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Abstract
The conception of how the immune system is organized has been significantly challenged over the last years. It became 
evident that not all lymphocytes are mobile and recirculate through secondary lymphoid organs. Instead, subsets of immune 
cells continuously reside in tissues until being reactivated, e.g., by a recurring pathogen or other stimuli. Consequently, the 
concept of tissue-resident immunity has emerged, and substantial evidence is now available to support its pivotal function in 
maintaining tissue homeostasis, sensing challenges and providing antimicrobial protection. Surprisingly, insights on tissue-
resident immunity in the barrier tissues of the female reproductive tract are sparse and only slowly emerging. The need for 
protection from vaginal and amniotic infections, the uniqueness of periodic tissue shedding and renewal of the endometrial 
barrier tissue, and the demand for a tailored decidual immune adaptation during pregnancy highlight that tissue-resident 
immunity may play a crucial role in distinct compartments of the female reproductive tract. This review accentuates the 
characteristics of tissue-resident immune cells in the vagina, endometrium, and the decidua during pregnancy and discusses 
their functional role in modulating the risk for infertility, pregnancy complications, infections, or cancer. We here also review 
data published to date on tissue-resident immunity in the male reproductive organs, which is still a largely uncharted territory.
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Concept of tissue‑residency

In various non-lymphoid tissues—predominately at barrier 
sites such as the skin, lung or intestinal mucosa—distinct 
subsets of immune cells form a pool of tissue-resident lym-
phocytes where they are retained upon, e.g., pathogen clear-
ance or antigen encounter. These cellular subsets include 
conventional  CD4+ and  CD8+ T cells, but also so-called 
innate T cells, such as γδ T cells, mucosa-associated invari-
ant T (MAIT) cells, natural killer T (NKT) cells, and innate 
lymphoid cells (ILCs).

The classical understanding of peripheral T cell function 
has long been that circulating thymus-derived naïve T cells 

enter secondary lymphoid organs such as the spleen and 
lymph nodes. Here, the T cells may be activated upon con-
tact with antigens presented by specific antigen-presenting 
cells (APC). If antigen contact does not occur, naïve T cells 
egress the lymphoid tissue through the lymph vessels into 
the blood to patrol to another secondary lymphatic organ. 
Once naïve T cells encounter an antigen via their respec-
tive major histocompatibility complex (MHC), activation, 
and rapid proliferation follows, and the T cells leave the 
lymphatic tissue and migrate to, e.g., the site of infection as 
effector T  (TEFF) cells. After executing their specific effec-
tor function, most of the  TEFF cells undergo apoptosis while 
a small fraction of T cells returns to secondary lymphoid 
organs to form a reservoir of immunological memory, which 
can be efficiently reactivated if the specific antigen is re-
encountered. However, T cell memory function is not only 
maintained in secondary lymphoid organs, but additionally 
executed locally by tissue-resident memory T cells  (TRM).

This has sparked the concept of a whole-body immune 
system rather than an immune system located in primary and 
secondary lymphoid organs. Experimental evidence of tissue-
residency was initially generated in parabiosis experiments. 
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Hereby, two congenic mice are surgically conjoined by their 
circulatory system. Circulatory T cells are subsequently 
being exchanged between the mice until an equilibrium is 
achieved between both hosts, while a significant fraction of 
cells remain immobile and resides in specific organs [1]. The 
proof of concept that these immobile, tissue-resident cells are 
a functionally relevant, autonomous subpopulation was pro-
vided by Wakim et al. and Gebhardt et al., who described an 
enhanced protection from subsequent infection with herpes 
simplex virus (HSV) in naïve mice which had received skin 
grafts. These grafts were taken from donor mice upon clear-
ance of HSV infection [2, 3]. Additional explant experiments 
further highlighted tissue-residency in an organ-specific man-
ner. Here, pathogen-specific T cells remained in the tissue 
graft (ganglia, intestine) and became reactivated during a 
pathogen rechallenge of the recipient [4].

Studies performed outside the context of pathogen 
reencounters advanced the understanding of  TRM cells. 
These studies challenged the concept that  TRM cells are 
terminally differentiated, immediate responders, since 
epigenetic analyses revealed a signature which is more 
similar to circulating memory T cell subsets than recently 
activated effector T cells [5, 6].

The functional role of  TRM cells can be subsumed as 
maintaining tissue integrity especially during infections, 
hereby restoring tissue homeostasis and protection from 
reinfection. Together with other tissue-resident lympho-
cyte populations that do not meet the classical definition 
of a memory cell in the context of infection, they are also 
engaged in tissue surveillance in malignancies, autoim-
munity, and atopy [7–9]. However, tissue-resident immune 
cells also show a great degree of functional diversity, mir-
rored by beneficial as well as harmful effects for the host 
(Fig. 1). To date, tissue-resident immune cells have best 
been studied in epithelial barrier tissues in both, animal 
models and humans, including the gastrointestinal tract, 
lung and skin [10–13]. However, insights into the func-
tional role of tissue-resident immunity in the female repro-
ductive tract are surprisingly sparse.

The Female Reproductive Tract

Clearly, the female reproductive tract (FRT) shows a unique 
plasticity throughout life. Anatomically, it can be divided 
into two parts: the upper FRT is formed by the ovaries, the 
uterine tubes, the uterus, and the endocervix. The lower 
FRT consists of the ectocervix, the vagina, and the external 
genital organs [14]. As characteristic for barrier tissues, 
the FRT mainly consists of mucosal tissue that can be phe-
notypically and functionally divided into type I and type 
II. Type I mucosal surface consists of simple columnar 
epithelium while type II represents a stratified squamous 
epithelial layer. The ectocervix and the outer and inner 
vagina consist of type II mucosa, whereas the endocervix 
and the uterus is composed of type I mucosa [15]. The 
transition between type I and type II epithelium is referred 
to as cervical transformation zone [16]. In the following, 
we review the published evidence available to support the 
concept of tissue-resident immunity in the FRT. We hereby 
compartmentalize the FRT, as distinct anatomical regions 
can be anticipated to require a differential, site-specific 
tailored role of distinct subsets of tissue-resident immune 
cells (Fig. 2). An overview of phenotypical and functional 
characteristics of  TRM cells is provided in Table 1.

Tissue‑resident immunity in the vagina

The vaginal mucosa can be subjected to cohabitation and 
ejaculation of sperm, allowing sperm to enter the uterus 
through the cervix. An obvious need for tissue-resident 
immunity at the vaginal mucosa can be seen in the protec-
tion from sexually-transmitted diseases, such as chlamydia, 
gonorrhea, genital warts, syphilis, genital herpes, and human 
immunodeficiency virus (HIV). In fact, sexually transmitted 
diseases affect more than 300 million people every year and 
cause major health and pregnancy complications, such as an 

Fig. 1  Functional diversity of 
tissue-resident lymphocytes in 
the female reproductive tract 
(FRT): Beneficial effects and 
pathological consequences in 
the context of tissue homeosta-
sis and pregnancy
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increased risk to acquire HIV, infertility, cancer, but also pre-
term or still birth. The understanding of vaginal tissue-resi-
dent immunity in the context of sexually-transmitted diseases 
is increasingly emerging, mostly from studies on HSV and 
HIV. Here, a well-conducted study highlights that memory 
 CD4+ T cells provide protection from HSV-2 infection in mice 
[17]. These vaginal memory  CD4+ T cells appear in clusters, 
which are maintained by local network of macrophage-derived 
chemokines and expanded in response to HSV-2 rechallenge. 
In human vaginal tissue, distinct subsets of APCs could be 
identified, which distinctly differ from other sites, such as the 
skin or gut mucosa [18]. There is evidence available to sup-
port that APCs may modulate the  CD4+ and  CD8+ T cell 
response in the vagina by inducing the expression of CD103 
or chemokine receptors on T cells. Indeed, the majority of T 
cells have been identified as effector memory  CD4+ T cells, 
co-expressing CD103 and the chemokine receptor 5 (CCR5). 
Contrary to the  CD4+  TRM cells studied in mouse vagina 
which reduced the risk for HSV, this human tissue-resident 
subset supported the infection with HIV-1. Interestingly, pro-
ductive HIV-1 infection of these vaginal  CD4+  TRM cells was 
linked to the activation of uninfected bystander  CD4+ T cells, 
which may amplify and facilitate the dissemination of the 

viral infection [19]. However, since disruption of the vaginal 
epithelium and related barrier breakage can aggravate HIV 
infection, tissue-resident  CD4+ T cells may be more readily 
exposed to HIV-1, hereby triggering the infection. Clearly, 
further studies are urgently needed to identify the functional 
role of tissue-resident vaginal T cells in modulating the risk 
for sexually-transmitted diseases. Hereby, vaginal tissue-res-
ident immunity must also be considered in post-menopausal 
tissues, considering that aging women are at increased risk for 
sexually-transmitted diseases [20].

Moreover, tissue-resident immunity in the vaginal 
mucosa can hold a great potential to maintain homeostasis 
and possibly protect from infections. In response to Chla-
mydia muridarum infection, a pathogen-specific subset 
of  CD4+  TRM cells is formed at the interface of the FRT 
epithelia and lamina propria, which mediates protection 
from secondary infection [21, 22]. Similarly, parenteral 
vaccination against Chlamydia trachomatis leads to the 
formation of a functional  CD4+  TRM cell subset in the 
genital tract with subsequent immunity [23]. Strikingly, 
locally applied vaccine strategies may establish protection 
from sexually transmitted diseases. It could be demon-
strated that a combination of an intranasal and intravaginal 

Fig. 2  Female reproductive tract (FRT): Graphical summery of the 
presence of various tissue-resident lymphocyte populations including 
 CD4+ and  CD8+ T cells,  CD4+ regulatory T (Treg) cells, γδT cells, 
mucosa-associated invariant T (MAIT) cells, uterine natural killer 

(uNK) and decidual natural killer (dNK) cells, invariant NKT (iNKT) 
cells, and innate lymphocyte cells (ILCs) in different compartments 
of the FRT in a non-pregnant state (left) and in the decidua during 
pregnancy (right)
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mucosal immunization (“prime-boost immunization”) 
with recombinant influenza-HIV vectors results in a HIV-
specific  CD8+  TRM population in the vaginal mucosa that 
led to the recruitment of peripheral adaptive and innate 
immune cells upon reactivation [24]. Another novel non-
inflammatory vaccine strategy constitutes the “prime and 
pull” approach. After establishing a systemic memory 
response to HSV-2 infection in mice by conventional par-
enteral vaccination (prime), multiple topical chemokine 
applications onto the vaginal mucosa (pull) resulted in the 
infiltration of  CD8+  TRM cells and protection from reinfec-
tion [25]. In a follow-up study, the authors successfully 
demonstrated that a single topical application of the anti-
biotic neomycin onto the vaginal mucosa was sufficient to 
achieve a similar infiltration of virus-specific  CD8+  TRM 
cells with subsequent protection against genital HSV-2 
infection [26, 27]. Despite concerns regarding collateral 
effects on the microbiome and artificial immune responses 
in contrast to recombinant chemokines, this prime and pull 
technique could be advantageous due to wildly availability, 
low-cost production and storage properties of Aminogly-
coside antibiotics.

An alternative option to boost the formation of  TRM cells 
involves hormonal treatments. Hereby, the co-administration 
of estradiol after initial intranasal immunization with HSV-2 
led to increased Th1 and Th17  TRM cell frequencies with 
protective capabilities upon genital HSV-2 re-challenge [28].

However, the longevity of these protective  TRM cells is 
not fully understood. Evidence suggests that the  TRM com-
partment in the lower female reproductive tract is either 
short-lived—when compared to similar compartments in 
other barrier tissues—or tissue-resident cells may partly 
egress after a specific time period. Clearly, the latter would 
challenge their classification as tissue-resident cells [29].

An intriguing aspect in the context of tissue-resident immu-
nity in the vagina is the impact of the microbiome. It is gen-
erally accepted that a microbiome-immunity crosstalk exists 
and contributes to various immune-mediated disorders [30]. 
Additionally, dysregulations of the microbiome in the genital 
tract could be linked to fertility [31] and obstetric compli-
cations such as miscarriage [32] and preterm labor [33–35]. 
Hence, tissue-resident immune cells may affect the diversity 
and composition of bacterial communities in the vagina, or 
vice versa, which may then become clinically evident [36].

Table 1  Summary of  TRM subpopulation and the functional relevancy

Subset Subtypes Beneficial
relevance

Pathological relevance Reference

αβT cells CD4+

CD8+
Pathogen clearance;
Systemic activation of 

immune system;
Differentiation to ex-TRM 

cells;
Contribute to local tumor 

surveillance

Infections [4, 6, 47, 57, 136–138]

CD4+ Treg cells
CD8+ Treg cells

Mediate tolerance during 
pregnancy;

Regulators in autoimmune 
diseases

Endometriosis;
Pregnancy loss

γδT cells Vγ1-7 (Heilig and Ton-
egawa)

Contribute to local tumor 
surveillance;

Immune homeostasis

RSA;
Preterm birth

[90, 95, 139–141]

Mucosa-associated invariant 
T (MAIT) cells

MAIT1
MAIT2
MAIT17

Potential role in pathogen 
clearance

Preeclampsia [98, 142–144]

Natural killer T (NKT) cells Invariant NKT (iNKT) cells
Variant NKT (vNKT) cells
Non-classical NKT cells

Modulating the balance of 
Th1 and Th2 response;

Contribute to local tumor 
surveillance

Preterm birth and fetal 
death;

Preeclampsia

[53, 105, 107, 145]

Innate lymphocyte cells 
(ILCs)

Cytotoxic ILCs:
NK cells

Mediate EVT invasion;
Tumor surveillance

Infertility;
RSA;
Endometriosis

[53, 55, 146–151]

Helper-ILCs:
ILC1s
ILC2s
ILC3s
Lymphoid tissue inducer 

(LTi)

Involved in pathogen clear-
ance, tissue-repair and 
tumor surveillance

Placental abnormalities
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Taken together,  TRM cells in the vagina play a major 
role in mediating resistance to viral and bacterial infec-
tions in the FRT. A stronger focus on the generation of 
functional tissue-resident memory subsets in vaccine 
development might be a promising addition to conven-
tional vaccine approaches. Furthermore, although the 
presence of MAIT cells, invariant NKT cells, γδT-cells 
and ILC has been described in vaginal mucosal tissue [37, 
38], their functional role, e.g., in responses to pathogens 
is relatively unknown. Hence, the analysis of these tissue-
resident immune cell subsets should be considered in the 
experimental setup of future studies.

Tissue‑resident immunity 
in the endometrium

The endometrium lines the inner surface of the uterus and is 
structured in a basal and a functional layer. Immune cells can 
be found in the stromal compartment of both layers organ-
ized in lymphoid aggregates [39, 40]. Those aggregates con-
sist of a B cell core surrounded by  CD8+ T cells lined by 
macrophages [41]. The functional layer of the endometrial 
mucosa is subject of constant shedding and tissue-renewal 
due to the periodic remodeling during the menstrual cycle 
over the childbearing years. Initially, the menstrual cycle 
and monthly structural fluctuations seems to interfere with 
the concept of tissue residency. However, investigations of 
endometrial tissue during subsequent pregnancies revealed 
the expansion of  CD8+  TRM cells as well as ILC1 and NK 
cells suggesting a stable persistence in the basal layer dur-
ing inter-pregnancy intervals [42–44]. Consequently, distinct 
endometrial tissue-resident lymphocytes contribute to tissue 
homeostasis and enable situational adaptations in the pres-
ence or absence of conception, but have also been linked to 
various immunopathologies and cancer.

The proliferative, secretory, and regenerative phases 
of the menstrual cycle affect the proliferative capacity of 
immune cells [45]. In cell culture experiments, the prolif-
eration of peripheral blood mononuclear cells (PBMCs) is 
differentially inhibited by uterine cells isolated during the 
proliferative or the secretory phase of the menstrual cycle 
[46]. Under physiological conditions,  CD4+ and  CD8+ T 
cells are expressed at balance in the endometrium and by 
expressing CD103 and CD69 both comply with the canoni-
cal phenotype of  TRM cells [47–49]. However, during the 
secretory phase of the menstrual cycle the number of endo-
metrial cytotoxic  CD8+ T cells is decreased [50], which 
might hamper immune response toward the implanting 
conceptus.  CD8+  TRM cells in the endometrium that pos-
sess cytotoxic properties might be involved in secondary 
pathogen encounter [51]. Nevertheless, their exact function 
needs to be further elucidated.

Clearly, uterine NK (uNK) cells are the predominant lym-
phocyte population in the endometrium [52, 53]. Their most 
critical role seems to surface during early pregnancy, when 
they maintain tissue-homeostasis and promote angiogenesis. 
It has been suggested that uNK cells, especially tissue-resi-
dent uNK cells, play a role in endometriosis. Endometriosis is 
defined by the growth of endometrium-derived tissue outside 
the uterus. It chronically affects around 10% of women [40, 
54], whereas its pathogenesis is far from being understood. 
Opposed to their phenotype in blood, uNK cells are uniquely 
defined by  CD56bright and  CD16neg expression, and tissue-res-
ident uNK cells further express  CD49a+. [55] Interestingly, in 
endometriosis patients, uNK cells exhibit an increased cyto-
toxic phenotype, mirrored by an elevated  CD16+ and NKp46 
expression [56]. Together with an increased endometrial cell 
expression of MHC Class I molecules, this could favor the 
migration of abnormal ectopic endometrium. Additionally, 
peripheral and peritoneal NK cells show increased expres-
sion of inhibitory killer cell immunoglobulin-like receptor 
(KIRs), which might further contribute to a reduced removal 
of endometrial cells by NK cells outside the uterus. Further, 
lower  CD4+ regulatory T (Treg) cells and greater T helper 
(Th)17 cell frequencies in the endometrial tissue favors local 
inflammation in ectopic and endometrial tissues [57, 58]. 
On the contrary, there is evidence to support that ectopic 
endometrial tissue harbors  CD4+ Treg cells, which reduced 
recognition and rejection of ectopic endometrial by effector 
immune cells, e.g., in the peritoneal cavity [58].

Interestingly, endometriosis often occurs together with infer-
tility; the overlap ranges from 40–50% [59]. Infertility affects 
millions of people worldwide and is defined by the failure to 
successfully achieve pregnancy after more than 12 months of 
regular unprotected sexual intercourse.1 In women with endo-
metriosis-associated infertility, low levels of endometrial stem 
cell factor has been observed, which suggests that the matura-
tion of local uNK cell populations is impaired, which subse-
quently compromises embryo implantation [60]. This notion 
is supported by the observation that a higher number of uterine 
 CD34+ NK cell progenitors in women with endometriosis is 
positively correlated with sustained fertility [61].

Tissue-resident immunity in the FRT may affect tumor-
surveillance and control of cancer progression. This research 
field is of particular importance since three of eight can-
cer types with the highest incidence in women emerge in 
the FRT including cervical cancer (13,3%), uterine cancer 
(8,7%) and ovarian cancer (6,6%), which constitute a threat 
to women’s health and survival.2 Since cancer is at least 
partly a result of T cell dysregulation, insights into  TRM 

2 Global Cancer Observatory (GCO), World Health Organiaztion. 
Last accessed 31.01.2022: https:// gco. iarc. fr

1 World Health Organization (WHO). International Classification of 
Diseases, 11th Revision (ICD-11) Geneva: WHO 2018.

https://gco.iarc.fr
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cells located in the FRT are highly relevant for understand-
ing cancer development and illustrating treatment methods 
[62]. Recently, it became evident, that γδT cells are espe-
cially involved in tumor-surveillance. γδT cells colonize 
the FRT in mice already during fetal and neonatal develop-
ment. Although uterine location is no further specified, γδT 
cells are the dominant T cell subpopulation in the uterus of 
neonatal mice accounting for more than 50%. Interestingly, 
their number declines with advancing age, resulting in less 
than 20% of overall T cells at 16 weeks of age [63]. Uterine 
γδT cells are located primarily in the intraepithelial com-
partment but recent data suggest an alternative location in 
the subepithelial stroma of the uterus [63]. The majority of 
γδT cells in the endometrium belongs to the Vγ6+ subgroup 
producing IL-17 upon activation, but a discrete population 
of IFNγ-producing γδT cells was observed in the murine 
uterus [64]. Dependent on the cytokine specificity, γδT 
cells exhibit functionally diverse responses to tumors and 
the microenvironment. Anti-tumor effects are characterized 
by cytotoxicity against hematopoietic and solid tumors in an 
MHC-independent manner [65]. Both Vδ2 and Vδ1 subsets 
produce IFNγ, which may induce the elimination of carci-
noma cells. In contrast to the potent anti-tumor capacity, 
γδT cells are also able to induce pro-tumor effects, facilitat-
ing non-cytotoxic inflammation and angiogenesis via IL-17 
production. Additionally, a subset of γδT cells is suggested 
to exert regulatory functions, these are referred to as γδTreg 
cells. In breast cancer, these cells were shown to contribute 
to an immunosuppressive microenvironment and induce the 
immunosenescence of  TEFF cells and dendritic cells (DCs) 
[66]. The functional diversity of γδT cells in the context of 
tumor development in the FRT needs further investigation 
to advance the potential of immunotherapy in cancer treat-
ment strategies.

Besides γδT cells, tumor infiltrating lymphocytes (TILs) 
expressing the surface makers  CD8+ and  CD103+ are pre-
sent in tumor tissue and classified as  TRM cells [67, 68]. 
They are associated with a prolonged survival prognosis in 
cervical, endometrial, and ovarian cancer [69–72]. Tissue-
resident TILs often express the T cell exhaustion marker 
Programmed cell death protein (PD)-1, which get activated 
by its ligand PD-L1 on cancer cells [73] switching TILs into 
a dormant state. Hence, recent strategies in tumor treatment 
pursue the application of checkpoint inhibitors, blocking 
either PD-1 or PD-L1 in order to reactivate TILs [74].

Another promising approach of treatment option repre-
sents a NK cell-based anti-cancer immunotherapy, which is 
exploiting the potential of NK cell to infiltrate tumor tissue 
and to kill malignant cells. Based on high NK cell frequen-
cies and high prevalence of tumor formation in the FRT, 
strategies for increasing tumor recognition by NK cells have 
been discussed. This includes the sensitizing of tumor cells 
for NK cell killing, improving the cytotoxicity of NK cells 

ex-vivo via cytokine treatment or the generation of tumor-
specific NK cells generated via genetic engineering using 
chimeric antigen receptor (CAR)-expressing NK cells [75, 
76].

Further, a major advantage of  TRM cells is their location 
in the periphery of the body. In the context of cancer treat-
ment, this ability could be utilized by making  TRM cells a 
vigilant ally in fighting metastasis in an early disease state. 
Accordingly,  TRM cells might be a promising target for 
future cancer treatment not only in the FRT.

A potential role of tissue-resident immunity in the endo-
metrium is also discussed in the context of sexually trans-
mitted diseases. Recent evidence supports the capability of 
MAIT cells to respond to N. gonorrhoeae infection with 
a specific cytokine response, as shown in during in-vitro 
experiments [77]. However, solid studies on MAIT cell func-
tion in the context of protection against infections in the 
FRT are still lacking, although they form a stable population 
in the endometrium and the cervix which is unaffected by 
phases of the menstrual cycle as well as during menopause 
[77].

For the sake of completeness, it needs to be mentioned 
that only very few information is available concerning  TRM 
populations in the ovary and fallopian tube. Only few leu-
kocytes are located in the human ovary, but immunohisto-
chemistry and single-cell analysis identified  CD45RO+ and 
 CD69+ T cells, suggesting a viable  TRM-compartment [78, 
79]. In the fallopian tube, γδT cells can be found located in 
the epithelial layer and lamina propria of the mucosa [80].

Tissue‑residency in the decidua 
during pregnancy

Significant adaptions of the endometrium occur with the 
onset of pregnancy. The endometrium undergoes decidu-
alization, a process tightly regulated by hormonal changes. 
Additionally, placentation in mammals involves the deep 
invasion of extra-embryonic placental cells into the maternal 
decidua [81]. This invasion results in close contact between 
fetal trophoblasts, which express paternally-inherited for-
eign antigens, and maternal immune cell populations. This 
requires a unique immune regulation in order to prevent fetal 
rejection.

One key element of fetal acceptance is the lack of MHC 
class 1 (except HLA-C) and MHC class II receptors on 
human EVTs, but the presence of all three non-classi-
cal MHC class I antigens (HLA-E, HLA-F, and HLA-G) 
[82]. Hence, an anti-fetal maternal immune response is 
diminished, but the recognition of the fetal antigen is not 
fully disabled. Consequently, a tailored maternal immune 
response needs to be initiated in order to mount immune 
tolerance toward the allogeneic fetal trophoblast cells. This 
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includes the arrest of DCs in a tolerogenic state and subse-
quently the priming and expanding of  CD4+ Treg cells [7]. 
A decisive impact of  TRM cell subpopulation on this active 
immune adaptation at the feto-maternal interface is indi-
cated, although still under intensive investigation. Therefore, 
adverse pregnancy outcomes such as recurrent spontaneous 
abortion (RSA), miscarriage, stillbirth, preeclampsia, and 
preterm birth can be partially linked to immune dysregula-
tion of tissue-residency in the FRT.

In this context, decidual NK (dNK) cells may have the 
most critical function. They represent up to 70% of decidual 
lymphocytes in human first trimester pregnancy and 30% 
in murine decidua at midgestation [83, 84]. The ontogeny 
of dNK cells is still subject of ongoing debate. It is pos-
sible that NK cells in the peripheral blood migrate to the 
decidua, attracted by the unique decidual microenviron-
ment [85]. However,  CD34+ precursor cells are detectable 
in the decidua and immature uNK cells can be found in 
the endometrium of non-pregnant women, which could be 
evidence for in situ generation of NK cells [86]. In mice 
and humans, dNK recognize HLA/MHC on trophoblast 
cells, e.g., in humans via the C-type lectin-like CD94/NK 
group 2 (NKG2) receptors and KIR [83]. HLA-C/KIR-
mismatches have a high predictive value for poor placenta-
tion and impaired continuation of pregnancy. In this regard, 
although still conflicting, the genetic variability of maternal 
KIR paired with fetal HLA-C have been associated with the 
pathophysiology of preeclampsia suggesting that inhibitory 
KIR (KIR AA genotype) negatively impact uNK cytokine 
secretion leading to abnormal spiral artery remodeling and 
defective placentation [87]. Thus, selecting suitable HLA-C/
KIR-matches by screening for HLA-C subtypes could be 
a promising tool to increase the success rate of modern 
assisted reproduction technologies [88].

It was further proposed, that dNK cells might support 
implantation and placentation in subsequent pregnancies by 
acquiring a memory-like phenotype during the first preg-
nancy [44]. Although these “pregnancy-trained” dNK cells 
were shown to exhibit a unique transcriptional and epige-
netic phenotype, their abundance could only be confirmed 
in Cytomegalovirus (CMV)-positive pregnant women [44, 
89]. Hence, further studies are required to clarify if and how 
CMV might facilitate the formation of trained memory dNK 
cells in contrast to a more generalized beneficial effect for 
multigravidity.

Besides dNK cells, γδT cells are also present in the 
decidua. These decidual γδT cells execute important func-
tions ensuring local immune homeostasis by shaping pro- 
and anti-inflammatory responses. They are part of the 
decidua-associated lymphoid tissue (DALT), which com-
prise of approx. 15% of the decidual T cell pool [90, 91]. 
In contrast to Vδ2+ γδT cells, which are dominant in blood, 
the vast majority of human decidual γδT cells are Vδ1+. 

This subset actively promotes trophoblast invasion in the 
maternal decidua and suppresses trophoblast apoptosis. This 
is mediated by IL-10 secretion of γδT cells, accompanied by 
reduced granzyme B secretion following chemokine–recep-
tor interaction with trophoblast cells [90, 92]. After initiation 
of pregnancy, the composition of γδT cell subsets fluctuate 
according to progesterone levels [93, 94]. During the second 
trimester of pregnancy, the ratio of Vδ2+ to Vδ1+ γδT cells 
is increasing. A premature increased Vδ2+/Vδ1+ γδT ratio 
in the first trimester of pregnancy is linked to spontaneous 
abortion due to a premature proinflammatory environment 
[90]. Hereby, γδT cells modulate the Th1/Th2 ratio observed 
by an increased Vδ2+ γδT cell count leading to an increase 
of Th1 cells at the decidua. Th1 cells act in a proinflam-
matory manner compared to their counterparts reversing 
the immune tolerant state at the feto-maternal interface and 
therefore steadily contribute to onset of childbirth. There-
fore, an association of altered γδT frequencies and preterm 
birth could be conceivable [95]. In the term decidua, the 
majority of γδT cells belongs to the naive/memory and trans-
lational phenotype [94]. Taken together, γδT cell function 
at the feto-maternal interface is highly flexible and depends 
on the state of pregnancy, although additional investigations 
are indispensable to further ascertain the impact of γδT cells 
during pregnancy.

A sizable threat for pregnancy success constitutes micro-
bial infection. Hereby, MAIT cells located in the intravil-
lous space of the placenta express higher levels of IFNγ and 
granzyme B upon microbial stimulation compared with their 
circulatory counterparts [96]. MAIT cells are enriched in the 
placenta and the decidua. They remain relatively stable over 
the course of pregnancy [97], but exhibit a distinct pheno-
type compared to MAIT cells in the blood or the endome-
trium. At term, MAIT cells accumulate within the intervil-
lous space of placenta displaying an increased inflammatory 
response to riboflavin-producing bacteria [97]. The specific 
functionality of MAIT cells in maintaining a healthy preg-
nancy is still a matter of investigation. Hereby, the interac-
tion of MAIT cells with EVTs remains particularly uncertain 
since MAIT cells are not able to recognize HLA-molecules 
on the EVT surface. In contrast to fetal macrophages located 
in fetal villi, the syncytiotrophoblast does not express mono-
morphic MHC-like receptor 1 (MR1) molecule also con-
tradicting an antagonistic interaction between MAIT cells 
and EVTs. Nevertheless, a recent study observed an altered 
frequency and reduced PD-1 expression of MAIT cells in 
PBMCs of women with early-onset-preeclampsia [98]. 
Hence, an in-depth investigation of the local uterine MAIT 
cell population might contribute to an improved understand-
ing of the pathogenesis of preeclampsia.

Regulating immune homeostasis during pregnancy is fur-
ther supported by decidua-invariant natural killer T (iNKT) 
cells showing a tenfold increase in number compared to 
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peripheral blood [99]. Evidence suggests that iNKT cells 
interact with extravillous and villous trophoblast cells both 
expressing CD1d [100]. The expression level of CD1d even 
increases with progressing gestation [101]. However, a 
recent publication questioned the importance of iNKT cell in 
pregnancy since less than 1% of the  CD56+  CD3+ NKT cells 
are also positive for the iNKT-specific CD1d tetramer [102]. 
Despite discussion regarding their actual proportion at the 
feto-maternal interface, a shift toward a Th1-biased cytokine 
profile of iNKT cells, including increased TNFα, IFNγ and 
perforin production, seems to contribute to higher pregnancy 
loss rates [103, 104]. Further, upon iNKT cell activation 
also local dNK cells start producing IFNγ supporting NKT 
cell-mediated pregnancy loss [101]. As a proof of concept, 
fetal death rates, but also preterm birth, could be reduced in 
iNKT cell-deficient mice after LPS challenge [105, 106]. 
Due to their ability to modulate Th1/Th2-balance, an iNKT-
dysregulation is also assumed in preeclampsia. It was shown 
that preeclamptic women display elevated levels of Th1-type 
cells as a result of iNKT malfunction [107].

Emerging evidence further suggests a critical role for 
helper ILCs in promoting immune responses at barrier sur-
faces including inflammatory and reparative responses [108]. 
All ILC subtypes were shown to be present in the human and 
mouse uterus. In the human decidua IFNγ-producing ILC1 
and subpopulations of ILC3 were identified in the first tri-
mester of pregnancy [109]. ILC3s were observed to express 
PD-1 interacting with PD-1L+ trophoblasts to induce a tol-
erant microenvironment [110]. However, toward the end of 
pregnancy, ILC2s become the prevalent subtype of ILCs 
[111]. They get activated by thymic stromal lymphopoietin 
which was independently shown to be crucial for normal 
pregnancy by promoting the invasion of human tropho-
blasts and interacting with DCs and  CD4+ Treg cells [112]. 
Interestingly, ILC were shown to contribute to an effective 
recall response upon reactivation. However, in contrast to 
adaptive immune cells, ILCs get reactivated by cytokines 
and therefore this effect is not antigen specific [113]. In the 
context of pregnancy, memory capacity was only reported 
for ILC1 showing an 4–fivefold increase in frequency in a 
second pregnancy uterus with upregulation of the memory 
cell marker CXCR6 [43].

The simultaneous upregulation of exhaustion-related mol-
ecules such as PD-1 to induce a tolerant phenotype is also 
reported for  CD8+  CD69+  CD103+  TRM cells [114, 115]. 
Those changes are mediated by decidual stromal cells facili-
tating the silencing of cytotoxic immune cells accompanied 
by  CD4+ Tregs classifying the uterine mucosa as an immu-
nologically privileged site [116, 117]. After successful com-
pletion of pregnancy, the composition of the endometrium 
must be restored to enable the periodic remodeling of the 
menstrual cycle again and subsequent re-conception which 
might be facilitated by  TRM cells. They could contribute to 

the reduced risk of complications during second pregnancies 
if regulatory  TRM cells generated during a first pregnancy 
become rapidly available [118]. However, research evidence 
regarding the presence of regulatory  TRM cells in the uterus 
are sparse and consequently their contribution to repeated 
pregnancy success requires further investigation.

Uncharted territory: The male reproductive 
tract (MRT)

The MRT consists of external and internal organs includ-
ing the penis and scrotum and the testis, epididymis, vas 
deferens and the accessory glands, respectively. Similar to 
females, the MRT is mainly lined by mucosal tissue [14]. 
However, compared to the FRT, the MRT is not a classical 
barrier tissue due to its limited exposure to the environment. 
Hence, the MRT is not as susceptible to infections due to the 
smaller surface area exposed to pathogens and the shorter 
contact time with pathogens before clearance [119]. Never-
theless, MRT infections and sexually transmitted diseases 
are also a major health burden in men underlining the impor-
tance of a responsive local immune environment.3 Hence, 
it is even more surprising how little is known about tissue-
resident immune cell subsets in the MRT.

The primary infection site of the MRT is the penile ure-
thra and  CD103+  CD8+  TRM cells were shown to be involved 
in microbial immune surveillance [120]. However, infec-
tious agents are able to ascend to the testis, which can be 
especially harmful. The testis displays a unique anatomy. In 
order to prevent immune activation by sperm autoantigens, 
the seminiferous epithelium, the site of spermatogenesis, is 
separated from the interstitium by the blood testis barrier 
(BTB), leaving the seminiferous tubules an immunoprivi-
leged site [121]. That comprises the total absence of lym-
phocytes in the seminiferous epithelium. Although being 
beneficial for spermatogenesis, this leads to the testis being 
an applicable reservoir for infectious agents after acute infec-
tion including HIV, human papillomavirus (HPV) or Chla-
mydia trachomatis leading to chronic infections [122]. This 
highlights the conflict between guarantee of self-tolerance 
by the absence of a viable immune cell compartment on the 
one hand and being susceptible to infections on the other 
hand.

In contrast to the seminiferous epithelium, distinct  TRM 
cells are present within the interstitial space of the testis 
[123–126]. The proliferation of especially  CD4+ Treg cells 
is facilitated by the secretion of immune modulatory fac-
tors of sertoli cells and myeloid cells [127]. This is further 
promoted by the egress of autoantigens passing the BTB, 

3 Sexually Transmitted Diseases Surveillance 2019, CDC. Last 
accessed 31.01.2022: https:// www. cdc. gov/ std/ stati stics/ 2019

https://www.cdc.gov/std/statistics/2019
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educating local immune cells and therefore contributing to 
tissue homeostasis [128]. Infections or cancerous diseases 
are able to challenge this delicate balance leading to autoim-
mune orchitis, which is characterized by testis inflammation 
and the presence of specific antisperm antibodies and can 
result in aspermatogenesis and male infertility [129].

In a model of experimental autoimmune orchitis (EAO), 
the number of T cells were shown to be increased and their 
exact composition varied during disease progression [8]. In 
subsequent experiments, it could be further demonstrated 
that  CD4+ Treg cells in allografts originating from rats suf-
fering from EAO inhibit the proliferation of effector T cells 
in healthy animals [8]. This elegantly highlights the need of 
regulatory lymphocytes in chronic inflammatory diseases to 
confine an overshooting effector immune response. Despite 
the possibility that these  CD4+ Treg cells could migrate 
from the surrounding lymph nodes into the testicular tissue 
during disease progression, it is highly probabilistic that a 
stable compartment of regulatory  TRM cells are permanently 
present within the tissue.

This assumption is supported by the ontogeny of the 
γδT cell compartment in the MRT. There is evidence that a 
viable γδT cell subset is present in the human semen [130]. 
Subsequently, γδT cells were also found in the rodent tes-
tis, already colonized during fetal development, where they 
strongly expand during puberty and form a tissue-resident 
subset residing until adulthood [131]. In contrast to  CD4+ 
Treg cells, γδT cells are in fact involved in maintaining 
tissue-homeostasis. As demonstrated in in-vitro experi-
ments with Listeria monocytogenes, γδT cells operate as 
immune-regulatory mediators following infectious stimuli. 
[125, 132].

The role of  TRM cells in tumor surveillance is barely 
investigated and this lack of scientific data is highly prob-
lematic since testicular cancer is the most commonly 
diagnosed malignancy in younger men [133]. A germ cell 
tumor is diagnosed in 95% of these cases making it the 
most prevalent cancer type in the MRT [134]. Interestingly, 
testicular cancer comprises only 1% of all male cancers 
globally, which is surprisingly low considering that the 
testis is a site of immune privilege. Hence, it may consti-
tute a prominent site for tumor growth which is supported 
by the testis serving as a reservoir of relapse cancers, e.g., 
acute lymphocytic leukemia (ALL) [135]. Since reliable 
data regarding pro- and anti-tumor responses in the MRT 
are missing, we can only assume that the underlying mech-
anisms might be similar as observed in the FRT or other 
tissues.

In summary, our general understanding of tissue-resident 
immunity in the MRT is still fragmentary. However, the 
increasing relevance of  TRM cells throughout the body will 
contribute to new insights on the MRT and their functional 
impact for local immune homeostasis.

Concluding remarks

The identification of  TRM cells has fundamentally changed 
our understanding of adaptive immunity and immunological 
memory especially at barrier sites. Their resident phenotype 
represents a major advantage leaving  TRM cells in a supe-
rior position to provide immediate protection to secondary 
infection hereby preventing dissemination of pathogens. 
However,  TRM cells display a significant functional diver-
sity. While supporting tissue homeostasis including tumor 
surveillance and pathogen control,  TRM cells can also con-
tribute to tumor growth and infections. In the context of 
reproduction,  TRM cells facilitate decidualization and pla-
centation hereby supporting pregnancy establishment and 
maintenance, but also participate in the pathogenesis of 
various obstetric complications. In contrast to other barrier 
sites, the FRT needs to sustain a unique plasticity throughout 
life to ensure proper function during different phases of life 
and reproductive demands hereby preventing infections and 
cancer development. Hence, a comprehensive investigation 
of tissue-resident immunity in the FRT is urgently needed to 
advance our understanding of  TRM cell composition, pheno-
type and activation, and hormonal responsiveness and con-
sequently of pregnancy success and failure.
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