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ABSTRACT There is a critical need for an improved rapid diagnostic for enteric fe-
ver. We have previously demonstrated that serum IgA responses targeting Salmo-
nella enterica serovar Typhi hemolysin E (HlyE) and lipopolysaccharide (LPS) are able
to discriminate patients with acute typhoid from healthy controls in areas where en-
teric fever is endemic (healthy endemic controls) and from patients with other bac-
terial infections. We now have data demonstrating that IgA antibody responses
against these antigens also work well for identifying patients with acute S. Paratyphi
A infection. To develop a test for acute enteric fever detection, we have adapted a
point-of-care immunochromatographic dual-path platform technology (DPP), which
improves on the traditional lateral flow technology by using separate sample and
conjugate paths and a compact, portable reader, resulting in diagnostics with higher
sensitivity and multiplexing abilities. In this analysis, we have compared our stan-
dard enzyme-linked immunosorbent assay (ELISA) method to the DPP method in de-
tecting acute phase plasma/serum anti-HlyE and anti-LPS IgA antibodies in a cohort
of patients with culture-confirmed S. Typhi (n � 30) and Paratyphi A infection
(n � 20), healthy endemic controls (n � 25), and febrile endemic controls (n � 25).
We found that the DPP measurements highly correlated with ELISA results, and both
antigens had an area under the curve (AUC) of 0.98 (sensitivity of 92%, specificity of
94%) with all controls and an AUC of 0.98 (sensitivity of 90%, specificity of 96%)
with febrile endemic controls. Our results suggest that the point-of-care DPP Ty-
phoid System has high diagnostic accuracy for the rapid detection of enteric fever
and warrants further evaluation.

IMPORTANCE Enteric fever remains a significant global problem, and control pro-
grams are significantly limited by the lack of an optimal assay for identifying individ-
uals with acute infection. This is especially critical considering the recently released
World Health Organization (WHO) position paper endorsing the role of the typhoid
conjugate vaccine in communities where enteric fever is endemic. A reliable diag-
nostic test is needed to assess and evaluate typhoid intervention strategies and de-
termine which high-burden areas may benefit most from a vaccine intervention. Our
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collaborative team has developed and evaluated a point-of-care serodiagnostic assay
based on detection of anti-HlyE and LPS IgA. Our finding of the high diagnostic ac-
curacy of the DPP Typhoid System for the rapid detection of enteric fever has the
potential to have significant public health impact by allowing for improved surveil-
lance and for control and prevention programs in areas with limited laboratory ca-
pacity.

KEYWORDS S. Paratyphi A, S. Typhi, Salmonella, diagnostic, enteric fever,
paratyphoid, point-of-care, typhoid

Typhoid and paratyphoid fever, collectively known as enteric fever, affect more than
14 million people globally and result in around 135,000 deaths each year (1). Enteric

fever is prevalent in low-and-middle-income countries (LMICs) that lack access to clean
drinking water and improved sanitation, especially in southeast Asia, south Asia, and
sub-Saharan Africa (1).

A major unresolved issue in the management, prevention, and control of enteric
fever is the absence of a reliable and rapid diagnostic assay. Clinical diagnosis is
unreliable (2), and the current reference standard, blood culture, has several limitations,
including a low sensitivity of approximately 52 to 70% (3), a several day lag between
sample collection and result availability, and requirement of substantial laboratory
capacity. Serum-based diagnostics such as the Widal agglutination test, and commer-
cially available assays such as Typhidot and Tubex, while simple and rapid, offer only
moderate accuracy in specificity and sensitivity (4). Detecting antibodies secreted from
circulating, activated lymphocytes (TPTest) has high sensitivity and specificity for
diagnosing enteric fever, but it requires moderately advanced laboratory capacity and
requires 18 to 48 h to obtain results (5–7). A rapid diagnostic for enteric fever could
improve medical management, reduce overdiagnosis and overuse of antityphoid an-
timicrobials, which has driven antimicrobial resistance, and improve disease burden
estimates and surveillance in areas where enteric fever is endemic, so that informed
decisions can be made surrounding vaccine introduction (5). This is especially relevant
given the WHO’s prequalification and endorsement of the typhoid-conjugate vaccine
(TCV) (8).

There have been several high-throughput immunoscreens of the Salmonella enterica
serovar Typhi proteome to identify promising antigens that can be used to develop a
serodiagnostic assay that allows for accurate identification of patients with enteric fever
(9–13). The top candidate antigens have included S. Typhi lipopolysaccharide (LPS),
hemolysin E (HlyE), cytolethal distending toxin B (CdtB), flagellin, outer membrane
protein A (OmpA), pathogenicity island effector proteins SipB and SipC, among others
(9–13). All these studies have identified antibody responses to LPS and/or HlyE among
the best discriminators of acute typhoid patients from healthy controls from areas
where enteric fever is endemic (endemic healthy controls) and other febrile controls
(9–13). In a recent analysis, we applied supervising learning methods and two inde-
pendent cohorts from Bangladesh and Nepal to identify the best antigen and antibody
isotype combinations to identify patients with acute typhoid fever. We found that
serum IgA responses targeting S. Typhi hemolysin E (HlyE) and LPS are able to
discriminate patients with acute typhoid illness from healthy endemic area controls as
well as from patients with other bacterial infections (14). We now have data demon-
strating that IgA antibody responses against these antigens also work well for identi-
fying patients with acute S. Paratyphi A infection, which accounts for 10 to 50% of
enteric fever infections in areas of Asia (1, 15).

To translate the serologic testing of HlyE and LPS IgA responses into a multiplex
rapid test for enteric fever, we have used Chembio’s patented DPP (Dual Path Platform
[16, 17]), a point-of-care immunochromatographic technology. The DPP Typhoid Sys-
tem consists of a sample path that distributes a small volume of sample (�10 �l of
whole blood, plasma, or serum) onto an antibody detection strip containing a test line
for LPS, a test line for HlyE, and a control line (Fig. 1). Results are obtained with the DPP
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Micro Reader, a portable, battery-powered instrument using assay-specific algorithms
to verify the presence of the control line and displays a numerical intensity value for
each test line. The device has been designed to minimize human interpretation error.
This multiplex system has the capability of measuring plasma IgA responses to both LPS
and HlyE with high sensitivity and specificity, and its results were highly correlated with
ELISA results.

RESULTS AND DISCUSSION
Characterization of anti-LPS and HlyE IgA responses. We evaluated plasma and

serum IgA responses to LPS and HlyE antigens by ELISA and DPP Typhoid System using
previously collected samples from three cohorts of individuals: (i) patients at the acute
phase of enteric fever (day of presentation to a health facility), with blood culture-
confirmed S. Typhi (n � 30) or S. Paratyphi A (n � 20); (ii) healthy controls from
Bangladesh, an area where typhoid is endemic (n � 25); and (iii) febrile controls from
Nepal with other bacteremias (i.e., Staphylococcus aureus, Escherichia coli, Klebsiella
pneumoniae, Streptococcus spp.; n � 25).

We found higher IgA immunoreactivity to LPS and HlyE in S. Typhi and S. Paratyphi
A cases by ELISA and DPP compared to healthy controls from areas where enteric fever
is endemic (endemic healthy controls) (P � 0.0001) and endemic febrile controls (P �

0.0001) (Fig. 2 and 3, respectively).
Comparison of DPP Typhoid System measurements to reference ELISA results.

The anti-LPS and HlyE IgA ELISA and DPP measurements had a high degree of linear

FIG 1 DPP Typhoid System. The test cassette and DPP Micro Reader with holder and typhoid test device
are shown. (A and B) The DPP Typhoid System consists of a test cassette, which consist of a sample path
and reagent path which intersect in the analyte detection area labeled 1 (LPS), 2 (HlyE), and C (control)
(A) and the DPP Micro Reader, a portable, battery-powered instrument that displays a numerical intensity
value for the test lines (B).

FIG 2 Characterization of anti-LPS IgA plasma responses using ELISA (A) and the DPP Typhoid System (B). Individual and median anti-LPS
responses with interquartile range for patients at acute phase (day 0) of enteric fever (S. Typhi or Paratyphi A), healthy and febrile controls from
a typhoid-endemic area (endemic healthy and endemic febrile). Differences between cases and control groups were assessed using the
Mann-Whitney test. A P of �0.05 was considered significant. ***, P � 0.0001 (red, S. Typhi; black, S. Paratyphi A).
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correlation in both negative and positive serum samples, r � 0.86 (P � 0.0001) and
r � 0.82 (P � 0.0001), respectively (Fig. 4). To further characterize DPP performance
agreement with ELISA, we also performed a Bland-Altman plot of the log-transformed
data, which demonstrated strong agreement between the two tests without significant
bias (Fig. 5).

Accuracy of the DPP Typhoid System. We assessed classification accuracy of the
DPP Typhoid System by receiver operating characteristic (ROC) area under the curve
(AUC) (Table 1 and Fig. 6). The combined antigens (HlyE and LPS) in the DPP Typhoid
System distinguished plasma from enteric fever cases from individuals presenting with
other invasive bacteremias with a sensitivity of 90% and specificity of 96% (AUC, 0.98).
HlyE alone had an AUC of 0.95 (sensitivity of 90%, specificity of 92%), and LPS alone had
an AUC of 0.95 (sensitivity of 90%, specificity of 88%). When including all endemic
controls (healthy and febrile), the DPP had an AUC of 0.98 for the combined antigens
(sensitivity of 92%, specificity of 94%), AUC of 0.93 for HlyE alone (sensitivity of 90%,
specificity of 84%) and AUC of 0.96 for LPS alone (sensitivity of 90%, specificity of 92%).

We also evaluated receiver operating characteristic curves for S. Typhi and S.
Paratyphi A cases, independently, for each antigen (see Table S1 in the supplemental
material). Use of the combined antigens (HlyE or LPS) by the DPP Typhoid System could
discriminate typhoid fever from endemic febrile controls with a sensitivity of 96% and
specificity of 100% (AUC, 1.00), and all endemic controls with a sensitivity of 96% and
specificity of 100% (AUC, 1.00). These results were in line with our prior findings of

FIG 3 Characterization of anti-HlyE IgA plasma responses using ELISA (A) and DPP (B). Individual and median anti-HlyE responses with
interquartile range for patients at acute phase (day 0) of enteric fever (S. Typhi or Paratyphi A), healthy and febrile controls from a
typhoid-endemic area (endemic healthy and endemic febrile). Differences between cases and control groups were assessed using the
Mann-Whitney test. A P of �0.05 was considered significant. ***, P � 0.0001 (red, S. Typhi; black, S. Paratyphi A).

FIG 4 Correlation between ELISA and DPP Typhoid System measurements. (A and B) Plot of anti-LPS (A) and anti-HlyE (B) IgA plasma
measurements by ELISA versus DPP Typhoid System of acute enteric fever cases (red, S. Typhi or S. Paratyphi A) and controls (black,
endemic healthy and febrile controls). The Pearson correlation coefficient (r) is shown.
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excellent discriminatory values for HlyE and LPS IgA responses in identifying patients
with typhoid fever. The discriminatory power of anti-LPS IgA for paratyphoid A fever
and controls was not as high as for typhoid fever, but the combined antigens measured
by DPP could accurately distinguish samples from patients with paratyphoid fever from
samples of endemic febrile controls with a sensitivity of 90% and specificity of 92%
(AUC, 0.97) and from all endemic controls with a sensitivity of 90% and specificity of
88% (AUC, 0.97) (Table S1).

Conclusion. There is a critical need for a rapid, accurate diagnostic assay for enteric
fever. Available rapid serodiagnostics for typhoid fever have moderate sensitivity and
specificity (3), and there have been limited evaluations of rapid test diagnostics for
paratyphoid fever (4). In this study, we developed and evaluated a rapid assay for the
detection of patients with typhoid and paratyphoid fever, the DPP Typhoid System,
based on the detection of serum/plasma IgA responses to LPS and HlyE. To evaluate the
performance of the assay, we tested samples collected from enteric fever cases and
controls by the DPP Typhoid System and by our reference ELISA method (14). The
detection of anti-HlyE and LPS IgA in samples by DPP showed excellent agreement with
results from ELISA, demonstrated high sensitivity and specificity in identifying patients
with culture-confirmed enteric fever, and distinguished those individuals from controls
in areas where enteric fever is endemic. These data suggest that the DPP Typhoid
System may be a promising tool for diagnosing individuals with enteric fever.

Advantages of this potential point-of-care assay include its ease of handling, rapid
turnaround time, minimal sample volume requirement (with potential to use 10 �l of
finger prick blood, serum, or plasma), and minimal to no requirement of laboratory
capacity or training. In addition, it can identify individuals with either S. Typhi or S.
Paratyphi A infection. Prior serodiagnostic assays for typhoid fever have been based on
IgG and/or IgM responses to various S. Typhi target antigens (4). These assays have had
limited sensitivity and specificity due to the high background seroprevalence of IgG

FIG 5 Bland-Altman plot of ELISA and DPP Typhoid System measurements. (A and B) Plot of log-transformed
anti-LPS (A) and anti-HlyE (B) IgA plasma measurements by ELISA and DPP Typhoid System of acute enteric fever
(S. Typhi and S. Paratyphi A) cases and controls (endemic healthy and febrile controls). The red dashed line indicates
the mean difference between measurements. The blue dotted lines represent the 95% limits of agreement.

TABLE 1 Receiver operating characteristic area under the curve (AUC) for anti-HlyE and LPS IgA using DPP for distinguishing enteric
fever cases (S. Typhi or S. Paratyphi A) patients from controlsa

Antigen(s)

Febrile controls All endemic controls

AUC
Specificity
(%)b

Sensitivity
(%)c AUC

Specificity
(%)

Sensitivity
(%)

HlyE 0.95 (0.90�1.00) 92 89 0.93 (0.88�0.98) 84 84
LPS 0.95 (0.90�1.00) 88 88 0.96 (0.92�1.00) 92 91
Both 0.98 (0.9�1.00) 96 90 0.98 (0.96�1.00) 98 92
aValues for both antigens are shown in boldface type.
bSpecificity at 90% sensitivity.
cSensitivity at 90% specificity.
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and the cross-reactivity of IgM in areas where enteric fever is endemic (4). Measurement
of IgA in the DPP Typhoid System overcomes some of these limitations due to the
relative transience in plasma of antigen-specific IgA compared to IgG antibodies and
improved specificity over IgM antibodies (11).

A limitation of our analysis is that the test thus far has been evaluated only with
stored plasma and serum samples from a small cohort of adult cases and controls from
Asia. Future studies will need to include assessment of assay performance for (i) other
sample types (e.g., capillary whole blood from finger stick); (ii) other populations/
settings (e.g., Africa, elsewhere in Asia); (iii) different age groups, particularly young
children; (iv) different stages of illness (e.g., days of fever prior to presentation), and (v)
various alternative febrile illness (e.g., dengue, chikungunya, scrub typhus, and other
invasive bacteremias, particularly invasive nontyphoidal Salmonella [iNTS]), to evaluate for
cross-reactive antibodies to HlyE and LPS. HlyE is present in human-specific Salmonella
serovars, S. Typhi and S. Paratyphi A. Although absent in the primary Salmonella serovars
causing iNTS (S. Typhimurium and S. Enteritidis), it can be found in other iNTS (including S.
Schwarzengrund, Montevideo, Bredeney) (18–20) as well as several strains of E. coli (21, 22).
We have previously demonstrated that HlyE IgA retained discriminatory value with other
non-Salmonella Gram-negative organisms (i.e., E. coli and Klebsiella) (14). Another study of
Nigerian children that included 86 S. Typhi and 29 iNTS culture-confirmed cases demon-
strated negligible IgA responses to HlyE except for two patients with low immunoreactivity
(11). This study did demonstrate some cross-reactivity to S. Typhi LPS in patients with iNTS
(IgM � IgG � IgA) (11), which may potentially be due to conserved epitopes in the core
lipopolysaccharide and lipid A regions (11). Further studies of DPP will need to be per-
formed to investigate whether IgA responses to our selected antigens (LPS and HlyE) are
able to discriminate enteric fever from iNTS.

Despite the limitations of our analysis, the excellent agreement of the DPP Typhoid
System with our ELISA method, which has been tested more broadly (14), suggests that
the DPP Typhoid System is a promising assay for the rapid detection of enteric fever
and warrants further prospective analysis.

MATERIALS AND METHODS
Plasma/serum samples. Samples were obtained from participants with enteric fever on the day of

presentation to the International Centre for Diarrheal Disease Research, Dhaka, Bangladesh (icddr,b)
Dhaka hospital, Mirpur field site (Dhaka, Bangladesh), or Dhulikhel Hospital, a Kathmandu University
Hospital (Kavrepalanchowk), Nepal, with self-reported fever of 3- to 7-day duration without an obvious
focus of infection or alternate diagnosis. Bacteremia was confirmed by blood culture using BacT/Alert or
Bactec 9050 automated system (BD Diagnostics) with identification of isolates by standard culture and
biochemical tests (23, 24). Serum/plasma was also collected from healthy typhoid-endemic and North
American controls and from North American patients presenting with an alternative febrile illness
(PCR-confirmed influenza or bacteremia with S. aureus, E. coli, or K. pneumoniae). All samples were
collected with the approval of the following Research and Ethical Review Committees and/or Institutional

FIG 6 Receiver operating characteristic (ROC) curve for anti-LPS and HlyE IgA response using DPP for the diagnosis of acute enteric fever. ROC curve plotting
the specificity versus sensitivity of distinguishing patients with acute enteric fever (S. Typhi or S. Paratyphi A) from all endemic controls (healthy and febrile
controls) (A) and endemic febrile controls (B). 95% CI, 95% confidence interval.
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Review Board for Human Subjects Research: International Centre for Diarrheal Disease Research, Dhaka,
Bangladesh (icddr,b), Nepal Health Research Council (Kathmandu, Nepal), Stanford University, and
Massachusetts General Hospital. Written informed consent was obtained from all individuals or their
guardians prior to study participation. Additional North American healthy control samples used in this
study were procured from ZeptoMetrix, Franklin, MA, USA.

Enzyme-linked immunosorbent assay (ELISA). ELISA was performed on all the samples using S.
Typhi LPS and purified HlyE as previously described (14). To compare across plates, we normalized ELISA
results by calculating the ratio of each sample reading to that of a standard included on the same plate.
The standard for HlyE was a chimeric monoclonal antibody to HlyE and for LPS, it was an in-house serum
pool made from sera from patients with typhoid fever. The ratio was multiplied by 100 and expressed
as ELISA units.

Development of chimeric HlyE MAbs. Immunizations and hybridoma development were performed
by the Monoclonal Antibody Core facility of the Dana-Farber Cancer Institute, Boston, MA, as previously
described (25, 26). Briefly, three mice (BALB/c, C57BL/6, and Swiss-Webster), 4 to 6 weeks old, were obtained
from Charles River Laboratories (Wilmington, MA). All animals were acquired and maintained according to the
guidelines of the Institutional Animal Care and Use Committee of Harvard Standing Committee. Mice were
immunized at three subcutaneous sites and one intraperitoneal site with 50 �g of purified HlyE emulsified
with an equal volume of complete Freund’s adjuvant (Sigma Chemical Co., St. Louis, MO). Mice were again
boosted at day 14, and sera were collected. The mouse with the highest serum titer to HlyE was boosted again
at day 35, and then the spleen and lymph nodes were collected, and cells were processed for fusion with SP
2/0 myeloma cells (ATCC no. CRL8-006, Rockville, MD) at a ratio of 2:1. Positive hybridomas and subclones
were selected by indirect ELISA on HlyE and counterscreened with an irrelevant antigen. The sequenced
variable regions of the light and heavy chains of selected hybridomas were cloned into pcDNA3.4 vector
containing the human IgG1 and IgA1 heavy chain. The resulting plasmids were then transfected into Expi293F
cells. Antibodies were purified from the cell culture supernatant by IgA affinity resin and analyzed by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Western blotting, and size exclusion chroma-
tography (SEC)-high-performance liquid chromatography (HPLC) (TSKgel G3000SWxl column; Tosho) to
confirm molecular weight and purity. Sequencing, cloning, and antibody purification were performed by
GenScript (Piscataway, NJ).

DPP Typhoid System. The DPP Typhoid System employs Chembio’s patented Dual Path Platform
(DPP) technology, which consists of a sample path and reagent path that intersect in the analyte
detection area in the readout window of the test cassette that is labeled test (1, 2) and control (C) (Fig. 1).
It employs an antibody conjugated (anti-human IgA) to colloidal gold dye particles and S. Typhi LPS and
HlyE antigens that are bound to the membrane for capture of the antibody, if present in the sample. To
initiate the test, a 10-�l specimen is diluted with 5 drops (150 �l) of sample buffer in a sample tube, and
100 �l sample and buffer mixture is applied to the Sample � Buffer well (well 1) of the DPP test cassette.
The specimen flows along the sample path membrane and is delivered to the test zone of the reagent
strip, where specific LPS and HlyE antigens (test 1 and 2, respectively) and a control (C) (protein A) are
immobilized. If the specimen contains anti-LPS anti-HlyE IgA antibodies, they bind instantly to the
respective immobilized test antigens (test 1 and 2), while nonspecific antibody binds to the protein A
control (C) line. Five minutes after adding the specimen, 6 drops (150 �l) of buffer are added to the Buffer
well (well 2). The buffer hydrates and releases the anti-human IgA antibody gold conjugate, which
migrates to the test zone and binds to the captured IgA antibodies targeting LPS and/or HlyE in the
respective test areas, producing a pink/purple line. The gold conjugate continues to migrate through the
membrane, producing a pink/purple line in the control (C) area containing protein A. This procedural
control serves to demonstrate that specimen and reagents have been properly applied and have
migrated through the device. In the absence of antibodies against LPS or HlyE in the patient’s sample,
there are no pink/purple lines produced in the test 1 and 2 area.

Results were read using the DPP Micro Reader (Fig. 1) between 15 and 20 min after the addition of the
sample/buffer to well 1. The DPP Micro Reader is a portable, battery-powered instrument that records
the reflectance of the test strip surface and uses assay-specific algorithms to interpret the color intensity of
the control and test lines. It displays a qualitative result for each analyte (reactive, nonreactive, or invalid) after
approximately 3 s based on test-specific cutoff values loaded into the reader. The reader also displays
numerical values of test line intensity, allowing for semiquantitative evaluation of antibody levels.

Statistical analysis. The distribution of antibody responses in culture-confirmed cases and controls
was compared by Wilcoxon rank sum test. The agreement between ELISA and DPP measurements was
assessed by Pearson’s correlation and Bland-Altman analysis. The accuracy of ELISA and DPP were
assessed by receiver operator characteristic area under the curve (ROC AUC). All analyses were performed
using GraphPad Prism 8.2.0 and R software version 3.6.0 (R Project for Statistical Computing; https://
www.R-project.org/).

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
TABLE S1, DOCX file, 0.1 MB.
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