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a b s t r a c t 

Automation can be utilized to relieve humans of difficult and repetitive tasks in many domains, presenting the 

opportunity for safer and more efficient systems. This increase in automation has led to new supervisory roles for 

human operators where humans monitor feedback from autonomous systems and provide input when necessary. 

Optimizing these roles requires tools for evaluation of task complexity and resulting operator cognitive workload. 

Cognitive task analysis is a process for modeling the cognitive actions required of a human during a task. This 

work presents an enhanced version of this process: Cognitive Task Analysis and Workload Classification (CTAWC). 

The goal of developing CTAWC was to provide a standardized process to decompose cognitive tasks in enough 

depth to allow for precise identification of sources of cognitive workload. CTAWC has the following advantages 

over conventional CTA methodology: 

• Integrates standard terminology from existing taxonomies for task classification to describe expected operator 

cognitive workload during task performance. 
• Provides a framework to evaluate adequate cognitive depth when decomposing cognitive tasks. 
• Provides a standard model upon which to build an empirical study to evaluate task complexity. 
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Specifications table 

Subject Area: Engineering 

More specific subject area: Human Factors 

Method name: Cognitive Task Analysis and Workload Classification (CTAWC) 

Name and reference of original method: Cognitive Task Analysis [1] 

Resource availability: 

Introduction 

Automation is progressively taking over roles once allocated to humans, presenting opportunities 

to relieve the burden of strenuous and repetitive tasks, and to create more efficient systems. As a

result, new supervisory roles are being created where humans actively observe autonomous systems 

and provide input when needed. These new supervisory roles, where operators are continuously 

receiving system output and responding accordingly, are highly variable, existing across many 

domains, and ranging in complexity. This variability in complexity can influence the performance of 

the supervisory tasks. It is not fully understood how to evaluate and optimally design these new roles

to maximize human and system performance. 

Cognitive task complexity, due to its unobservable nature, is not particularly well understood. 

Cognitive tasks of varying complexity can lead to varying degrees of cognitive workload in humans.

Cognitive workload is a latent construct that describes the effort required by the working memory

to perform a cognitive task [2] . Workload can be measured in many ways, including self-reporting

[3 , 4] , performance measures (accuracy and timing of tasks) [5 , 6] , behavioral observations [7] , and

neurophysiological measures such as pupil response [8 , 9] , heart rate variability [10] , EEG [11 , 12] , and

core temperature [13] . 

Cognitive workload can influence human performance in different ways. Excessive cognitive 

workload has been associated with poor human performance and error [4 , 14 , 15] , while moderate

levels of elevated cognitive workload has been linked to increased performance [16 , 17] . One

recent study found that large, sudden spikes in cognitive workload corresponded to decreased 

performance, whereas consistent, elevated cognitive workload corresponded to increased performance 

[18] . Regardless, understanding the level of workload that operators experience in complex systems 

is critical to optimize the system for human performance. A method to classify tasks based on

cognitive workload can provide a basis for evaluation. This work provides a methodological approach 

to accomplish this. Before tasks can be classified, an approach to decompose a high-level system goal

into meaningfully distinct sub-tasks is required. 

Task analysis is an analytical process in which a skill, movement, or cognitive process is

decomposed into sub-tasks that a system operator must complete to accomplish the high-level goals 

of the system [19] . Task analysis is a useful process because it facilitates the identification of task

subcomponents which can be evaluated or modified independently. It is a hallmark tool in human

factors research, and has been used in many applications including product design, instructional 

design and training, function allocation, and error and workload assessment [20] . In this paper, we are

primarily interested in performing task analysis on cognitive tasks, known as cognitive task analysis 

(CTA). 

CTA focuses on the underpinning mental framework, thought processes, and knowledge behind 

the performance of a task [1] . It can be used to identify hidden and ineffective cognitive strategies

as well as tasks that induce high cognitive demand. It can also be used as a baseline model for

task optimization to maximize human performance [21 , 22] . Approaches to CTA are very diverse,

with researchers having identified over 100 different varieties [1] . Five steps common to most CTA

approaches are: 1) Collect preliminary knowledge; 2) Identify knowledge representation; 3) Apply 

focused knowledge elicitation methods; 4) Analyze and verify acquired data; and 5) Format results 

for intended application [1] . Approaches are typically classified by the knowledge elicitation approach,

and generally includes 1) Observation and interviews; 2) Process training; and 3) Conceptual 

techniques [23] . CTA has been used in a variety of domains, including autonomous vehicle display



B.M. Knisely, J.S. Joyner and M. Vaughn-Cooke / MethodsX 8 (2021) 101235 3 

d  

t

 

a  

d  

w  

a  

h  

s  

t  

e  

s  

c  

w  

v  

i  

t  

d  

c

M

 

e  

a

 

 

 

 

 

 

 

i  

f

U

 

I  

f  

f  

C  

s  

I  

i  

o  

a  

s  

p  
esign [24] , electronic health record design [25] , instructional design [26 , 27] , and design of medical

raining programs [28] . 

In this paper, a new approach to CTA is discussed that includes several improvements over existing

pproaches. Existing CTA methodologies do not represent cognitive tasks in adequate cognitive

epth and lack standardization. Cognitive depth permits precise identification of sources of cognitive

orkload. Standardized terminology to describe cognitive tasks can facilitate comparison between

nalyses and provide a theoretical framework for continued validation. Additionally, few methods

ave attempted to integrate CTA results into empirical research and use that data to perform task-

pecific cognitive workload analysis. Chan & Kaufman [29] utilized standard terminology from Bloom’s

axonomy to classify tasks, however no empirical validation of the classification was performed. Liang

t al. [30] performed CTA and rated the cognitive workload demand of tasks using the VACP rating

cale [31] and empirically validated the ratings with data obtained via NASA-TLX. While this work did

ontain a validation of standardized classifications for task cognitive workload, metrics for validation

ere limited to subjective survey data collected post hoc. An approach for task cognitive workload

alidation that integrates objective (accuracy, timing) and neuro-physiological (e.g. pupil dilation) data

nto the validation process could provide additional robustness. This paper discusses an approach

o CTA that uses standardized terminology from existing cognitive and psychomotor taxonomies to

escribe operator cognitive workload and a process to empirically validate and analyze task-specific

ognitive workload. 

ethods 

The following section introduces a CTA methodology to predict operator cognitive workload

ntitled Cognitive Task Analysis and Workload Classification (CTAWC). The steps of this methodology

re as follows: 

1) Traditional Task Analysis – The task or process of interest is decomposed into basic actions the

user performs to achieve the end goal. This is performed iteratively with help from users and

expert stakeholders. 

2) Cognitive Task Analysis (CTA) – Cognitive tasks required of the user are defined for each

traditional task identified in the previous step using cognitive and psychomotor taxonomies.

Tasks are gradually decomposed to a satisfactory level. 

3) Experimental Validation – A controlled experiment is designed to simulate the task and

measure cognitive workload for classified tasks of interest. Experimental and theoretical

workload are statistically compared. 

This methodology is introduced in the context of its prior application in a companion paper that

ncludes detailed experimental results [18] . The use case scenario is a control room monitoring task

rom the perspective of the operator, which will be introduced first. 

se case scenario 

A use case scenario is a representation of a real-world process, generalized for the sake of analysis.

t is a model of how the parts of a system behave and interact [32] . Developing a scenario is important

or CTAWC because it sets the groundwork to cognitively decompose activities and serves as a guide

or experimentation and simulation. The scenario specific to this work is control room operation.

ontrol room operators are required to monitor the status of autonomous and semi-autonomous

ystems over long periods of time while remaining vigilant to respond or intervene, if necessary.

n cases where a response becomes necessary, the operator is required to find and analyze salient

nformation, make a decision regarding that information, and respond, typically through some form

f physical (e.g., press a button) or sensory (e.g., voice command) system input. In cases where

ccuracy and time-sensitivity are critical for effective and safe operation, the workstation environment

hould be designed to minimize operator cognitive workload and maximize task performance. CTAWC

rovides a baseline model of workload for the task and opens opportunities to evaluate changes in
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workload in response to design changes. This application was demonstrated in [18] and will be used

to support explanations of methodological steps in subsequent sections. 

Procedural task analysis 

The original and simplest form of task analysis is called sequential, or procedural task analysis

(PTA) [33] . This is the first step of CTAWC. As the name implies, tasks are identified and represented

in a sequential manner, which defines the process flow. Decision points, where multiple trajectories of

a process are formed, are also commonly integrated into the PTA. Typically, tasks outlined in a PTA are

physical or motion-based tasks. In other words, tasks describe what the human is “doing”, in contrast

to what the human is thinking (an important addition which is introduced in the next section). There

are many ways to perform a PTA and the correct way is highly dependent on the application [34] .

This section describes just one approach. 

The first step of the task analysis is to identify the overarching goal of the task to be analyzed.

This defines the outer-most bounds of the analysis and provides a starting place for decomposition.

This should be established at the beginning of the CTAWC process with input from key stakeholders

of the system being analyzed. 

From there, the overarching task can be decomposed into physical sub-tasks and processes. These 

should describe the physical actions that take place to achieve the end goal of the system. Once again,

this should be done with collaboration from stakeholders who have first-hand experience operating in 

the system of interest. The process is iterative and can be approached as a continuous, open discussion

on whether the tasks identified reflect the true nature of the system. This process is referred to as

requirements elicitation. 

For the control room monitoring scenario, project sponsors from the Naval Air Systems Command 

(NAVAIR) served as key stakeholders in the requirements elicitation process. A continuous dialog 

with these key personnel helped to identify the core physical processes necessary for the monitoring

task and produced the following basic process flow applicable to most control room operations: 1)

Operator passively monitors feedback from the system; 2) Operator receives an alert or indication 

that some new procedure must be performed; 3) Operator uses input devices (keyboard, mouse) to

perform procedures; and 4) Operator monitors the response of the system. A graphical version can be

seen in Fig. 1 . 

Cognitive task analysis 

CTA uses the basic process flow from the prior step as input and identifies the human cognitive

actions required to perform all steps of the task. This involves hierarchically decomposing the task

into cognitive actions and may involve filling in gaps between tasks as well. 

Decomposition structure 

The structure of this decomposition follows a hierarchical task analysis format [35 , 36] , which

provides additional depth for each high-level task with a plan to dictate how to traverse the levels.

This structure and the associated plan can account for both concurrent and serial tasks, representing

parallel and sequential cognitive processing, respectively. 

The scope of cognitive actions should include low-level processing such as recalling basic facts and

ideas up to high-level processing such as evaluating criteria and decision-making. Both observable 

and non-observable tasks can be included. Observable tasks are primarily those in the psychomotor 

domain related to movement and coordination of the body. Non-observable tasks are memory, 

decision-making, and sensory processes. Specifics of sub-tasks should be tailored for the use case 

scenario. 

Tasks can be written in many formats. Often a tabular or bulleted list is used where each sub-bullet

level represents a level of the decomposition. If special instructions are required for performance of

tasks, such as the order, this can be interspersed at the end of levels. For example: 
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Fig. 1. Procedural task analysis for control room monitoring task. 
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0. Overarching Task (Goal) 

1. Task 1, level 1 

1.1. Sub-task 1.1, level 2 

1.2. Sub-task 1.2, level 2 

1.3. …

Plan 1: Do 1.1, 1.2, 1.3, … in that order 

2. Task 2, level 1 

2.1. Sub-task 2.1, level 2 

2.2. Sub-task 2.2, level 2 

2.3. …

Plan 2: Do 2.1, 2.2, 2.3, … simultaneously 

3. Task 3, level 1 

…

A graphical or flowchart representation may be desirable in some cases. If the relationships

etween tasks or the order that tasks are performed is particularly complicated, it may be easier

o represent the task analysis as a flow chart. Further, stakeholders who are not familiar with task

nalysis may find a graphical presentation more intuitive or easier to understand. 

valuating decomposition depth 

A common question that arises when performing task analysis is how deep to go with the

ecomposition. If the decomposition isn’t deep enough, then tasks may be too broad and difficult

o precisely evaluate. If the decomposition is too deep, there is risk of the analysis exploding into too

any variables and task evaluation becoming cumbersome. Additionally, if the goal is to empirically

valuate decomposed tasks, tasks that are too granular may be difficult to isolate/observe in practice.

f the two, it is better to err on the side of additional depth as one can always return to the prior

evel of depth. 

More importantly, the appropriate depth depends on the goals of the analysis. If the researchers

ave a hypothesis defined prior to the analysis, then the tasks should be decomposed to the point

uch that the hypothesis can be tested. For example, returning to the control room scenario, if a

esearcher wanted to test whether control room operators experience elevated cognitive workload

hen searching for a button to respond to an alarm, then the analysis should be at least deep enough

o isolate that individual visual search task. 
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Table 1 

Bloom’s Taxonomy listed in order of increasing cognitive complexity. 

Taxonomy Level Description Example Verbs 

1 Knowledge Recall of specific facts or ideas. remember, define, list, memorize 

2 Comprehension Understanding and interpreting facts and ideas. classify, explain, discuss, identify 

3 Application The use of prior knowledge in novel situations. execute, solve, operate, respond 

4 Analysis Decomposing a system into its composite parts 

and examining those parts. 

compare, associate, contrast, test 

5 Synthesis Combining independent elements to form a 

new system. 

assemble, design, integrate, produce 

6 Evaluation Judging the value of a system based on 

evidence and certain criteria. 

judge, appraise, defend, critique 

Table 2 

Harrow’s Taxonomy listed in order of increasing psychomotor complexity. 

Taxonomy Level Description Example Verbs 

1 Reflexive Movements Involuntary movements evoked in response to 

some stimuli. 

flex, extend, stretch, react 

2 Fundamental Movements Basic movement patterns which build on 

reflexive movements. 

reach, grasp, walk, jump, crawl 

3 Perceptual Abilities Ability to receive information about oneself 

and the world via one of several sensory 

systems (vision, hearing, etc.). 

sense, perceive, hear, see, feel 

4 Physical Abilities The functional characteristics of the body 

which govern the efficiency of skills in the 

psychomotor domain. 

exert endurance, exert strength, 

exert flexibility 

5 Skilled Movements Complex movement skills which require 

learning. 

dance, drive, juggle 

6 Non-Discursive Communication Learned movements and gestures used for 

communication. 

express, posture, gesture 

 

 

 

 

 

 

 

 

 

 

Defining cognitive actions and task syntax 

To facilitate the identification of cognitive actions for each previously identified process, cognitive 

and psychomotor taxonomies can be used. One of the novel contributions of this methodology is

the integration of taxonomy-driven classifications of cognitive tasks to model operator cognitive 

workload. CTAWC utilizes Bloom’s taxonomy of the cognitive domain [37] and Harrow’s taxonomy 

of the psychomotor domain [38] to do this modeling. Bloom’s taxonomy is a six-tiered model for

classification of cognitive skills and is described in Table 1 , where each tier corresponds to increased

cognitive complexity, thus providing a structure to identify tasks of increasing workload. Likewise, 

Harrow’s taxonomy is a six-tiered model for classification of psychomotor skills and is described in

Table 2 . 

This methodology asserts that these taxonomy classifications can be used to identify and predict

workload experienced by operators during cognitive tasks. Bloom’s taxonomy primarily addresses 

non-observable actions, starting at the lowest level of cognitive function in memory-based tasks 

(Knowledge). As the levels increase, the conscious control required to execute the task also increases,

with each higher level composed of the lower level tasks. For example, to perform an Application task,

one must first remember specific facts or ideas (Knowledge), understand the recalled information 

(Comprehension), and then apply it to a novel situation. Harrow’s taxonomy, focuses primarily 

on observable tasks, moving from lower levels of complexity (Reflexive Movements) to higher 

levels (Non-Discursive Communication). Harrow’s taxonomy also considers non-observable sensory 

tasks (Perceptual Abilities). Combined, Bloom’s and Harrow’s taxonomy provide a comprehensive 

categorization of human tasks that can be used to understand how cognitive workload and complexity

is represented in a series of actions. The taxonomies also provide a list of verbs ( Tables 1 and 2 ) that

can be used, in addition to their synonyms, to develop action words corresponding to each cognitive

task. 
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Table 3 

CTA for PTA task “Receive alert or indication a new procedure is required”. 

Procedural Task Cognitive Task 

Level 1 

Cognitive Task Level 2 Cognitive Task 

Level 3 

Taxonomy Classification 

Receive alert or 

indication a 

new procedure 

is required 

1. Detect visual 

alerts 

1.1. Perceive visual 

signal 

– Perceptual Ability 

1.2. Segment field 

based on visual 

characteristics 

– Reflexive Movements 

1.3. Identify salient 

signal 

– Comprehension 

1.4. Identify patterns 

from salient visual 

characteristics 

– Comprehension 

1.5. Retain patterns in 

working memory 

– Knowledge 

2. Detect 

auditory alerts 

2.1. Perceive auditory 

signal 

– Perceptual Ability 

2.2. Segment field 

based on auditory 

characteristics 

– Reflexive Movements 

2.3. Identify patterns 

from salient auditory 

characteristics 

– Comprehension 

2.4. Discriminate 

between multiple 

auditory signals 

2.4.1. Recall 

prior 

information on 

auditory 

feature 

discrimination 

Knowledge 

2.4.2. Identify 

salient voice 

signal 

Comprehension 

2.4.3. Identify 

salient beep 

signal 

Comprehension 

2.5. Retain patterns in 

working memory 

– Knowledge 

3. Detect tactile 

alerts 

3.1. Perceive vibrotactile 

signal 

– Perceptual Ability 

3.2. Identify vibrotactile 

signal 

– Comprehension 

3.3. Retain patterns in 

working memory 

– Knowledge 
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While originally intended for and most commonly applied to evaluating educational objectives

39 , 40] , CTAWC integrates Bloom’s and Harrow’s taxonomy into a task analysis framework for

ssessing operator cognitive workload. There are few past examples of using these taxonomies in

onjunction with task analysis [29 , 41] , and to our knowledge there have been no attempts to connect

he taxonomy levels to cognitive workload through empirical data. 

Returning to the procedural tasks identified prior, one can begin to decompose tasks into cognitive

asks, using Bloom’s and Harrow’s taxonomy as a guide. A portion of the control room monitoring

rocess is shown in Table 3 for a single task block of the original PTA. The process moves from left to

ight in the table. 

In the best-case scenario, cognitive tasks will fit neatly into a single taxonomy level. If a task does

ot fit into a single taxonomy level, this may indicate a need to decompose tasks further. This process

an be used as an additional approach to determine if the task analysis reached an adequate depth.

f a task cannot be classified neatly into a taxonomy level, and one does not wish to decompose



8 B.M. Knisely, J.S. Joyner and M. Vaughn-Cooke / MethodsX 8 (2021) 101235 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tasks any further, then there are a few other options. Multiple taxonomy levels can be matched to

individual tasks, however this may complicate the model and hinder interpretation. Another approach 

is to use the highest taxonomy level (highest level of cognitive complexity) applicable to the task, the

logic being that the operator will experience cognitive workload at least as much as that taxonomy

level implies. For example, if a task requires the use of comprehension and evaluation then, one could

assume, that the operator will experience cognitive workload at the level evaluation tasks typically 

generate. This approach assumes that there isn’t an interacting effect between multiple taxonomy 

levels occurring, which may not always be the case in all scenarios. 

Experimental validation protocol 

After completing the CTA, an empirical study can be designed to validate the decomposition. This

section discusses a protocol for designing a study to validate the assumed hierarchy of task complexity

based on Bloom’s and Harrow’s taxonomy. 

Experimental research questions 

The first task is to define experimental questions based on the decomposed tasks and the goals of

the research. In general, the objective will be to investigate differences in performance between tasks.

Determining what tasks to investigate and the level of granularity to define hypotheses is the initial

challenge. This will depend on resource availability, as constraints will limit the number of hypotheses

that can be feasibility tested. Also important are the goals of the analysis. If specific tasks are more

important to investigate than others, then those should be prioritized and targeted. 

Depending on the complexity of the overarching tasks, there may be many more tasks than can be

feasibly tested in a laboratory experiment due to resource and recruitment burden. In the companion

paper [18] , the lowest-level of the decomposition resulted in 29 individual tasks, which is too many

to control in an experiment. There are several practical considerations related to the study length

and resources. Experimental run time is a critical metric, with subject recruitment rate having a

strong relationship to the amount of time the subject must devote to the experiment. Additionally,

it is problematic from a safety and ethics perspective to keep subjects in an experimental facility

for more than 90 min without a break, which compromises continuous biosensing and calibration 

of equipment. Resources such as wireless devices and other equipment may have limitations for run

time, requiring power source and system memory replacements mid-experiment. For the control room 

study, the target population consisted of University students, therefore timing was a critical factor, as

many students have scheduling limitations. 

To address the previous resource limitations, instead of trying to measure each individual task, 

one could opt to move up a level in the decomposition and create a hypothesis around all the

classifications applied to each task on that level. The full CTA for the control room study can be seen

in Table 4 . It was hypothesized that the tasks classified with the highest taxonomy levels will result in

the highest levels of cognitive workload, which aligned with experimental evidence [18] . The resulting

task model was a sequence of four tasks, where Task 2 (corresponding to Task 4 in Table 4 ) and

Task 3 (corresponding to Task 5 in Table 4 ) contained Synthesis and Analysis from Bloom’s taxonomy

and were hypothesized to be higher workload tasks. Task 1 (corresponding to Tasks 1–3 in Table 4 )

and Task 4 (corresponding to Tasks 6–7 in Table 4 ) only contained low-level tasks from Bloom’s

taxonomy and tasks from Harrow’s taxonomy, and it was therefore hypothesized that operators would 

experience less cognitive workload during these tasks. Therefore, the resulting hypothesis was to test 

whether there was a significant difference in operator performance and cognitive workload between 

each of the 4 tasks. 

One could take an alternative perspective and make a hypothesis about the interaction or 

cumulative effect of multiple taxonomy levels occurring during the same task. This was not the

approach taken in the accompanying work [18] , but there is room for future work investigating this

idea. In either case, an approach for empirically validating these hypotheses is discussed in the next

sections. Discussed first are validation metrics for human performance and cognitive workload. 
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Table 4 

Resulting cognitive task analysis originally developed in [16] . 

Tasks Taxonomy Level 

0. Monitor UAV system 

1. Detect visual alerts 

1.1 Perceive visual signal Perceptual Ability 

1.2 Segment field based on visual characteristics Reflexive Movements 

1.3 Identify salient signal Comprehension 

1.4 Identify patterns from salient visual characteristics Comprehension 

1.5 Retain patterns in working memory Knowledge 

2. Detect auditory alerts 

2.1 Perceive auditory signal Perceptual Ability 

2.2 Segment field based on auditory characteristics Reflexive Movements 

2.3 Identify patterns of salient auditory signals Comprehension 

2.4 Discriminate between multiple auditory signals 

2.4.1 Recall prior information on auditory feature discrimination Knowledge 

2.4.2 Identify salient voice signal Comprehension 

2.4.3 Identify salient beep signal Comprehension 

2.5 Retain patterns in working memory Knowledge 

3. Detect tactile alerts 

3.1 Perceive vibrotactile signal Perceptual Ability 

3.2 Identify vibrotactile signal Comprehension 

3.3 Retain patterns in working memory Knowledge 

4. Identify location of critical/non-critical alert (sensory integration) 

4.1 Integrate all sensory signals Synthesis 

4.2 Perceive auditory signal location Perceptual Ability 

4.3 Perceive visual signal location Perceptual Ability 

4.4 Identify direction of auditory salient signal Reflex Movements 

4.5 Identify screen location of visually salient signal Reflex Movements 

5. Analyze alert category 

5.1 Recall prior information/training on features differentiating alerts Knowledge 

5.2 Associate salient signal alert category with prior information Analysis 

5.3 Identify alert category Comprehension 

6. Respond to non-critical alert 

6.1 Recall prior information on procedural response to non-critical alert Knowledge 

6.2 Acknowledge non-critical alert Fundamental Movement 

6.3 Type textual information on critical alert response Fundamental Movement 

7. Respond to critical alert 

7.1 Recall prior information on procedural response to critical alert Knowledge 

7.2 Acknowledge critical alert Fundamental Movement 

7.3 Type textual information on critical alert response Fundamental Movement 

H
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a  

d  

w  
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r  
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p  
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uman performance measures 

Experimental validation of taxonomy classifications requires performance metrics. Objective and

ubjective measures of human performance can be utilized to encourage study robustness through

 mixed method experimental approach. Objective metrics can measure workload and performance

irectly using accuracy or timing, and indirectly with biosensors for neurophysiological data correlated

ith workload. Subjective metrics use participant feedback to directly quantify perceptions of

orkload. This method suggests the use of both to validate task workload classifications for a more

obust study. Discussed next are the criterion used to select the objective and subjective measures for

he experimental validation study. 

For objective, indirect measures of human performance, there are several factors to consider

hen selecting the biosensing hardware. Most biosensors are wearables and may be influenced by

ovement of the wearer. Body movement can cause issues with data quality in biosensors, such

s with electroencephalography (EEG) headsets [42–44] . In these cases, additional efforts to filter

ovement artifacts may be required [45] . Biosensors may also interfere with the wearers ability to

erform a task. As well as being susceptible to motion artifacts, biosensors such as a pulse oximeter

orn on the finger can make it difficult for subjects to physically interact with a system using their
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hands [46] . The selected biosensors should not inhibit the subject’s ability to move and complete the

tasks necessary for the experiment. 

Another factor to consider when choosing a biosensor is whether to buy a commercial off the

self (COTS) product or to custom build a system. Purchasing a COTS biosensor may provide the

opportunity to review other users’ experiences, come with software to assist with data collection 

and processing, and provide access to technical support. Downsides of a purchased biosensor include 

limited control over the data and cross-manufacturer software integration difficulties. Proprietary 

software may perform data calculations that cannot be altered or examined due to intellectual 

property restrictions. Building a custom biosensor bypasses these limitations but requires additional 

development, debugging, system integration, and validation time. A lab-built biosensor requires 

research into which parts to use and should be benchmarked against commercial biosensors to test

accuracy and reliability. Depending on time constraints, this may be infeasible. 

For the control room study, subjects were required to turn their heads to view multiple screens

and type responses to cues on those screens. This eliminated the use of biosensors whose data quality

is significantly impacted by subject motion. The need for subjects to type also disqualified the use of

biosensors that attach to the hand. Ultimately, pupillometry via COTS biosensors (SMI VR ETG eye-

tracking glasses) ( Fig. 3 A) was selected to indirectly measure subject workload. Additional detail on

the eye tracking system setup is provided in Section 2.5.2. Pupil response has been demonstrated as a

reliable indirect measure of cognitive workload [47–49] . Further, these sensors are designed to allow

the wearer to move their head and minimally influence the data. 

Subjective feedback from participants can reinforce objective data and provide direct insights 

about a system operator’s experience. For workload assessment, pre-validated instruments such as 

the Subjective Workload Assessment Technique (SWAT) [50] and NASA Task Load Index (NASA-TLX) 

[51] can be applied to many simulations. These generalized assessment tools have the advantage

of being well validated across many domains, however, they may not meet the time constraints of

the experiment or provide the context specificity desired. For the control room study, participant

feedback was required at several intervals within the simulation. This required participants to be able

to provide feedback quickly, with minimal disruption to the flow of the study. These requirements

were not satisfied by the existing survey instruments. For this reason, a custom survey was developed.

This provides the dual benefit of being able to design the survey to the needed length and tailor

questions to specifically evaluate each task of interest. 

The medium for administering the survey should be considered as well. Paper and pencil are likely

the most reliable medium, however, this requires handoffs between researchers and participants and 

introduces manual administrative and data input tasks. If the simulation requires interaction with a 

computer, then a digital survey format is advantageous. For the control room study, participants were

already interacting with a screen, therefore the survey was implemented with a batch file code that

could be executed remotely. 

Experimental setup 

There are many logistical considerations when designing a human performance simulation. This 

section discusses how the study requirements were carefully integrated within the limitations of the 

hardware and software available. 

Simulation requirements 

Scenario development was conducted with thorough planning and input from several sources. 

Stakeholders were interviewed, and a literature review on control room design was performed to 

ensure the simulation tasks and environment aligned with the real-world tasks. Stakeholder feedback 

is an important aspect of the iterative design process and confirms that what is being designed

conforms to stakeholder expectation [52–55] . Feedback was iteratively gathered from the project 

stakeholders to ensure simulation realism. A primary goal of the screen layout, communicated by 

project stakeholders, was to be generalizable to many monitoring scenarios. Therefore, the replication 

of a specific monitoring and control software was avoided. In addition, several critical systems had

to be simultaneously accessible to the operator. These requirements led to the development of a
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Fig. 2. Finalized four quadrant layout used in the simulation. Screens display the following information: 1) health of the UAV 

(see through dials/bar graphs); 2) communications system (through which the participant can issue commands); and both a 3) 

forward and a 4) downward facing terrain camera. 
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uadrant layout providing information on system health, location, real time navigation (front facing

amera), and communication ( Fig. 2 ). A mock-up of the control room was presented to project

ponsors from the NAVAIR Human Systems Performance Division. The sponsors were asked to provide

eedback on simulation features, including the number of screens that should be included and the

ealism of displayed information. 

In addition to stakeholder input, control room and design standards, scholarly literature, and

xisting control room images were reviewed to help improve the accuracy of the control room

esign. Feedback in simulated environments should be designed carefully to elicit realistic responses

rom participants. In the control room simulation, the form of the multimodal sensory feedback

elied heavily on a review of these sources. Department of Defense standard MIL-STD-1472F [56] ,

epartment of Transportation standard DOT HS-812–360 [57] , and American National Standards

nstitute standard ASTM F116–95a [58] were used to inform the design of visual, audio, and tactile

eedback, respectively. Visual, tactile, and audio alarms are used in a variety of safety critical

ystems including control rooms [59 , 60] , automobiles [57 , 61 , 62] , and ships [63] . Visual alarm cues

an involve icons appearing on the screen, changing colors [58] , and flashing [56] . For visual cues

n this experiment, the colors yellow and red were used to denote non-critical or critical alarms,

espectively. Several standards recommend the use of the color red to gain an individual’s attention

n an emergency and yellow as a cautionary warning [56 , 58 , 64] . 

Tactile feedback was provided to the participants using a custom vibrotactile wristband ( Fig. 4 ,

 B). The vibrotactile bracelet was composed of an Arduino Mini, a mini vibrating disc motor, a small

olderable breadboard, a 3D printed case, and a sweat wristband. Arduino hardware was used due

o the flexibility of customization of the hardware and code. The Arduino Mini was used to keep the

rist bracelet small and lessen the chance of it interfering with subject movement. A sweat band was

icked as the wearable because it would be able to stretch to fit on a variety of wrist sizes and make

he donning/doffing process easier. Tactile feedback was used due to its presence in everyday objects

uch as cell phones and in automobile and plane safety systems. The feedback frequency used was

round 180 Hz to 200 Hz since it is a similar range used in cell phones [65 , 66] . The tactile feedback
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Fig. 3. Hardware used during the study. A. SMI eye tracking glasses B. Lab built vibrotactile bracelet C. VR CAVE system. 

Fig. 4. Vibrotactile bracelet built for the experiment. A. An inside view of the components B. Final product. 

 

 

 

 

 

was applied for milliseconds at a time to get an individual’s attention [57 , 62 , 67 , 68] . This form of

feedback is unique because it uses a sensory channel that is not already being used to observe the

environment. Sense of sight and sound can be overwhelmed in monitoring tasks because there are

multiple pieces of information competing for attention. 

Two types of audio alarms were used in the study: beep and voice. Both were designed to be

loud enough to be heard over the ambient noise of the Cave Automatic Virtual Environment (CAVE)
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Fig. 5. Participant operating the UAV simulation. 
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ystem running the experiment, and to utilize the surround sound system. The beep was designed to

e distinct to not get lost in background noise programmed into the experiment [69] . Voice cues were

sed because they have been shown to improve a subjects ability to respond accurately [70 , 71] . The

oice used in the experiment was that of a monotone woman. Evidence has shown that a monotone

oice can increase response time when used in alerts [58 , 72] . It is widely agreed that the voice should

e mature and that the message should be succinct, relay the criticality of the alarm through tone or

ord choice, and be repeated multiple times [56 , 58 , 64] . 

ardware setup 

In the companion paper [18] , a simulation was built in a virtual reality (VR) CAVE ( Fig. 3 C)

onsisting of three walls on which simulations can be projected by Barco Galaxy 6 Classic + projectors.

t is possible that this simulation could have been built for a head-mounted display (HMD), however

he use of the CAVE environment allowed participants to interact with other physical artifacts, such

s a keyboard for simulation input, that can provide additional immersion. Additionally, it does not

equire donning of additional hardware, which an HMD requires. Six Tannoy system 600 speakers

rovided surround sound for audio feedback. The simulation was intended to replicate a UAV control

oom. Advanced Realtime Tracking (ART) motion capture cameras, consisting of 4 cameras placed in

he 4 corners of the CAVE, and Dtrack software were used to track the subjects head in space and

onitor the screens they were looking at during the simulation. Six motion capture markers on the

ide of the SMI eye tracking glasses, 3 markers per side, were used to create a rigid body that Dtrack

an use to calculate the subject’s head position throughout the experiment. Fig. 5 shows a participant

ngaged in the simulation with equipment donned. 

In addition to the VR and tracking infrastructure, several elements were considered for data

cquisition. The hardware set-up should be optimized to minimally impact the simulation. This

ncludes the advanced charging of electronics. Back-up equipment and batteries should be available

hen possible. A standardized and repeatable procedure for setting up equipment is critical to be

stablished and practiced prior to running subjects. This will help minimize the time required for

et-up and will help to eliminate variability between participants. In the control room simulation,

articipants were required to don several pieces of equipment, including eye-tracking glasses and a

ibrotactile bracelet. Participants were aided as much as possible when donning the equipment and

iven explicit instruction when direct aid could not be given. 
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Fig. 6. Urceri MT-912 light meter used for luminance testing. 

 

 

 

 

 

 

 

 

 

 

For eye-tracking hardware, it should be verified that ambient light and light from the testing

or simulation environment have minimal impact on pupil response. Ambient lighting should not 

be changed throughout the experiment, or between experiments. If lighting in the experimental 

set-up must change, then a light meter should be used to verify that the change in luminance is

minimal. If there are significant changes in luminance throughout the experiment, this could confound 

pupil response results. For the control room experiment, luminance testing was performed with the 

Urceri MT-912 Light Meter ( Fig. 6 ). This was necessary to verify that lighting changes from the CAVE

simulation would not influence pupil response. To do this, the maximum and minimum lighting

conditions for the simulation were identified. Luminance measurements were taken at eye level 

height, facing the center and 4 corners of each CAVE screen under each condition. The measured

luminance during each condition was virtually identical, and it was concluded that changes in lighting

during the simulation should have minimal influence on participant pupil response. 

The experimental layout is also critical. If wireless electronics can be used, this is ideal because

it minimizes the likelihood of tripping and equipment accidently becoming disconnected, as well 

as providing a non-clustered research environment. This said, if possible, wired back-ups should be 

available. In practice, wireless connectivity is not always as reliable as hardwired equipment, which 

is particularly critical when data is being logged in the millisecond range. Reliability issues with a

wireless keyboard were encountered during the control room study that required the substitution of 

a wired keyboard. 

Software development 

Unity software was used to create the simulation. Specifically, Unity 5.3.5 was used for software

compatibility with getTeal3D, a Mechdyne CAVE rendering software. A review of control room images 

revealed that control rooms often use a quadrant-based layout to display information. The 3D objects
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Fig. 7. Sample of simulation terrain. 

u  

U

 

T  

a  

o  

w  

t  

s  

i  

w

 

g  

c  

[  

a  

s  

c  

t  

A  

s  

s

 

i  

S  

s  

r  

f  

d  

t  

w  

v  

w  

p

T

 

s  

(  

k  
sed to create the four screens were created from scratch or from assets that could be found in the

nity store. 

The simulation monitors were composed of a rectangular prism with interactive objects overlaid.

he terrain that the UAVs flew over was created with a terrain tool built in Unity ( Fig. 7 ). The UAV

sset was imported from the Unity asset store. Two camera views were used to show the UAV flying

ver the terrain; one attached to the front of the UAV and one looking down on the UAV. Both cameras

ere set to move with the UAV as it moved over the various terrains. A short video of the UAV flying

hrough the terrains was captured and embedded in the simulated monitor. The dials on the health

creen reflected the health of the UAV throughout the experiment and was designed to change values

n response to the alarm status. For example, if the critical fuel alarm was triggered, then the fuel dial

ould move to empty. 

Communications was the only screen that allowed direct subject interaction. Information

athered from the standards documents were used to guide the presentation of information. The

ommunications screen changed color to attract the subject’s attention when an alarm was triggered

56] . As mentioned earlier, the colors yellow and red were used to denote non-critical or critical

larms per standards documentation [56 , 58 , 64] . If the subject was running a version of the alarm

cenario that required tactile feedback, then the vibrotactile bracelet would activate when the

ommunications screen lit up. If the subject was running the voice audio version of the scenario,

hen they would hear a monotone, female voice stating which alarm was triggered (e.g., “Low fuel”).

mbient office sounds were imported into the simulation to distract participants and further enhance

imulation realism. Office sounds were recorded in a noisy office where machines and background

peech can be heard. 

External devices were programmed into the simulation when possible. The SMI glasses were not

ntegrated into the simulation software due to the device being controlled by a secondary device; a

amsung Galaxy Note 4. For user input and response, a standard QWERTY keyboard was used. It was

elected because tactile keyboards are commonly used for a multitude of tasks in modern UAV control

ooms. Additionally, the keyboard was selected as the main input device because it provided a simple,

amiliar, and instantaneous medium for input. Keyboard input was not subjected to the frame rate

rops and the lag the simulation might encounter. Subjects could select the desired screen (1–4) using

he F1-F4 keys ( Fig. 8 ). Once subjects selected the correct screen, keys F9-F12 could be used to select

hich alarm to acknowledge. F-keys not utilized as part of the experiment were occluded from subject

iew to minimize mistyping. The communications screen then would ask the user if further action

as required. Subjects were required to type “0” for non-critical alarms or “1” for critical alarms and

ress the “Enter” key to log their response. 

raining material 

Prior to performing the simulation, it was necessary for each participant to be trained on the

cenario and simulation tasks they would perform. A slide deck was developed to facilitate training

 Fig. 9 ). The training material included a brief background on the context of the scenario. This was

ept brief to not overwhelm participants with information irrelevant to performing the tasks at hand.
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Fig. 8. The keyboard layout for simulation command input. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Details were provided about the sensors and equipment to be worn, as well as steps that can be taken

by participants to minimize influence on the sensor data. This included instructions to avoid talking,

touching the head or face, and touching the devices. Further information was included regarding the

tasks the participants would perform, including an embedded video demonstration. 

Prior to the simulation, the participant would be seated in front of an interactive whiteboard with

the slide deck loaded. Participants would be instructed to advance through the slides, and to ask the

study proctor questions as needed. It is critical for researchers to contribute minimal influence to the

training protocol across participants. Differences in training could confound results. 

Data analysis 

Procedures for pre-processing and analysis of data are heavily dependent on the performance 

measures and equipment selected. The steps used for pre-processing simulation data and the tools 

used for analysis in [18] are briefly discussed here. 

Preprocessing of data 

The bulk of the data preprocessing was performed on eye tracking data. Eye tracking data is

known for being noisy and needing substantial cleaning. Corrective procedures can be used to ensure

data is minimally influenced by noise and confounding factors. Preprocessing steps for pupil response 

data included temporally aligning data with the simulation, removing noise, ensuring data fits within 

known physiological limits, and adjusting data with a baseline correction. 

Preprocessing began with aligning the eye tracking data with the simulation start time. Control 

of the SMI glasses could not be integrated into the simulation, requiring that they be started before

the simulation. The simulation was executed as quickly as possible following starting the glasses, but

lag would often interfere with the simulation starting time. The recordings of the experiment were

manually reviewed to denote how much time passed between starting the glasses and the simulation

start. 

A MATLAB script was created prior to the study to perform the rest of the preprocessing. Removing

noise is a common practice when analyzing data [73–75] . The removal of noise can minimize

unwanted influence due to random fluctuation and confounding factors (e.g. removing pupil data that 

is outside the biological range) [76] . The code scanned the data and removed data points that were

outside of the possible biological range for pupil diameter. Anything less than 2 mm or greater than
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Fig. 9. Sample of participant training slides. 
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 mm was removed [77] . Any subjects who had more than 50% of their data removed after this was

emoved from analysis. 

Baseline correction of data is used to facilitate comparison between participants and has been

hown to correct for random fluctuations in pupil data [74] . Baseline correction is done by taking

ata collected from a period of rest and subtracting the data to be analyzed by an average value

uring the rest period. Subtractive, as compared to divisive, baseline correction has been found to be

ess susceptible to distortions in the data [74] . The baseline data consisted of pupil values from 2 s

rior to the first alarm of each simulation. 

ata analysis tools 

To answer the core hypotheses identified in 2.4.1, several statistical analyses were performed.

egardless of the type of performance or workload data collected, this general analysis should be

pplicable. In the control room simulation, the goal of the analysis was to determine if there was

 statistical difference in performance measures for Tasks 1–4. Each task can be thought of as an

ndependent variable, and each performance measure can be treated as a dependent variable. As

uch, a model can be created for each performance measure. For the control room study, performance

easures included pupil response data and survey response data. Pupil response was a continuous

ariable, therefore linear regression was used. Likewise, survey response was a binary variable,

herefore logistic regression was used. As always, it is important to check standard model assumptions

equired for fitting a linear model. 

In the case of [18] , four simulations were performed with four task sequences each. It was

ypothesized that participant performance may increase as time progresses (i.e. a learning effect).

ecause simulations and trials were spaced in approximately equal time segments for all participants,

ach could be treated as a continuous control variable in the models. The continuous assumption may
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not hold in all cases. If the periods of time are not equally spaced and exact time is not recorded, then

it may be better to treat time periods as categorical or ordinal variables. 

With categorical independent variables, regression coefficients will only provide effects with 

respect to the reference category. Multiple comparisons will need to be performed to identify

differences between all tasks. As more comparison are made, the probability of finding false positives

significantly increases. As such, a correction to the p-value should be applied to reflect a more

conservative estimate. Many procedures exist, such as the Tukey test and Bonferroni correction, and 

most statistical programming packages will have built in functions to perform them [78] . 

Finally, as an additional step, correlation between performance variables can be investigated. This 

can provide insight as to whether indirect measures of performance serve as good indicators of direct

performance. In these cases, direct measures of performance can be modeled as dependent to indirect

measures. By including each task and each indirect performance variable as independent variables, the 

effect of each indirect measurement can be estimated independent of the task type. This important

because each task type will likely have an inherent amount of time needed or accuracy required,

independent of participant performance. In [18] , some evidence was found to support task time

having an association with pupil response and survey response. 

Conclusions 

Optimizing a system for maximum human performance requires an understanding of the cognitive 

tasks required of the user. CTA provides a process for isolating the distinct mental processes

performed by system operators. This paper describes an approach to CTA that integrates cognitive and

psychomotor taxonomies for predicting cognitive task workload. This approach was demonstrated on a 

control room monitoring task and demonstrated its ability to discriminate between high and low task

complexity. This framework could be potentially applied to any system where unobservable human 

action plays a significant role in system operation. Future work should include effort s to validate this

approach in different settings. Future work should also seek to further demonstrate the discriminating

power of the taxonomy classifications. Currently, only “high” and “low” workload was discriminated. 

Demonstrating that individual levels of the taxonomies can be used to discriminate cognitive workload 

experienced could provide further validity. Ensuring that systems operate effectively and safely 

requires models of operator workload to provide a framework for system optimization. This work 

provides an approach for creating and validating those models. 
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