolayers are
terminated by M layers and therefore are strongly
metallic, with a high electron density of states near
the Fermi level. Chemical passivation of MXenes sur-
faces eliminates the metallic states and results in 2D
semiconductors190 and even topological insulator.191

Very recently, the 2D Sc2CF2 is fabricated and used
to construct vdW heterostructures with the MoS2
monolayer, whose electronic structure turns out to be
extremely sensitive to in-plane biaxial strain: a
~1.5% tensile strain suffices to induce an insulator-
metal transition.192

While most MXenes are non-magnetic, the 2D
Cr2C, Cr2N, or Ta3C2 are ferromagnetic and the 2D
Ti3C2 and Ti3N2 are antiferromagnetic (Figure 12
(c)). Like magnetic TMDs, these MXenes have tuna-
ble magnetism by in-plane strain as well. The intrin-
sic magnetic moments of 2D Ti2C and Zr2C are 1.92
and 1.25 μB per primitive cell, which can be
enhanced by 11.5 and 60% under biaxial tensile

strains of ~8 and 3%, respectively.193 For 2D M2C
(M=Hf, Nb, Sc, Ta, V), their nonmagnetic ground
state can be switched to ferromagnetic one by tensile
strain, with the critical strain for the switch depend-
ing on M. These results, together with those of mag-
netic 2D TMDs, feature a universal behavior of
tailoring the magnetism of 2D materials by engineer-
ing strain.

Silicene and Silicene-Like 2D Materials
Silicene (Figure 12(d)), germanene, arsenene
(Figure 12(e)) and antimonene are a group of 2D
materials with honeycomb lattice yet out-of-plane
structural buckling. Silicene, the silicon analogue of
graphene, is a gapless semimetal with a Dirac cone in
its band dispersion194 and can open a bandgap that
is linearly tunable by an applied vertical electric
field.195 While the synthesis of silicene has been
reported for several years, its transfer from catalytic
metal substrates for fabricating FETs was demon-
strated until recently.196
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FIGURE 12 | Other newly emerged 2D materials. (a,b) Front and side views of atomic structures of 2D (a) Ti2C and (b) Ti3C2. (c) A map of
magnetic 2D MXenes. (d–f ) Front and side views of atomic structures of 2D (d) silicene, (e) arsenene and (f ) TiC monolayers.
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In contrast, arsenene and antimonene are semi-
conductors with indirect bandgaps of 2.49 and
2.28 eV, respectively.197 Applied tensile strain can
sensitively modulate the bandgaps of arsenene and
antimonene from indirect to direct, accompanying
with a substantial bandgap reduction in the arsenene.

2D ZnO Monolayer
When a ZnO (0001) nanofilm is only a few ZnO
layers thin, it prefers a planar configuration, like the
h-BN sheet, driven by the disappeared surface dipole.
A monolayer of such ZnO sheet can be shaped into
nanoribbons, whose electronic properties are unusual
due to peculiar edge states198 and are tunable by
external electric fields199 and edge passivations with
hydrogen.200 In particular, bare zigzag ZnO nanorib-
bons exhibit edge magnetism that can be remarkably
modulated and even completely quenched by applied
transverse fields, depending on the field direction.

Beyond the hexagonal 2D materials, Zhang
et al. predicted a 2D tetragonal TiC (Figure 12(f ))
monolayer sheet with zigzag-shaped buckling struc-
ture, which possesses anisotropic electronic proper-
ties and an indirect bandgap of 0.21 eV, thus
promising for applications in nanoelectronics.201

CONCLUDING REMARKS

We have comprehensively reviewed the progress on
tunable electronic and magnetic properties of low-
dimensional materials, with focus on the modulation
by external electric field, strain and substrates. In
spite of the significant difficulties in applying the elec-
tric fields and nanoscale strain and in performing
related analyses and characterizations, notable break-
throughs in realization of tunable properties in differ-
ent low-dimensional materials have recently been
achieved within several experimental groups. Fully
delivering these useful properties into applications
remains contingent upon the development of
advanced fabrication technology, especially the abil-
ity to reliably and repeatedly handle the modulation.
On the theoretical side, the main challenge is to
develop new and/or optimize existing and promising

principles governing the tunable properties as well as
to demonstrate their transferability and sometimes
preferable applications when integrating the nanoma-
terials into a device system. For example, for one-
dimensional layered materials, applied electric field
vertical to the basal plane is more compatible with
current device basis than the transverse fields, as
recently demonstrated for realizing half-metal in
GNRs.35 Moreover, instead of applying strong exter-
nal electric fields, using the built-in electric fields in
materials or at the interfaces is another direction
deserving further attention; yet how the built-in elec-
tric fields can be effectively manipulated remains an
open question. On the other hand, to take full advan-
tage of the strain effect in low-dimensional materials,
it is important to explore innovative technologies
that can enhance the strain sensitivity and that
enable the operation of strain in a cost-effective and
technically feasible way. Moreover, whether there is
a theory capable of describing the nanoscale strain–
functionality relationship, just as an extended version
of conventional stain–stress relationship in contin-
uum, is also an appealing question.

Aside from the mechano-electro-magnetic cou-
pling, the coupling effects induced by various fields
in low-dimensional materials can be extended into a
broader spectrum, which includes opto-electronic,
magneto-optical, thermo-optical and photo-acoustic
couplings etc. Having all the atoms exposed on the
surfaces, the low-dimensional materials have become
an important platform for exploring these peculiar
couplings with high sensitivity and efficiency toward
manipulating their intrinsic properties and develop-
ing novel applications. For example, the two-
dimensional MoS2 monolayer, with inherent spin-
orbit coupling and inversion symmetry, has the valley
and spin inherently coupled to enable control of val-
ley polarization by optical pumping with circularly
polarized light,202,203 which opens the door for
developing integrated valleytronic and spintronic
applications. While detailed discussion of these
aspects is beyond the focus of this report, they are all
promising research directions for realizing the full
potential of low-dimensional materials.
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