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Abstract: Metabolic complications in an obese state can be aggravated by an abnormal inflammatory
response and enhanced production of reactive oxygen species. Pro-inflammatory response is known
to be associated with the formation of toxic reactive oxygen species and subsequent generation of
oxidative stress. Indeed, adipocytes from obese individuals display an altered adipokine profile,
with upregulated expression and secretion of pro-inflammatory cytokines such as tumor necrosis
factor alpha (TNF-α) and interleukin (IL-6). Interestingly, natural compounds, including phenolic
enriched foods are increasingly explored for their ameliorative effects against various metabolic
diseases. Of interest is gallic acid, a trihydroxybenzoic acid that has progressively demonstrated
robust anti-obesity capabilities in various experimental models. In addition to reducing excessive
lipid storage in obese subjects, gallic acid has been shown to specifically target the adipose tissue to
suppress lipogenesis, improve insulin signaling, and concomitantly combat raised pro-inflammatory
response and oxidative stress. This review will revise mechanisms involved in the pathophysiological
effects of inflammation and oxidative stress in an obese state. To better inform on its therapeutic
potential and improvement of human health, available evidence reporting on the anti-obesity
properties of gallic acid and its derivatives will be discussed, with emphases on its modulatory
effect on molecular mechanisms involved in insulin signaling, inflammation and oxidative stress.
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1. Introduction

Global estimates show that more than 1.9 billion adults are overweight, while over 600 million of
these individuals are classified as obese [1]. The rising trend in the incidence of overweight and obesity
is not only limited to developed countries as factors such as urbanization and unhealthy lifestyle,
which contribute to its significant rise are also prominent in developing nations [1]. In fact, sub-Saharan
women are far more likely to be obese than men, which further affects pregnancy and maternal
health [1]. This can translate to complications and adverse effects on infant health, as previously
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hypothesized [2]. Visceral obesity is associated with the development of chronic metabolic diseases
including insulin resistance, type 2 diabetes (T2D), and cardiovascular disease [3]. The mechanism
linking obesity to these comorbidities has not been fully elucidated. However, a growing body of
knowledge suggests that a possible convergence of an inflammatory state, which results in chronic
inflammation and oxidative stress that is localized within an adipose tissue (Figure 1). Adipose tissue
inflammation plays a crucial role in promulgating obesity-related metabolic complications including
the development of insulin resistance [4,5]. An imbalance between energy intake and expenditure
results in adipose tissue expansion due to excessive lipogenesis in adipose tissues [6].
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white adipose tissue is linked to detrimental effects through its aberrant secretion of 
pro-inflammatory cytokines, brown adipose tissue is unique for containing abundant mitochondria 
that are essential for improving cellular respiration and increasing adaptive thermogenesis [7,8]. 
Adipocytes secrete various endocrine factors such as adiponectin, estrogen, leptin, and an array of 
cytokines. The type of cytokines released, depend on the systemic or intracellular levels that may 
modulate various cell signals that can either prevent or exacerbate metabolic complications [8]. 
Some of the prominent mechanisms that are modulated by various endocrine factors in an obese 
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Figure 1. Overnutrition, sedentary lifestyle and genetic susceptibility are the leading factors associated
with the development of obesity. In addition to dysfunctional angiogenesis, an obese state is
characterized by an abnormal inflammatory response, low antioxidant capacity and reduced insulin
sensitivity that may eventually lead to the generation of inflammation, oxidative stress and insulin
resistance. The figure was modified from the following website, https://mexicobariatriccenter.com/
improve-adipose-tissue-function/.

Adipose tissue is regarded as an endocrine organ that plays a pivotal role in the development
of obesity. As excessive fat accumulation in the adipose tissue is associated with weight gain [6].
Over the years, different kinds of adipocytes have been characterized and these include beige, white,
and brown which can occur in diverse proportions within individual depots, and their presence has
been associated with mixed health outcomes. For example, while excessive storage of white adipose
tissue is linked to detrimental effects through its aberrant secretion of pro-inflammatory cytokines,
brown adipose tissue is unique for containing abundant mitochondria that are essential for improving
cellular respiration and increasing adaptive thermogenesis [7,8]. Adipocytes secrete various endocrine
factors such as adiponectin, estrogen, leptin, and an array of cytokines. The type of cytokines released,
depend on the systemic or intracellular levels that may modulate various cell signals that can either
prevent or exacerbate metabolic complications [8]. Some of the prominent mechanisms that are
modulated by various endocrine factors in an obese state include insulin signaling, adipogenesis,
pre-adipocyte proliferation and differentiation, and the regulation of mitochondrial energy dissipation
through the modulation of lipid metabolism. For this reason, systemic or intracellular control of
these factors has been an ideal therapeutic target aimed at preventing obesity or ameliorating its
associated complications.

https://mexicobariatriccenter.com/improve-adipose-tissue-function/
https://mexicobariatriccenter.com/improve-adipose-tissue-function/


Nutrients 2019, 11, 23 3 of 29

The use of natural products as therapeutic agents in preventing metabolic disease has become
popular. Despite the fact that medicinal plants have been used for centuries to combat various
ailments [9], it is only in the past few decades that we have seen a rapid rise in studies reporting
on the metabolic disease preventative capacity of several plant bioactive compounds or naturally
derived products, as reviewed elsewhere [10]. For example, the health benefits of plant phenolics are
well established, which may be attributed to their known antioxidant, anti-inflammatory, signal
transducing and other biological capabilities [10–13]. Such plant phenolics include gallic acid,
a trihydroxybenzoic acid found in a variety of foods and herbs that are increasingly studied for its
biological activities [14–17]. Certainly, there has been an increase in the experimental data evaluating
the ameliorative effects of gallic acid on metabolic diseases, including obesity [17–22]. Furthermore,
several reviews focusing on the therapeutic potential of gallic acid have also been published. Briefly,
in 2013, Locatelli et al. [23] focused on alkyl esters of gallic acid as anticancer agents. In 2015,
Badhani et al. [24] gave an overview of the therapeutic and industrial applications of gallic acid,
mostly focusing on its antioxidant properties. In the same year, Choubey et al. [25] summarized
evidence of patents reporting on anticarcinogenic, antimicrobial, antimutagenic, antiangiogenic
and anti-inflammatory properties of gallic acid and its ester derivatives. In 2016, Fernandes and
Salgado reviewed analytical methods for the determination and quantification of gallic acid, including
emphasizing the advantages and limitations of each technique [26], while Nayeem et al. [27] gave
a general overview on the therapeutic potential of gallic acid. In 2017, Kosuru et al. [28] discussed
literature summarizing the effects of gallic acid and gallates in human health and disease, with specific
emphasizes on mitochondria as the target site.

Although the aforementioned reviews have provided an important platform that improves our
understanding on the therapeutic potential of gallic acid and its derivatives, none have appraised
literature on the anti-obesity properties of this phenolic acid. The current review systematically
extracted the available primary findings and critically assessed these studies to better inform on
the anti-obesity properties of gallic acid by modifying an already published protocol [29]. For data
extraction, a search on the association between gallic acid and obesity was conducted using major
search engines and databases such as PubMed/Medline, EMBASE, Cochrane Library Databases
and Google Scholar. The search was done from inception until end of June 2018, grey literature
including abstract proceedings and pre-prints were also included. There were no language restrictions
applied, while review articles were assessed for primary findings. Medical subject heading (MeSH)
terms such as gallic acid and its derivatives, metabolic syndrome, obesity, inflammation, oxidative
stress, and apoptosis, including corresponding synonyms and associated terms for each item were
used. Plants and extracts not reported to contain gallic acid, or that through background check
had not been characterized to contain gallic acid or its derivatives, were excluded from this study.
Furthermore, pathophysiological mechanisms involved in an obese state, especially the detrimental
effects of enhanced pro-inflammatory response and oxidative stress are discussed to highlight the
anti-obesity potential of gallic acid.

2. Inflammation and Insulin Resistance in Adipose Tissue

Generally, it is well accepted that adipose tissue expansion in an obese state is accompanied by
elevated inflammation and infiltration of inflammatory macrophages into adipose tissue. As displayed
in Figure 1, increased abdominal adipose tissue accelerates the production of pro-inflammatory
cytokines which are associated with the degree of metabolic dysfunction [30]. Adipose tissue is
highly vascularized and angiogenic [31]. This ensures adequate neovascularisation that is required
for oxygen and nutrient supply of the expanding tissue. An imbalance between expansion and
vascularization results in hypoxia, which promotes adipose tissue inflammation. Through the reduction
of angiogenetic growth components such as vascular endothelial growth factor (VEGF) during hypoxia,
several processes including the formation of new blood cells in the adipose tissue are hindered [32,33].
Adipose tissue expansion is usually accompanied by reduced vascularization, and this process may
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exacerbate metabolic disease pathogenesis [32,33]. In fact, effective modulation of angiogenesis and
vasculatures in adipose tissue has been proposed to be a viable mechanism to reverse obesity associated
complications [34]. However, uncontrolled adipose tissue expansion in an obese state is also associated
with dysfunctional lipid metabolism including excessive lipolysis (Figure 2), which in turn leads to
increased production and secretion of free fatty acids (FFAs) into the circulation [35]. Inflammation
localized in adipocytes, alters their adipokine profile, which may shift towards a pro-inflammatory
phenotype that is accompanied by a high expression and secretion of pro-inflammatory cytokines such
as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and other mediators of inflammation [36].
TNF-α is one of the earliest pro-inflammatory cytokines identified and its abnormally elevated levels
are associated with obesity, insulin resistance and T2D. For example, knockout of TNF-α in diet-induced
obese or leptin deficient (ob/ob) mice was linked with increased insulin sensitivity [37,38]. Such effects
have also been confirmed in human subjects and leptin resistant mice where elevated lipids or
TNF-α have been associated with obesity, insulin resistance and cardiovascular complications [39–41],
suggesting that adipose tissue inflammation and obesity are implicated in the development of T2D.
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Figure 2. An obese state is associated with dysfunctional lipid metabolism including excessive lipolysis,
which in turn leads to increased production and secretion of free fatty acids (FFAs). Elevated FFA levels
can cause an abnormal pro-inflammatory response, and subsequent development of insulin resistance.
Whereas, depleted intracellular antioxidant systems in the adipose tissue, mainly due to increased
production of reactive oxygen species (ROS) can generate oxidative stress, and this can further lead to
the development of insulin resistance. NADPH, nicotinamide adenine dinucleotide phosphate.

Macrophage infiltration into the adipose tissue can also initiate chronic immune activation, leading
to metabolic dysregulation and an increased risk of cardiovascular disease [42,43]. Several factors,
either derived from adipocytes or endothelial cells within adipose tissue, are thought to initiate the
recruitment of macrophages into adipose tissue. This leads to the infiltration of some immune cells,
such as neutrophils and T cells which subsequently induces hypoxia and adipocyte cell death [38].
The order of immune cell recruitment remains unclear however in obesity, macrophages represent
more than half of leukocyte population present in visceral and subcutaneous adipose tissue [30].
Some studies have demonstrated a direct association between elevated macrophages found in visceral
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white adipose tissue and increased body mass index [44]. In animal models of diet induced obesity,
macrophages constitute around 50% of all adipose tissue cells [30], whereas in lean mice and humans,
adipose tissue cells comprise of only 5% macrophages [30]. In fact, inhibiting macrophage infiltration
by blocking the monocyte chemoattractant 1 (MCP-1) ameliorates insulin resistance [45].

Adipokines such as adiponectin have been demonstrated to inhibit macrophage function [46,47]
and leptin has been shown to promote inflammation by inducing T lymphocyte activation and
proliferation [48]. Products of lipolysis such as FFAs activate T lymphocytes which result in increased
adipose mass and adipose tissue inflammation. Interestingly, T-helper cell 17 (TH17) cytokine levels
have been connected with inflammation in obese people living with T2D [49]. On the other side,
it has been found that hyperglycemia induces the production of TNF-α through the down-regulation
of monocyte cell surface CD33, a transmembrane receptor expressed by monocytes in peripheral
blood [50]. CD33 plays a crucial role in inhibiting cytokine production, and the reduction of CD33
expression in monocytes and lymphocytes is associated with increased production of inflammatory
cytokines such as TNF-α and IL-1 [50,51]. TH17 lymphocytes secrete IL-17, which triggers the
nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) leading to the activation of B
lymphocytes [52].

In relation to insulin signaling (Figure 2), high levels of FFA and pro-inflammatory adipokines
have been reported to induce insulin resistance in insulin sensitive cells such as adipocytes, hepatocytes
and cardiomyocytes [35,53,54]. This is mediated by inhibiting the insulin signaling pathway through
the activation of intracellular stress kinases such as the inhibitor κB kinase (IKK) complex and c-JUN
NH2-terminal kinase (JNK) [55,56]. Subsequently, this can induce either inflammation or the serine
phosphorylation of insulin receptor substrate 1 (IRS-1), leading to impaired downstream insulin
signaling [55,56]. Chronic levels of FFAs and pro-inflammatory cytokines can also activate the inducible
nitric oxide synthase (iNOS), which prompts nitric oxide (NO) production thereby causing a subsequent
degradation of IRS-1 [57]. Furthermore, NO also blocks phosphatidylinositol 3-kinase (PI3K)/protein
kinase B (Akt) activity by inducing s-nitrosylation of Akt [58]. The excessive production of saturated
FFAs increases the accumulation of toxic lipid metabolites such as ceramides, diacylglycerols, linoleic
acid, or phosphatidic acid, and activate phosphokinase C (PKC) [53]. Phosphorylation of this kinase
enzyme induces downstream activation of IKK and JNK, and this may lead to a subsequent interruption
of the insulin signaling and generation of oxidative stress [53]. This has been demonstrated in
experimental models either suppressing or overexpressing JNK [59].

3. Oxidative Stress in Adipose Tissue

In addition to driving an enhanced pro-inflammatory response, adipose tissue expansion during
the progression of obesity can result in excess production of toxic radical species that can cause
generation of oxidative stress. Although mechanisms involved in this process are complex, a strong
correlation between reduction of the vasculature (vessel rarefaction) and generation of oxidative stress
through reactive oxygen species (ROS) has been reviewed [60,61]. Besides their well-known detrimental
actions, ROS are physiologically important for acting as second messengers in cell signaling and they
also play a pivotal role in cellular homeostasis [62]. The term ROS encompasses free radical species,
including hydroxyl (·OH), superoxide (O2

• −), and hydrogen peroxide (H2O2). Oxidative stress is a
consequence of an imbalance between ROS production and scavenging, while chronic or sustained
oxidative stress may be associated with cellular damage by oxidizing cellular constituents such as
proteins, lipids and DNA [62,63]. In adipose tissue, obesity can induce oxidative stress mainly via
catalytic activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) enzyme or
through dysfunctional mitochondrial oxidative phosphorylation [63,64]. NOX remains the major route
for ROS production in adipocytes [65]. This plasma membrane-bound enzyme contributes to ROS
production by transferring electrons from NADPH to oxygen, thus generating O2

• −, which is further
converted to H2O2 by superoxide dismutase [65]. NOX exists in seven different isoforms that are
widely expressed in various tissue. Notably, NOX4 is predominantly expressed in murine and human
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adipocytes [65]. In obese mice, the mRNA expression levels of NOX subunits were solely increased
in adipose tissue and this was accompanied by increased ROS production in adipose tissue [66].
While adipose-specific deletion of NOX4 attenuated adipose tissue inflammation and the early onset of
insulin resistance in diet-induced obese mice [67], suggesting that NOX4 derived oxidative stress and
ROS production plays a role in the development of insulin resistance in adipose tissue. High levels
of FFAs and glucose, which are abundant in obesity seem to contribute to NOX activation and ROS
production (Figure 2). In cultured 3T3-L1 adipocytes, high levels of FFAs and glucose increased ROS
production via NOX activation [66,68]. In addition, treatment with NOX inhibitors or the silencing of
NOX4 appeared to ameliorate this effect by decreasing ROS generation [66,68].

The mitochondrial electron transport chain is among the main sites for ROS production in most
mammalian cells that mainly takes place during oxidative phosphorylation [69]. Several studies have
shown that mitochondrial-derived ROS production is associated with the late stages of obesity as
compared to NOX-derived ROS production, which is associated with the early stages of obesity [64].
In a morbidly obese state, adipocytes utilize FFAs derived from triglyceride stores via excessive
lipolysis for energy production, as a result of glucose deprivation due to insulin resistance [64].
Excessive FFAs lead to an overflow of electrons in the electron transport chain during oxidative
phosphorylation, resulting in their leakage and generation of O2

• − followed by the production
of other ROS molecules [64,70]. Excess production of mitochondrial derived ROS is associated
with aggravation of inflammation and development of insulin resistance in adipocytes through the
activation of the NF-κB [71]. The phenomenon of enhanced pro-inflammatory response and oxidative
stress in an obese state contributes significantly to the development of other metabolic complications
such as T2D, cardiovascular diseases and certain types of cancers [3,72]. Hence the increased focus on
developing therapeutic agents that target inflammation and oxidative stress with the aim of preventing
these diseases [72–75]. In addition to well-established antidiabetic drugs such as metformin and
insulin, literature on the anti-inflammatory and antioxidant effects of some other agents like salsalate,
diacerein and chloroquine has been previously reviewed [76]. Briefly, in addition to their beneficial
effects in maintaining blood glucose levels in diabetic patients, most of these drugs prompt diverse
effects ranging from reducing circulating oxidized low-density lipoprotein-induced pro-inflammatory
responses in monocytes and macrophages, to inhibiting IL-1β, TNF-α, and NF-κB levels in blood
and different body tissues. However, limitations, such as scanty studies on human subjects, as well
as controversial and inconclusive evidence, indicate the need to investigate alternative therapies.
Interestingly, increasing research shows that gallic acid can ameliorate inflammation and oxidative
stress, through improvement of mitochondrial biogenesis, among discussed mechanisms [28].

4. A Brief Overview of the Classification, Occurrence, and Bioavailability of Gallic Acid

Gallic acid (PubChem CID: 370), is a 3,4,5-trihydroxybenzoic acid with the molecular formula
C7H6O5 (MW 170.12 g/mol) that is abundantly found in gallnuts, sumac, witch hazel, tea leaves,
oak bark, and other plants [77]. Gallic acid belongs to a distinct group of naturally occurring
compounds known as phenolic acids, and is conventionally produced by hydrolysis of tannic acid.
This class of compounds is unique for containing a phenol ring that possesses at least one carboxylic
acid functionality (Figure 3). Phenolic acids are generally subclassified into benzoic acids comprising
seven carbon atoms (C6-C1) and cinnamic acids with nine carbon atoms (C6-C3) [12]. However,
gallic acid exist predominantly as hydroxybenzoic acids [77,78] and occurs in different forms of esters
and salts, including epigallocatechin gallate (PubChem CID: 65064) [79], ethyl gallate (PubChem
CID: 13250) [80], gallocatechin gallate (PubChem CID: 199472) [81], methyl gallate (PubChem CID:
7428) [82], propyl gallate (PubChem CID: 4947) [83], theaflavin-3-gallate (PubChem CID: 169167) [84]
and others (Figure 3).

Despite their wide distribution, the health effects of phenolic acids, including gallic acid,
can be affected by several factors including poor stability as well as restricted bioavailability and
absorption [85,86]. It is mostly accepted that bioavailability can vary among different phenolic acids,
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and the dietary abundance of a specific compound does not necessarily translate to best bioavailability
profile. Although available experimental studies in animals and humans have demonstrated that gallic
acid can be absorbed in the body [85,87–89], its effectiveness can be hindered due to rapid metabolism
and elimination [85,86]. Furthermore, like most natural products, additional studies specific to
determining food species with properties that elevate gallic acid bioavailability, and knowing how
much of certain foods one need to consume to have the beneficial dosage of this phenolic acid in plasma
are required. Nonetheless, after oral administration, it is estimated that approximately 70% of gallic acid
is absorbed and then excreted in the urine as 4-O-methylgallic acid [89,90]. Most importantly, several
methods have been tested in efforts to improve the bioavailability of gallic acid in the circulation and
target tissues. These include repeated dosing and the use of structural analogs or derivative compounds
of gallic acid, which significantly improves the plasma levels of this phenolic acid [91]. Similarly, other
researchers showed that using other systems such as phospholipid complexation or microencapsulation
can enhance the therapeutic efficacy of gallic acid through increasing absorption and bioavailability in
serum [92]. Recently, it has been shown that gallic acid significantly enhanced the bioavailability of
diltiazem, a calcium channel blocker widely used to treat hypertension, leading to the inhibition
of both cytochrome P450 isozyme (CYP3A)-mediated metabolism and P-glycoprotein-mediated
efflux in the intestine and/or liver [87]. This result is of interest since the process of absorption,
distribution, metabolism, and excretion of different agents can be affected by co-treatment with
other drugs, as well as various physiological and pathological changes. A recent study showed that
pharmacokinetic process of gallic acid is different between normal and rats subjected to myocardial
infarction [93]. Suggesting that additional studies are required to assess the pharmacokinetic profile of
herbal preparations or dietary nutrition containing gallic acid in different pathological conditions, as
well as its co-treatment with currently used agents. Nonetheless, experimental data reporting on the
ameliorative effect of gallic acid against metabolic complications has increased over the years.

Nutrients 2018, 10, x FOR PEER REVIEW  7 of 31 

 

[85,86]. It is mostly accepted that bioavailability can vary among different phenolic acids, and the 
dietary abundance of a specific compound does not necessarily translate to best bioavailability 
profile. Although available experimental studies in animals and humans have demonstrated that 
gallic acid can be absorbed in the body [85,87–89], its effectiveness can be hindered due to rapid 
metabolism and elimination [85,86]. Furthermore, like most natural products, additional studies 
specific to determining food species with properties that elevate gallic acid bioavailability, and 
knowing how much of certain foods one need to consume to have the beneficial dosage of this 
phenolic acid in plasma are required. Nonetheless, after oral administration, it is estimated that 
approximately 70% of gallic acid is absorbed and then excreted in the urine as 4-O-methylgallic acid 
[89,90]. Most importantly, several methods have been tested in efforts to improve the bioavailability 
of gallic acid in the circulation and target tissues. These include repeated dosing and the use of 
structural analogs or derivative compounds of gallic acid, which significantly improves the plasma 
levels of this phenolic acid [91]. Similarly, other researchers showed that using other systems such as 
phospholipid complexation or microencapsulation can enhance the therapeutic efficacy of gallic acid 
through increasing absorption and bioavailability in serum [92]. Recently, it has been shown that 
gallic acid significantly enhanced the bioavailability of diltiazem, a calcium channel blocker widely 
used to treat hypertension, leading to the inhibition of both cytochrome P450 isozyme 
(CYP3A)-mediated metabolism and P-glycoprotein-mediated efflux in the intestine and/or liver [87]. 
This result is of interest since the process of absorption, distribution, metabolism, and excretion of 
different agents can be affected by co-treatment with other drugs, as well as various physiological 
and pathological changes. A recent study showed that pharmacokinetic process of gallic acid is 
different between normal and rats subjected to myocardial infarction [93]. Suggesting that additional 
studies are required to assess the pharmacokinetic profile of herbal preparations or dietary nutrition 
containing gallic acid in different pathological conditions, as well as its co-treatment with currently 
used agents. Nonetheless, experimental data reporting on the ameliorative effect of gallic acid 
against metabolic complications has increased over the years.  

 
Figure 3. Chemical structures of gallic acid and its derivative compounds, including epigallocatechin 
gallate, ethyl gallate, gallocatechin gallate, methyl gallate, propyl gallate, theaflavin-3-gallate that are 
increasingly studied for their anti-obesity properties. 

Figure 3. Chemical structures of gallic acid and its derivative compounds, including epigallocatechin
gallate, ethyl gallate, gallocatechin gallate, methyl gallate, propyl gallate, theaflavin-3-gallate that are
increasingly studied for their anti-obesity properties.



Nutrients 2019, 11, 23 8 of 29

5. Experimental Models Investigating the Anti-Obesity Effects of Gallic Acid

Currently, various experimental models are being explored to investigate the anti-obesity
properties of pharmacological compounds, including natural products and plant-derived extracts [94].
Pre-clinical models of obesity are presently divided into different categories, the major ones being based
on genetic mutations or manipulation, while others focus on intact animals exposed to obesogenic
environments such as being maintained on high-fat diets [94]. Indeed, it was evident that the majority
of studies presented in Tables 1–4 investigated the therapeutic effect of gallic acid or extracts rich in
this phenol through the use of fat pads from high fat diet (HFD) fed rats and mice. The only reported
transgenic model of obesity used were ddY mice [95], a mouse model known to be susceptible to
obese characteristics, including cholesterol, hyperglycemia and hypertriglyceridemia in response
to obesogenic diet [95]. Besides the use of cultured 3T3-L1 adipocytes [21,96,97], other models that
were widely used to test the anti-obesity properties of gallic acid were in vitro experiments that
inhibit various enzymes involved in fat breakdown and metabolism [98,99]. Lipase inhibitors are
known to bind to lipase enzymes in the intestine, thus blocking hydrolysis of dietary triglycerides into
monoglycerides and FFAs [100]. Recently, in silico methods, such as molecular docking, have also
become popular. Such systems have been used to assess the inhibitory effect of gallic acid against
lipases [101,102].
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Table 1. Overview of studies reporting on the ameliorative effect of gallic acid against obesity-associated complications.

Author, Year Experimental Model, Dose Used, and Intervention Period Comparative/Combination Therapy Experimental Outcome and Proposed Mechanism

Strobel et al., 2005 [103] Adipocytes from epididymal fat pads from male Wistar rats
treated with gallic acid at 0.1–100 µM

Catechin, myricetin and quercetin were used at
0.1–100 µM, together with 1 µM insulin for 30 s

All compounds inhibited glucose uptake through
interfering with the function of glucose transporter

(GLUT) 4

Hsu et al., 2006 [104] 3T3-L1 pre-adipocytes treated with gallic acid at 43.3 µM for 24,
48 and 72 h

Chlorogenic acid, o-coumaric acid and
m-coumaric acid were used at 72.3, 48.2,

and 49.2 µM, respectively, for 24, 48, and 72 h

All phenolic acids, at varying degree, improved the
antioxidant status and inhibited proliferation

Hsu et al., 2007 [21] 3T3-L1 pre-adipocytes treated with 0.1–250 µM gallic acid for
24, 48, and 72 h None

Inhibited proliferation by blocking histone deacetylase
activity. Further enhanced protein expression of fatty acid
synthase (FAS), FAS ligand (FasL), as well as tumor protein

53 (p53) and activated caspase 3/9

Hsu and Yen, 2007 [105] High fat diet (HFD) fed male Wistar rats received 50 and 100
mg/kg body weight of gallic acid for 10 weeks None

Reduced body weight, organ weight of the liver and
adipose tissue weights. Further improved hepatic

glutathione levels

Jang et al., 2008 [106] HFD fed female C57BL/6 Cr Slc mice treated with gallic acid,
at 1% of diet for 7 weeks

Linoleic acid and a mixture of gallic acid and
linoleic acid were mixed with diet

All compounds showed hypolipidemic effects through
reducing body weights and hepatic oil droplets,

while improving lipid profiles

Booth et al., 2010 [107]

Male and female BR VAF/Plus rats given a combination of
rhubarb, astragalus, red sage, ginger, and turmeric, together
with gallic acid at 215, 430 and 860 mg/kg body weight for

20 days

None Significantly reduced body weights

Punithavathi et al., 2011 [108] Streptozotocin-induced diabetic male Wistar rats treated with
gallic acid at 10 and 20 mg/kg body weight for 21 days None

Reduced blood glucose and hepatic lipid peroxidation
products, glycoprotein components, lipids, and the activity

of β-Hydroxy β-methylglutaryl-CoA (HMG-CoA)
reductase.

Oi et al., 2012 [95] HFD fed female ddY mice treated with gallic acid at 15,
45 mg/kg body weight for 12 weeks

Black tea extract was used at 50, 100 mg/kg
body weight for 12 weeks

Reduced body weights, as well as inhibited pancreatic
lipase activity

Bak et al., 2013 [109] HFD fed male C57BL/6 mice treated with gallic acid at
10 mg/kg body weight for 2 weeks None

Reduction in adipocyte size was associated with
upregulation of peroxisome proliferator-activated receptor

gamma (PPAR)γ expression and activation of protein
kinase B (Akt) signaling pathway

Ou et al., 2013 [110] Oleic acid-induced proliferation of vascular smooth muscle
cells treated with gallic acid at 10–30 µM for 48 h None

Displayed anti-atherogenic effects, inhibited fatty acid
synthase (FAS), blocked endothelial nitric oxide synthase

and activated 5’ adenosine monophosphate-activated
protein kinase (AMPK)

Chao et al., 2014 [18] HFD fed male C57BL/6 mice treated with gallic acid at 50 and
100 mg/kg body weight for 16 weeks None

Partially reversed metabolic disturbances, including lipid
and glucose metabolism, amino acids metabolism, choline

metabolism and gut-microbiota-associated metabolism



Nutrients 2019, 11, 23 10 of 29

Table 1. Cont.

Author, Year Experimental Model, Dose Used, and Intervention Period Comparative/Combination Therapy Experimental Outcome and Proposed Mechanism

Doan et al., 2014 [111] HFD fed male C57BL/6 mice treated with gallic acid at 10
mg/kg of body weight for 9 weeks None

Induced browning of adipose tissue through activation of
AMPK/Nicotinamide adenine dinucleotide

(NAD)-dependent deacetylase sirtuin-1
(SIRT1)/peroxisome proliferator activated receptor gamma

coactivator 1 alpha (PGC1α) pathway. Also regulated
uncoupling protein 1

Gandhi et al., 2014 [20] HFD fed and streptozotocin induced diabetic male Wistar rats
treated with gallic acid at 20 mg/kg body weight for 28 days

Pioglitazone was used at 10 mg/kg body weight
for 28 days

Improved insulin sensitivity through translocation and
activation of GLUT4 in phosphatidylinositol -3-kinase

(PI3K)/p-Akt dependent pathway. Furthermore,
it moderately enhanced PPARγ expression

Pandey et al., 2014 [17]
HFD induced male C57BL/6 mice were treated with gallic acid

at 2, 4 and 8mg/kg body weight for 28 days None
Lowered serum levels of triglycerides, and low-density
lipoprotein, while increasing high density lipoprotein

concentrations

3T3-L1 adipocytes treated with gallic acid at 3.12, 6.25, 12.5, 25,
50 and 100 µM for 48 h

Aqueous extract Labisia pumila and pyrogallol
were used at 3.12–100 µM for 48 h

Both compounds and extract showed inhibitory effect on
fat droplet formation and triglyceride accumulation

Makihara et al., 2016 [16] 3T3-L1 adipocytes were treated with gallic acid at 10–30 µM
during differentiation period

Troglitazone was used at 10 µM, while
Terminalia bellirica hot water extract was used at

0.1, 1.0 and 10 during differentiation

The extract and gallic acid enhanced adipocyte
differentiation and adiponectin secretion, partially through

increasing adiponectin and fatty acid binding
protein-4 levels

Huang et al., 2018 [112] HFD fed male Wistar rats were treated with gallic acid at 10 or
30 mg/kg body weight for 8 weeks

Pioglitazone was used at 30 mg/kg body weight
for 8 weeks

Decreased the perirenal adipose tissues and restored
expression of insulin receptor and GLUT4 in the perirenal

adipose tissues

Table 2. Overview of studies reporting on the ameliorative effect of gallic acid derived compounds against obesity-associated complications.

Author, Year Experimental Model, Dose Used, and Intervention Period Comparative/Combination Therapy Experimental Outcome and Proposed Mechanism

Ong et al., 1995 [113]
Adipocytes from epididymal fat pads from male Wistar rats

treated with gallic acid at 1–1000 µM for various times from 20
min to 2 h

Tannic acid was used at 1–1000 µM for various
times from 20 min to 2 h

Tannic acid inhibited insulin stimulated lipogenesis
through promoting activation of insulin-receptor-associated

tyrosine kinase phosphorylation. Whereas, gallic acid
showed no effect

Ren et al., 2006 [114]

3T3-L1 pre-adipocytes incubated with
6-deoxytetra-O-galloyl-α-D-glucopyranose,

tetra-O-galloyl-α-D-xylopyranose and
6-chloro-6-deoxy-1,2,3,4-tetra-O-galloyl-α-D-glucopyranose at

30 µM for 15 min

None Improved glucose uptake



Nutrients 2019, 11, 23 11 of 29

Table 2. Cont.

Author, Year Experimental Model, Dose Used, and Intervention Period Comparative/Combination Therapy Experimental Outcome and Proposed Mechanism

Hsu and Yen, 2007 [96] 3T3-L1 adipocytes were treated with gallic acid at 1–250 µM for
72 h

o-coumaric acid and rutin were used at with
1–250 µM for 72 h

o-coumaric acid and rutin demonstrated better effect in
inhibiting glycerol-3-phosphate dehydrogenase activity,
and the expression of peroxisome proliferator activated

receptor (PPAR)γ, CAAT/enhancer-binding proteins
(C/EBPR) and leptin. While also upregulating

adiponectin levels

Hsieh et al., 2010 [97] 3T3-L1 and C3H10T1/2 adipocytes treated with gallic acid at
5–10 µM for 2 h

Compound C, n-acetyl-L-cysteine,
epigallocatechin gallate and other catechins,
such as epicatechin, epigallocatechin, and

epicatechin 3-gallate were used at 5–10 µM for
2 h

Epigallocatechin gallate performed better than other
compounds in inhibiting insulin stimulated glucose uptake,

with mechanistic involvement of 5’ adenosine
monophosphate -activated protein kinase

(AMPK) pathways

Totani et al., 2011 [22] High fat diet fed male Wistar rats treated with gallic acid at 90
ppm in diet for 12 weeks

(z)-3-(3,4,5-trihydroxybenzoyloxy)
propane-1,2-diyl dioleate (DOGGA) and octyl
gallate (OG) were both used at 90 ppm in diet

for 12 weeks

DOGGA showed pronounced effect than OG in reducing
the body weight in rats. Gallic acid showed no effect

Sergent et al., 2012 [115] In vitro bioassays testing epigallocatechin-3-gallate at 0.8 µM Kaempferol and quercetin were effective at 13.4
and 21.5 µM, respectively

Epigallocatechin-3-gallate presented pronounced pancreatic
lipase inhibitory effect than both kaempferol and quercetin

Park et al., 2014 [116] 3T3-L1 adipocytes treated with gallic acid at 30, 60 and 90 µM
during differentiation period

KMU-3, a derivative of gallic acid, was used at 1,
5 and 10 µM during differentiation period

KMU-3 outperformed gallic acid in suppressing lipid
accumulation in cells. Mechanistically, it inhibited

expressions of C/EBP-A, PPARγ, and Fas, as well as some
pro-inflammatory markers

Yang et al., 2015 [117]
3T3-L1 pre-adipocyte treated with epigallocatechin

3-O-(3-O-methyl) gallate and epicatechin-3-gallate at 20, 40 and
80 µg/mL for 48 h

None
Epigallocatechin 3-O-(3-O-methyl) gallate presented higher

activity than epicatechin-3-gallate in inhibiting
adipogenesis and proliferation

Jeon et al., 2016 [118] 3T3-L1 adipocytes treated with methyl gallate at 25, 50 and
75 µM for 48 h None

Inhibited adipogenesis through stabilizing β-catenin
suppression of PPARγ expression. Further stimulated

canonical Wnt/β-catenin signaling

Ediriweera et al., 2017 [14] MCF-7 cells treated with gallic acid at 90 µM for 48 h
Ascorbic acid (6.5 µM), catechin (583 µM),

curcumin (3.5), epigallocatechin gallate (7.5 µM),
and quercetin (70 µM) for 48 h

Only quercetin, curcumin and epigallocatechin gallate
showed significant protective effects against leptin-induced

proliferation

Zengin et al., 2017 [101] In vitro docking experiments assessing lipase inhibitory effect
of gallic acid

p-OH-benzoic acid, catechin, epigallocatechin
gallate, epicatechin, and rosmarinic acid

Epigallogatechin gallate and rosmarinic acid displayed best
docking scores for the inhibition of α-glucosidase,

α-glucosidase and lipase activities
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Table 3. Overview of studies reporting on the ameliorative effect of tea and fruits-rich in gallic acid against obesity-associated complications.

Author, Year Experimental Model, Dose Used, and Intervention Period Comparative/Combination Therapy Experimental Outcome and Proposed Mechanism

Ikeda et al., 2005 [15]

High fat diet fed male Sprague Dawley rats treated with tea
catechins or heat-treated catechins extracts, which are rich in
epigallocatechin gallate and epicatechin gallate at 1% in diet

and fed for 23 days

None
Tea and the extracts markedly reduced visceral fat

deposition and hepatic triglyceride levels. The activities of
fatty acid synthase and malic enzyme were also decreased

Amin and Nagy, 2009 [119] High fat diet fed male albino rats treated with herbal mixture
extract rich in gallic acid at 790 mg/kg body weight for 4 weeks

L-carnitine was used at 250 mg/kg body weight
for 4 weeks

The extract and carnitine improved disturbed lipid profile,
defective antioxidant stability, and high values of insulin

resistance parameters

Hogan et al., 2010 [120]

High fat diet fed male C57BLK/6J mice treated with Norton
grape pomace extract rich in garlic acid at 2.4 g/kg of feed in
order to dose each mouse at approximately 250 mg GPE/kg

body weight for 12 weeks

None

The extract lowered plasma C-reactive protein levels.
However, the extract did not improve oxidative stress as

determined by plasma Oxygen Radical Absorbance
Capacity (ORAC) assay, glutathione peroxidase, and liver

lipid peroxidation

Cao et al., 2011 [121] High fat diet fed male Sprague-Dawley rats treated with Pu-erh
tea extract at 0.5 g, 2 g and 4 g/kg body weight for 8 weeks None

The extract significantly lowered plasma total cholesterol,
triglyceride concentrations and low-density

lipoprotein-cholesterol levels. It further enhanced mRNA
levels of hormone-sensitive lipase

Chang et al., 2011 [102]
In vitro molecular docking screening of traditional Chinese
medicine, rich in gallic acid, for inhibition of fat mass and

obesity-associated protein activity

(S)-tryptophan-betaxanthin,
3-methoxytyramine-betaxanthin,

4-O-methylgallic acid, syringic acid, ethacrynic
acid, ferulic acid, caffeic acid, canavanine, and

3-methylthymidine

Gallic acid, together with (S)-tryptophan-betaxanthin,
3-methoxytyramine-betaxanthin and 4-O-methylgallic acid
were among the leading compounds shown to inhibit fat

mass and obesity-associated protein activity

Koh et al., 2011 [122]
High fat diet fed male Sprague Dawley rats treated with

Chinese sweet leaf tea (Rubus suavissimus), rich in gallic acid, at
0.22 g/kg body weight for 9 weeks

None

Significantly reduced body weight gain and abdominal fat
gain. Although food intake was not affected, blood glucose

was lowered, serum triglycerides and cholesterol were
significantly reduced

Peng et al., 2011 [123]
High fat diet fed male Syrian golden hamsters treated with

mulberry water extracts, rich in gallic acid, at 0.5%, 1% and 2%
of extract supplemented in diet for 12 weeks

None

The extracts lowered body weight and visceral fat,
accompanied with hypolipidemic effects by reducing

serum triacylglycerol, cholesterol, free fatty acid, and the
low-density lipoprotein/high-density lipoprotein ratio

Makihara et al., 2012 [98]

Type 2 diabetic obese male TSOD mice treated with a hot water
extract of Terminalia bellirica, rich in gallic acid, at 1% and 3%

supplemented in diet for 8 weeks None

The extract displayed preventive effect on obesity, insulin
resistance, and hyperlipidemia. It suppressed absorption of

triacylglycerol in an olive oil loading test (in vivo test)

In vitro pancreatic lipase activity inhibitory assay Demonstrated inhibitory effect on pancreatic lipase activity

Yuda et al., 2012 [99] In vitro pancreatic lipase inhibitory assay for black tea (Camellia
sinensis) extracts rich in gallic acid

Theaflavin 3-O-gallate, theaflavin 3’-O-gallate,
theaflavin 3,3’-O-gallate, epigallocatechin

gallate, and epicatechin gallate

All extracts inhibited pancreatic lipase but extracts obtained
at 100 to 140 ◦C showed the greatest lipase inhibition (IC50s

of 0.9 to 1.3 µg/mL)

Esposito et al., 2015 [11]
High fat diet fed male C57BL/6J mice treated blackcurrant

(Ribes nigrum L), rich in gallic acid, at 1% supplemented diet for
8 weeks

None The extract reduced body weight gain and improved
glucose metabolism
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Table 3. Cont.

Author, Year Experimental Model, Dose Used, and Intervention Period Comparative/Combination Therapy Experimental Outcome and Proposed Mechanism

Monika and Geetha, 2015 [124]
High fat diet fed male Sprague Dawley rats treated with

hydro-alcoholic fruit extract of avocado, rich in gallic acid, at
100 mg/kg body weight for 11 weeks

None

The extract reduced body mass index, adiposity index, total
fat pad mass, blood cholesterol, triglycerides, and

low-density lipoprotein. In addition, mRNA expression
levels of fatty acid synthase, lipoprotein lipase, and leptin

in adipose tissue was reduced

Colantuono et al., 2016 [125]
In vitro α-glucosidase, α-amylase and lipase inhibitory assays
to assess pomegranate peels enriched cookies containing high

levels of gallic acid and its derivatives
None Showed inhibitory activity against α-glucosidase,

α-amylase and α-lipase activities

De Camargo et al., 2016 [126]
In vitro antioxidant assays, as well as α-glucosidase and lipase

inhibitory activities for phenolics from winemaking
by-products rich in gallic acid

None In addition to strong antioxidant potential, extracts showed
inhibition of α-glucosidase and lipase activities

Park et al., 2016 [127]

High fat diet fed male C57BL/6 mice treated with an aqueous
ethanol extraction of black tea, rich in gallic acid, at 100 and 300

mg/kg body weight for 8 weeks. 3T3-L1 adipocytes were
exposed to 100 and 300 µg/mL during differentiation

None

Reduced body weight and body fat, improved fatty liver,
regulated blood glucose, and decreased blood cholesterol.

However, it did not have an effect on PPARγ
protein expression

Septembre-Malaterre et al.,
2016 [128]

3T3-L1 pre-adipocytes treated with pineapple and mango
extracts, rich in garlic acid, at 25 µM for 1 h None Inhibited hydrogen peroxide induced production of

reactive oxygen species

Torabi and DiMarco, 2016 [129]
3T3-F442A pre-adipocytes treated with grape powder extract,

rich in gallic acid, at 125–500 mg GP/mL during
differentiation period

None

The extract dose dependently induced adipocyte
differentiation via upregulation of glucose transported

(GLUT) 4, phosphatidylinositol-4,5- bisphosphate 3-kinase
(PI3K) and adipogenic genes

Pascual-Serrano et al., 2017 [130]
High fat diet fed male Wistar rats treated with grape seed

proanthocyanidin, rich in gallic acid, at 25 mg GSPE/kg body
weight for 3 weeks

Gallic acid was used at 7 mg gallic acid/kg body
weight for 3 weeks

Treatments did not reduce weight gain or reverse adiposity.
However, the extract induced antihypertrophic and

hyperplasic activities in white adipose tissue through
enhancing perilipin-1 and fatty acid binding protein 4

expression and restoring adiponectin

Simao et al., 2017 [131]

In vitro α-amylase, α-glycosidase, lipase, and trypsin enzymes
assays on aqueous extract from three cultivars of Psidium

guajava L. (Pedro Sato, Paluma and Século XXI) rich in
gallic acid

None
In presence of simulated gastric fluid, all cultivars showed
increase in the inhibition of lipase and α-glycosidase, and
decrease in inhibition of α-amylase and trypsin enzymes

Ge et al., 2018 [132] The network-based pharmacological analysis was used to
assess mulberry leaves rich in gallic acid None

The extract regulated Tnf-α, PPARγ, glycogen synthase
kinase-3 beta (GSK3B), insulin receptor substrate 1 (IRS1),

interleukin 6 (IL-6) and other proteins involved in diabetes
and obesity associated complications

Sandoval-Gallegos et al.,
2018 [133]

High fat diet fed male Wistar rats treated with methanolic acid
extract of Mangifera indica L. leaves, rich in gallic acid, at 100,

200 and 400 mg/kg for 32 days
None

In addition to increasing antioxidant capacity, the extract
improved hyperlipidemic markers such as cholesterol,

triglycerides, and atherogenic index

Wu and Tian, 2018 [134] In vitro α-glucosidase, α-amylase and lipase inhibitory activity
of flowers of pomegranate (Punica granatum) rich in gallic acid Acarbose The extract showed enhanced effect of suppress

α-glucosidase, α-amylase, and lipase activities
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Table 4. Overview of studies reporting on the ameliorative effects of other gallic acid-rich plants against obesity-associated complications.

Author, Year Experimental Model, Dose Used, and Intervention Period Comparative/Combination Therapy Experimental Outcome and Proposed Mechanism

Wu et al., 2010 [135]
High fat diet fed male C57BL/6 mice treated with Nelumbo

nucifera leaf extract-rich in gallic acid, supplemented at 0.5% in
diet for 6 weeks

Simvastatin was used at 1 mg/kg body weight,
while silymarin was used at 100 mg/kg body

weight for 6 weeks

The extract performed comparable to simvastatin and
silymarin in reducing body weight, body lipid

accumulation, and activities of fatty acid synthase, glutamic
oxaloacetic transaminase, and glutamic

pyruvic transaminase

Batista et al., 2014 [136]
High fat diet fed male Sprague Dawley rats treated

freeze-dried jaboticaba peel extract, rich in gallic acid, at 1%,
2% and 4% supplemented diet for 6 weeks

None
In addition to reducing circulating saturated free fatty acids,

the extract prevented lipid peroxidation in the liver and
increased its antioxidant defenses

Foddai et al., 2014 [137]
In vitro pancreatic triacylglycerol lipase, α-amylase and

α-glucosidase inhibitory assays for Limonium spp
(Plumbaginaceae) rich in epigallocatechins

Compared with acarbose, aqueous extracts of L.
contortirameum and L. virgatum

All extract showed inhibitory activity on pancreatic
triacylglycerol lipase, α-amylase and α-glucosidase

Irondi et al., 2016 [138]
In vitro pancreatic lipase and angiotensin 1-converting enzyme

inhibitory assays for Ocimum basilicum extracts containing
gallic acid

Ocimum gratissimum extracts

All extracts displayed high antioxidant properties.
However, Ocimum basilicum displayed slightly lower

activity than Ocimum gratissimum to inhibit pancreatic
lipase and angiotensin 1-converting enzyme

Abeysekera et al., 2017 [139] In vitro antilipidemic assays assessing potential of bark
extracts of Ceylon Cinnamon rich in gallic acid None

The extract showed inhibitory effect against HMG-CoA
reductase, lipase, cholesterol esterase, and

cholesterol micellization

Donado-Pestana et al., 2018 [19]
High fat diet fed male C57BL/6J mice treated with cagaita
(Eugenia dysenterica DC.) extracts at 7 and 14 mg gallic acid

equivalent (GAE)/kg body weight for 8 weeks
None

The extract protected against dyslipidemia, fasting
hyperglycemia, and attenuated both hepatic

gluconeogenesis and inflammation as observed by the
expression of tumor necrosis factor alpha (TNF-α) and

transcriptional factor NF-κB
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6. Evidence on the Anti-Obesity Properties of Gallic Acid

Although gallic acid was shown to be active against complications such as hemoptysis as early as
the 1800s [140], studies reporting on its anti-obesity properties started emerging about three decades
ago [113]. A search with the terms “gallic acid and metabolic disease” resulted in approximately
246 articles; however, only 60 studies were specific to gallic acid and its ameliorative effects against
obesity associated complications. Data reporting on the ameliorative effect of gallic acid or its derivative
compounds, as well as tea, fruits and other plants containing this phenolic acid are summarized in
Tables 1–4, while information on the effect of gallic acid in human studies is presented in Table 5.
Information presented in each table includes author details, year of publication, experimental model
and dose used, as well as the proposed mechanism of action, if any was investigated.

Through the use of experimental models discussed above, gallic acid has demonstrated an
increased potential to ameliorate a number obesity associated complications, as summarized in Table 1.
Concise evidence shows that gallic acid presents with and enhanced effect to reduce body weights
in obese rodents [95,105,107]. This effect can either be directly via inhibiting formation of lipid
droplets in the liver or adipose tissue, as well as directly by reducing serum levels of triglycerides and
low-density lipoprotein [105,106]. In cultured adipocytes or HFD fed rats, such properties have been
confirmed [17,18,103], with the modulation of glucose and lipid metabolism implicated as the major
mechanism proposed to be involved in the therapeutic benefits of gallic acid. Indeed, the modulatory
effect of lipids and glucose intermediates could be related to its effects in improving glucose
uptake [109,112], increasing energy expenditure [110], and enhancing insulin sensitivity [20,109].
Albeit regulation of PI3K/Akt signaling could explain its therapeutic potential in enhancing insulin
sensitivity [20,112], activation of AMP-activated protein kinase (AMPK) by gallic acid might influence
substrate metabolism, as reported elsewhere [111]. Nonetheless, several other natural compounds
such as celastrol and resveratrol have been shown to control glucose and lipid metabolism and thereby
ameliorate obesity associated complications, including inflammation and oxidative stress through
mostly modulating mechanisms such PI3K/Akt and AMPK [147,148]. In any case, although limited
information is available on its effect on inflammation, studies summarized in this review support
strong ameliorative effects of gallic acid against oxidative stress [104,105,108]. From these studies,
enhancing intracellular antioxidants such as glutathione and blocking lipid peroxidation products is
linked with reduced oxidative stress.
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Table 5. Human studies reporting on the therapeutic potential of gallic acid or gallic acid rich plants against obesity-associated complications.

Author, Year. Experimental Model, Dose Used, And Intervention Period Comparative/Combination Therapy Experimental Outcome and Proposed Mechanism

Roberts, 2006 [141]
Obese human subjects receiving capsules containing 200 mg of
gallic acid and 50 mg of a Chinese herbal decoction, three times

a day for 24 weeks
None

Did not cause weight loss or a decrease in food intake in
humans, principally due to the inability to achieve

adequate serum levels

Greenway et al., 2006 [142] Overweight women receiving number ten supplement (6 and
mg/day), containing gallic acid, for 8 weeks None The supplement did not affect weight change; however had

varied effect in food intake

Heber et al., 2007 [143]

Overweight human subjects received one or two pomegranate
ellagitannin-enriched polyphenol extract capsules per day

providing 710 mg (435 mg of gallic acid equivalents, GAEs) or
1420 mg (870 mg of GAEs) of extracts, respectively

None Improved antioxidant activity through a significant
reduction in thiobarbituric acid reactive substances

Skrzypczak-Jankun and Jankun,
2010 [144]

Plasma from human subjects treated with theaflavin digallate
at 18 µM for 30 min

PAI-1 inhibitor PAI039 and
epigallocatechin-3-gallate were used at 15 µM

for 30 min

Inactivated plasminogen activator inhibitor type
one (PAI-1)

Kubota et al., 2011 [145]
Pre-obese Japanese human subjects treated with water-soluble
black Chinese (Pu-Erh) tea extract rich in gallic acid at 333 mg

for 12 weeks
None Exhibited significant effects in reducing the mean waist

circumference, body mass index, and visceral fat values

Hernández et al., 2015 [146]
Obese patients undergoing biliopancreatic diversion received
treatment with 2 courses of oral bismuth subgallate at 200 mg

every 8 h for 12weeks, with a 4-week rest period
None Improved the quality of life score of patients
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Furthermore, it appears that increasing adiponectin levels and regulating genes involved
in adipogenesis and proliferation may be another mechanism by which gallic acid attenuates
obesity associated complications [16,21]. For instance, through upregulation of peroxisome
proliferator-activated receptor (PPAR)γ expression and activation of NAD-dependent deacetylase
sirtuin-1 (SIRT1)/peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC1α)
pathway this phenolic acid can induce browning of the adipose tissue [111]. It can influence
adipogenesis by upregulating protein expression of fatty acid synthase (FAS), FAS ligand (FasL),
as well as tumor protein 53 (p53) and activated caspase 3/9 [21]. Interestingly, similar to the mechanism
attributed to statin drugs, gallic acid can interfere with cholesterol synthesis by blocking the activity
of β-Hydroxy β-methylglutaryl-CoA (HMG-CoA) reductase [108]. However, although data on its
comparison with a known antidiabetic agent, pioglitazone [20], there is very limited literature that
compares the beneficial effects of gallic acid with widely used anti-obesity or antidiabetic drugs.

7. Evidence on the Anti-Obesity Effects of Gallic Acid Derived Compounds

Table 2 summarizes some of the well-investigated derivatives of gallic acid for their anti-obesity
properties, including 6-deoxytetra-O-galloyl-α-D-glucopyranose, tetra-O-galloyl-α-D-xylopyranose,
6-chloro-6-deoxy-1,2,3,4-tetra-O-galloyl-α-D-glucopyranose, epigallocatechin gallate, epicatechin-3-
gallate, N-(4-(tert-Butyl)phenyl)-3,4,5-trihydroxybenzamide (KMU-3), and methyl gallate [14,17,101,114–
118,144,146]. Briefly, some evidence summarized in Table 2 demonstrates that the therapeutic effects of
gallic acid were less effective when compared to a few pharmacological compounds, including some of its
derivatives. For example, tannic acid displayed better effect in attenuating insulin-stimulated lipogenesis
through activation of insulin-receptor-associated tyrosine kinase phosphorylation in Wistar rats [113].
O-coumaric acid and rutin displayed a better effect on inhibiting glycerol-3-phosphate dehydrogenase
activity, and reducing the expression of PPARγ, CCAAT/enhancer-binding proteins (C/EBP) and
leptin in cultured 3T3-L1 adipocytes [96]. Epigallocatechin gallate performed better in decreasing
insulin stimulated glucose uptake, with the mechanistic involvement of AMPK pathway [97]. Moreover,
(z)-3-(3,4,5-trihydroxybenzoyloxy) propane-1,2-diyl dioleate showed a more pronounced effect than
gallic acid in reducing the body weight in Wistar rats [22]. KMU-3 outperformed gallic acid in
suppressing lipid accumulation in 3T3-L1 adipocytes by downregulating the expressions of C/EBP-α,
PPARγ, and FAS [116]. Although did not show superior effect when compared to gallic acid, the
other derivative compounds of this phenolic acid such as 6-deoxytetra-O-galloyl-α-D-glucopyranose,
tetra-O-galloyl-α-D-xylopyranose, epigallocatechin-3-gallate, epigallocatechin 3-O-(3-O-methyl) gallate
and methyl gallate have presented and enhanced effect at improving glucose uptake, inhibiting
pancreatic lipase activity, and blocking adipogenesis and proliferation, respectively [14,101,114,115,
117,118]. The proposed mechanisms associated with the aforementioned beneficial effects include
regulation of CCAAT/enhancer-binding proteins (C/EBPR) and PPARγ expression, as well as
stimulation of Wnt/β-catenin signaling to mostly block adipogenesis and proliferation.

8. Evidence on the Anti-Obesity Properties of Tea and Fruits Containing Gallic Acid

Table 3 summarizes primary studies reporting on the beneficial effects of tea and fruits containing
gallic acid or its derivative compounds against obesity associated complications. Besides tea (Camellia
sinensis), fruits that have been shown to contain high levels of gallic acid or its derivative compounds
include avocado, ellagitannin-enriched polyphenolic extract, Eugenia dysenterica DC., freeze-dried
jaboticaba peel, grape powder, herbal mixture, Limonium spp. (Plumbaginaceae), Mangifera indica
L., mango, mulberry water, Nelumbo nucifera leaf, Norton grape pomace, number ten supplement,
Ocimum basilicum, pineapple, pomegranate peels, Psidium guajava L., Pedro Sato, Paluma and Século
XXI, Pu-erh tea, Punica granatum, Ribes nigrum L, Rubus suavissimus, and Terminalia bellirica [11,15,19,98,
99,102,119–139,142,143,145].

From data presented in Table 3, tea appears to be the leading gallic acid-rich product that is
explored for its anti-obesity properties. This may be due to the fact that tea is among the world’s most
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consumed beverage and is increasingly targeted for the treatment of lifestyle diseases [149]. Tea exists
in various forms, with green tea prepared in an unoxidized form, oolong partially oxidized, Pu-erh teas
requiring boiling water for infusion, while black tea undergoing the complete oxidation process [150].
Although present at varying amounts, all teas contain relatively high levels of catechins and gallic
acid [150,151]. Previous reports show that green tea can suppress adipogenesis and lipid synthesis
by increasing energy expenditure via thermogenesis, fat oxidation and fecal lipid excretion [152].
Consistently, evidence on this review showed that black and Pu-erh teas have great potential in
ameliorating obesity associated complications by mainly reducing visceral fat deposition and lowering
hepatic triglyceride levels [15,117,121,122,127,145].

Lowering plasma total cholesterol, triglyceride concentrations and low-density lipoprotein-
cholesterol levels, in addition to reducing activities of FAS and malic enzyme, are proposed to be
the mechanisms involved in the beneficial effects of tea against obesity linked complications. Thus,
suggesting that additional studies are required to explore molecular mechanisms involved in the
beneficial effect of gallic acid-rich teas against obesity associated complications, especially targeting its
role in adipogenesis, insulin signaling, inflammation, and oxidative stress processes.

In addition to tea, evidence on the therapeutic potential of fruits rich in gallic acid or its derivatives
in preventing obesity has also emerged. Fruits of interest include avocado, blackcurrant, grapes, guava,
mango, mulberry, and pomegranate (Figure 4). Most of these fruits are commercially available,
and their regular consumption has been linked with various health benefits. For instance, avocado
(Persea americana) extract at 100 mg/kg body weight was found to significantly reduce body mass index,
adiposity index, total fat pad mass, blood cholesterol, triglycerides, and low-density lipoprotein in HFD
fed rats [124]. Blackcurrant (Ribes nigrum) supplemented in diet for eight weeks reduced body weight
gain and improved glucose metabolism in HFD fed mice [11]. Although limitations in decreasing
oxidative stress in obese female mice have been observed [120], several beneficial effects for grapes
(Vitis vinifera) extracts have been identified by other researchers in cultured adipocytes and obese
rodents [120,129,130]. The beneficial effects include the capacity of this grape extract to reduce plasma
C-reactive protein levels, improve glucose uptake and insulin signaling, which may be related to
enhanced expression of perilipin-1, fatty acid binding protein 4, GLUT4, as well as PI3K. Another gallic
acid-rich fruit, guava (Psidium guajava L.), using in vitro-based assays, demonstrated inhibitory effects
on lipase, α-glycosidase, α-amylase and trypsin enzyme activities in the presence of simulated gastric
fluid [131]. Whereas in cultured adipocytes, mango (Mangifera indica) extract showed inhibitory effect
against hydrogen peroxide induced production of ROS [128]. On the other hand, mulberry (Morus alba
L.) extracts supplemented in diet were shown to reduce body weight of obese mice by suppressing
visceral fat, accompanied with hypolipidemic effects through the reduction in serum triacylglycerol,
cholesterol, and the low-density lipoprotein/high-density lipoprotein ratio [123]. Similarly, using a
network-based pharmacological analysis, mulberry extracts have been proposed to regulate TNF-α,
PPARγ, glycogen synthase kinase-3 beta (GSK3B), insulin receptor substrate 1 (IRS1), interleukin 6
(IL-6) and other proteins involved in diabetes and obesity associated complications [132]. Last but
not least, pomegranate (Punica granatum) extracts, using in vitro screening tools have demonstrated
an enhanced effect to suppress α-glucosidase, α-amylase, and lipase activities [134]. Overall results
presented in this review support the beneficial effects of fruits-rich in gallic acid on ameliorating
obesity associated complications [11,120,123,124,128–134]. However, most of these studies fall short
in confirming in vitro findings on other in vivo models, while also demonstrating limitation in
unravelling molecular mechanisms by which these fruits can protect against obesity linked anomalies.
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9. Anti-Obesity Properties of other Plants Rich in Gallic Acid

Besides wine-making products, other plant extracts and products rich in gallic acid or its derivatives
include cagaita (Eugenia dysenterica), Ceylon cinnamon (Cinnamomum verum), jaboticaba (Plinia cauliflora),
Limonium, Nelumbo nucifera, Ocimum basilicum and Terminalia bellirica (Table 4). Through the use of
various experimental models these plant extracts display a broad spectrum of ameliorative effects
against obesity associated complications. For example, the use of herbal mixture extract rich in gallic acid
at 790 mg/kg body weight for 4 weeks improved lipid profile, defective antioxidant stability, and insulin
resistance in HFD fed rats [119]. In a similar model of obesity, the use of cagaita extracts at 7 and 14 mg
gallic acid equivalent for 8 weeks protected against dyslipidemia, fasting hyperglycemia, and further
attenuated both hepatic gluconeogenesis and inflammation as observed by the expression of TNF-α and
transcriptional factor NF-κB [19]. Based on in vitro assays, the bark extracts of Ceylon Cinnamon
showed increased potential to inhibit HMG-CoA reductase, lipase and cholesterol esterase [139].
On the other hand, supplementation with Jaboticaba peel extract for 6 weeks reduced circulating
saturated FFAs, blocked lipid peroxidation in the liver and increased its antioxidant defenses in obese
rats [136]. Administration of Nelumbo nucifera leaf extract mixed at 0.5% in diet for 6 weeks was able to
reduce body weight, body lipid accumulation, and the enzymatic activity of FAS, glutamic oxaloacetic
transaminase, and glutamic pyruvic transaminase in obese mice [135]. Limonium spp. (Plumbaginaceae),
a epigallocatechin-rich extract inhibited the activities of pancreatic triacylglycerol lipase, α-amylase and
α-glucosidase [137]. Moreover, Ocimum basilicum and Terminalia bellirica extracts were shown to present
with high potential to inhibit the activity of α-glucosidase, α-amylase, lipase, HMG-CoA reductase and
angiotensin 1-converting enzyme [98,126,137–139]. Inhibition for some of these enzymes, especially
lipase may translate to restricted to food absorption resulting in loss of body weight; however in vivo
confirmation of such findings is necessary. Anyway, although there is still some difficulty in achieving
reduction in body weights in obese rodent models with gallic acid treatment, the overall findings
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demonstrate that the presence of gallic acid in some plants may enhance their therapeutic effects in
preventing obesity associated complications.

10. Human Studies Reporting on the Therapeutic Potential of Gallic Acid against
Obesity-Associated Complications

Despite the recorded increase in natural product and natural product derived drugs in clinical
trials [153], challenges of conducting clinical research of natural products still persists [154]. Toxicity,
adverse effects if used on long-term or at the incorrect dosages, and drug-to drug interactions are
some of the acknowledged draw backs identified in clinical evaluation of herbal medicine for the
treatment of obesity [155–157]. Two of the six clinical studies on the anti-obesity properties of gallic
acid included in the current review showed that this phenolic acid or its derivatives did not cause
weight loss or affect any of the markers assessed except for reducing food intake in obese subjects
assessed [141,142]. However, it is of note that although strong evidence linking consumption of natural
supplements with effective management of obesity is insufficient, most natural compounds have
been specifically credited for attenuating metabolic complications including systemic inflammation
and oxidative stress in overweight and obese individuals [158–160]. The other four included clinical
studies supported the beneficial effect of gallic acid and its derivatives in ameliorating some obesity
associated complications [143,144]. These studies showed that in addition to improving the quality
of life score of obese patients undergoing biliopancreatic diversion [146], gallic acid-rich extracts can
reduce the mean waist circumference, body mass index, and visceral fat values in pre-obese Japanese
human subjects [145], and suppress inflammation and oxidative stress associated markers [143,144].
From clinical results summarized in this review (Table 5), it is clear that future work exploring different
doses and larger cohorts is required to fully elucidate the therapeutic potential of gallic acid to combat
obesity and associated complications in human subjects. Furthermore, a comparison of its effects with
other available treatments, such as lipid lowering drugs and other obesity therapies, is still necessary.

11. Concluding Remarks

Obesity and the metabolic syndrome are of significant scientific and clinical interest, due to
their contribution in the rapid rise of noncommunicable diseases. Although mechanisms describing
the pathophysiology of these complications remain complex, inflammation and oxidative stress are
understood to be some of the major causal factors implicated in worsening of obesity associated
perturbations. Thus, in addition to reducing raised blood glucose or lipid levels, amelioration of
inflammation and oxidative stress may be another basic measure taken to improve cellular function in
an obese state. At present, only a few therapies are available to improve the lives of obese patients at
high risk of developing the metabolic syndrome. To date, some natural products, including gallic acid
have been shown to ameliorate complications associated with the metabolic syndrome. This may be
through mechanisms involving the reduction of excessive body fat, or ameliorating inflammation and
oxidative stress at a cellular level. Certainly, the pre-clinical data summarized in this review support
the beneficial effects of gallic acid or its derivatives in preventing obesity-associated complications.
Although demonstrated to partially interfere with allergic disorders by acting on G protein-coupled
receptor-35 [161], it is still not clear which receptors are targeted by gallic acid or how it could modulate
the discussed metabolic benefits. Other interesting questions raised in this review include identification
of gallic acid metabolites that may be involved in cellular functions, and investigating its broad effect
in increasing angiogenesis or endothelial cell function and thereby reduce oxidative stress. The major
shortfalls highlighted in this review include limited to no studies assessing the ameliorative effects
of gallic acid against obesity-associated complications in human subjects to confirm its therapeutic
potential. This can be further complemented with experiments exploring its concurrent use with current
lipid-lowering therapies to investigate whether it would of therapeutic benefit as an adjunct therapy.
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AMPK AMP-activated protein kinase
·OH hydroxyl radical
O2

• − superoxide anion
C/EBP CCAAT/enhancer-binding proteins
FAS fatty acid synthase
FASL FAS ligand
FFAs free fatty acids
HFD high fat diet
H2O2 hydrogen peroxide
iNOS inducible nitric oxide synthase
IKK inhibitor κB kinase
JNK c-JUN NH2-terminal kinase
IRS-1 insulin receptor substrate 1
IL-6 interleukin
MCP-1 monocyte chemoattractant 1
NO nitric oxide
NOX nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
NF-κB nuclear factor kappa-light -chain-enhancer of activated B cells
PPAR peroxisome proliferator-activated receptor
PGC1α peroxisome proliferator activated receptor gamma coactivator 1 alpha
PI3K phosphatidylinositol 3-kinase
PKC phosphokinase C
Akt protein kinase B
ROS reactive oxygen species
SIRT1 NAD-dependent deacetylase sirtuin-1
TH17 T-helper cell 17
TNF-α tumor necrosis factor alpha
p53 tumor protein 53
T2D type 2 diabetes
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