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P systems are a class of distributed parallel computing models; this paper presents a novel clustering algorithm, which is inspired
from mechanism of a tissue-like P system with a loop structure of cells, called membrane clustering algorithm. The objects of
the cells express the candidate centers of clusters and are evolved by the evolution rules. Based on the loop membrane structure,
the communication rules realize a local neighborhood topology, which helps the coevolution of the objects and improves the
diversity of objects in the system. The tissue-like P system can effectively search for the optimal partitioning with the help of its
parallel computing advantage. The proposed clustering algorithm is evaluated on four artificial data sets and six real-life data sets.
Experimental results show that the proposed clustering algorithm is superior or competitive to k-means algorithm and several
evolutionary clustering algorithms recently reported in the literature.

1. Introduction

Data clustering is a fundamental conceptual problem in data
mining, which describes the process of grouping data into
classes or clusters such that the data in each cluster share a
high degree of similarity while being very dissimilar to data
from other clusters [1]. Over the past years, a large number
of clustering algorithms have been proposed [2–4], which
can be divided roughly in two categories: hierarchical and
partitional. Hierarchical clustering proceeds successively by
either merging smaller clusters into larger ones or splitting
larger clusters. Partitional clustering attempts to directly
decompose a data set into several disjointed clusters based on
similarity measure, for example, mean square error (MSE).
Clustering algorithms have been used in a wide variety of
areas, such as pattern recognition, machine learning, image
processing, and web mining [5, 6]. In the present study, 𝑘-
means algorithm [7, 8] has received wide attention because
of the following two reasons: (i) 𝑘-means has been recently
elected and listed among the topmost influential datamining
algorithms [9] and (ii) it is at the same time very simple and

quite scalable, as it has linear asymptotic running time with
respect to any variable of the problem. However, 𝑘-means is
sensitive to the initial centers and easy to get stuck at the local
optimal solutions. Moreover, 𝑘-means takes large time cost
to find the global optimal solution when the number of data
points is large.

In recent years, some evolutionary algorithms have been
introduced to overcome the shortcomings of 𝑘-means algo-
rithm because of their global optimization capability. Several
genetic algorithms- (GA-) based clustering algorithms have
been proposed in the literature [10–14].However,most ofGA-
based clustering algorithms can suffer from the degeneracy
when numerous chromosomes represent the same solution.
The degeneracy can lead to inefficient coverage of the search
space as the same configurations of clusters are repeatedly
explored. To overcome the shortcoming, particle swarm
optimization- (PSO-) based or ant colony optimization-
(ACO-) based clustering algorithms have been proposed. Kao
et al. have proposed a hybrid technique based on combining
the 𝑘-means and PSO for cluster analysis [15]. Shelokar et al.
have introduced an evolutionary algorithmbased onACO for

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2015, Article ID 929471, 8 pages
http://dx.doi.org/10.1155/2015/929471

http://dx.doi.org/10.1155/2015/929471


2 The Scientific World Journal

clustering problem [16]. Niknam and Amiri have presented
a hybrid evolutionary optimization algorithm based on the
combination of PSO and ACO for solving the clustering
problem [17].

The aim of membrane computing is to abstract com-
puting ideas (data structures, operations with data, ways
to control operations, computing models, etc.) from the
structure and the functioning of a single cell and from
complexes of cells, such as tissues and organs including the
brain. There are three main classes of P systems investigated:
cell-like P systems (based on a cell-like (hence hierarchical)
arrangement of membranes delimiting compartments where
multisets of chemicals evolve according to given evolution
rules) [18], tissue-like P systems (instead of hierarchical
arrangement of membranes, consider arbitrary graphs as
underlying structures, with membranes placed in the nodes
while edges correspond to communication channels) [19],
and neural-like P systems [20]. Many variants of all these
systems have been considered, for example, [21, 22] for cell-
like P systems, [23, 24] for tissue-like P systems, and [25–
30] for neural-like P systems. An overview of the field can
be found in [31], with up-to-date information available at the
membrane computing website (http://ppage.psystems.eu/).
These efforts have addressed the parallel computing advan-
tage of P systems as well as the high effectiveness of solving a
variety of difficult problems; especially, P systems can solve
a number of NP-hard problems in linear or polynomial
time complexity [32] and even solve PSPACE problems in a
feasible time [33, 34]. Moreover, membrane algorithms have
demonstrated a powerful global optimization performance
[35–37].

This paper focuses on application of membrane com-
puting to data clustering. Our motivation is applying the
specially designed elements and inherent mechanisms of P
systems to realize a novel clustering algorithm, called the
membrane clustering algorithm.

2. Data Clustering Problem

Clustering is the process of recognizing natural groups or
clusters from a data set based on some similarity measure.
Suppose that data set 𝐷 has 𝑛 sample points, 𝑥
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the optimal centers in the solution space according to some
clustering measure in order to solve data clustering problem.
A commonly used clustering measure is
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The clustering process, separating the objects into the

clusters, is realized as an optimization problem. The goal of

the optimization problem is to find the optimal centers by
minimizing objective function (1):
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In addition, the𝑀 value will be used to evaluate objects
in the proposed clustering algorithm. If the 𝑀 value of an
object is the smaller one, the object is the better; otherwise, it
is worse.

3. Proposed Membrane Clustering Algorithm

In this section the proposed membrane clustering algorithm
is discussed in detail, which is inspired by the mechanism
of membrane computing. A tissue-like P system with a loop
structure of cells is designed as its optimization framework.
The tissue-like P system with a loop structure of cells can be
described as the following construct:
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where

(1) 𝑍
𝑖
(1 ≤ 𝑖 ≤ 𝑞) is the set of𝑚 objects in cell 𝑖;

(2) 𝑅
𝑖
(1 ≤ 𝑖 ≤ 𝑞) is the set of evolution rules in

cell 𝑖, which contains three evolution rules: selection,
crossover, and mutation rules;

(3) 𝑅
󸀠 is finite set of communication rules with the

following forms:

(i) antiport rule: (𝑖, 𝑍/𝑍'
, 𝑗), 𝑖, 𝑗 = 1, 2, . . . , 𝑞, 𝑖 ̸=

𝑗. The rule is used to communicate the objects
between a cell and its two adjacent cells;

(ii) symport rule: (𝑖, 𝑍/𝜆, 0), 𝑖 = 1, 2, . . . , 𝑞.The rule
is used to communicate the objects between cell
and the environment.

(4) 𝑖
𝑜
indicates the output region of the system.

Figure 1 shows membrane structure of the tissue-like P
system, which consists of 𝑞 cells. The 𝑞 cells are labeled
by 1, 2, . . . , 𝑞, respectively. The region labeled by 0 is the
environment and is also output region of the system. The
directed lines in Figure 1 indicate the communication of
objects between the 𝑞 cells. Moreover, the 𝑞 cells will be
arranged as a loop topology based on the communication
rules described below. As usual in P system, the 𝑞 cells, as
parallel computing units, will run independently. In addition,
the environment always stores the best object found so far
in the system. When the system halts, the object in the
environment will be regarded as the output of the whole
system.

The role of the tissue-like P system is to evolve the optimal
centers of clusters for a data set; thus each object in cells will
express a group of (candidate) centers. Thus, each object in
cells is considered as a (𝑘 × 𝑑)-dimensional real vector of the
form
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objects for each cell. When an initial object 𝑍 is generated,
(𝑘×𝑑) random real numbers are produced repeatedly to form
it with the constraint of
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where 𝐴
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and 𝐵
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are lower bound and upper bound of jth

dimensional component of data points, respectively, 𝑗 =

1, 2, . . . , 𝑑.
As usual, the tissue-like P system has two mechanisms:

evolution and communication mechanisms. The two mecha-
nisms will be described as follows.

3.1. Evolution Mechanism. The role of evolution rules is to
evolve the objects in cells to generate new objects used in next
computing step. During the evolution, each cell maintains the
same size (the number of objects). In this work, three known
genetic operations (selection, crossover, and mutation) [38,
39] are used as the evolution rules in cells. In a computing
step, all objects (located in object pool) in each cell and the
best objects (located in external pool) from its two adjacent
cells constitute a matching pool. The objects in external
pool are actually the best objects communicated from its
two adjacent cells in previous computing step. The objects
in matching pool will be evolved by executing selection,
crossover, and mutation operations in turn. In order to
maintain the size of objects in each cell, truncation operation
is used to constitute new object pool according to the 𝑀
values of objects. The objects in new object pool will be
regarded as the objects to be evolved in next computing step.
Figure 2 shows the evolution procedure of objects in a cell.

In this work, selection operation uses usual rotating
wheel method, while crossover operation uses single-point
crossover in which the position of crossover point is deter-
mined according to crossover probability 𝑝

𝑐
[39]. The single-

point mutation is used to realize the mutations of objects.
If V is a mutation point determined according to mutation
probability 𝑝

𝑚
, its value becomes, after mutating,

V󸀠 = {
V ± 2𝛿V, V ̸= 0

V ± 2𝛿, V = 0,
(6)

where the signs “+” or “−” occur with equal probability, and
𝛿 is real number in the range [0, 1], generated with uniform
distribution.

3.2. CommunicationMechanism. The communicationmech-
anism is used to exchange the objects between each cell and
its two adjacent cells and update the best object found so
far in the environment. The communication mechanism is
realized by communication rules of two types: antiport rule
(𝑖, 𝑍/𝑍

'
, 𝑗), which indicates that object 𝑍 is communicated

from cell 𝑖 to cell 𝑗 and object 𝑍󸀠 is communicated from cell
𝑗 to cell 𝑖, and symport rule (𝑖, 𝑍/𝜆, 0), which indicates that
object 𝑍 is communicated from cell 𝑖 to the environment.
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Figure 1: Membrane structure of the designed tissue-like P system.

The communication rules impliedly indicate the connec-
tion relationship between cells. Figure 3 shows the commu-
nication relation of objects between cells in the designed
tissue-like P system. From a logical point of view, the
communication relation shows that the cells form a loop
topology, shown in Figure 3(a). Meanwhile, this also reflects
a neighborhood structure of the communication of objects;
namely, each cell only exchanges and shares the objects with
its two adjacent cells, shown in Figure 3(b). After the objects
are evolved, each cell (such as cell 𝑖) transmits its several best
objects into adjacent cells (such as cells 𝑖 − 1 and 𝑖 + 1) and
retrieves several best objects from adjacent cells (such as cells
𝑖 − 1 and 𝑖 + 1) by using the communication rule, constituting
the matching pool of objects in next computing step. The
special logical structure can bring the following benefits.

(1) The coevolution of objects in the 𝑞 cells can accelerate
the convergence of the proposed clustering algorithm.

(2) The object sharing mechanism of the local neighbor-
hood structure can enhance the diversity of objects in
the entire system.

The communication of objects not only occurs between
cells, but also appears between cell and the environment. The
global best object found so far in whole system is stored
always in the environment. After objects are evolved, each
cell communicates its best object found in current computing
step into the environment to update the global best object.
The update strategy is that if 𝑓(𝑍) < 𝑓(𝐺) then 𝐺 = 𝑍;
otherwise, 𝐺 retains unchanged, where 𝑍 is the current best
object, 𝐺 is the global best object, and 𝑓(⋅) is the fitness
function (𝑀 value).

As usual in P system, the 𝑞 cells, as parallel computing
units, will run independently. In addition, the environment
always stores the best object found so far in the system. In this
work, maximum execution step number is used as the halting
condition of the tissue-like P system; that is, the tissue-like
P system will continue to run until it reaches the maximum
execution step number. When the system halts, the object
in the environment will be regarded as the output of whole
system, namely, the found optimal centers.

Based on the tissue-like P system described above, the
proposed membrane clustering algorithm is summarized in
Algorithm 1.

4. Simulation Experiments

Theproposedmembrane clustering algorithm is evaluated on
ten data sets and compared with classical 𝑘-means algorithm
and several clustering algorithms based on evolutionary
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Figure 3: A loop topology structure of cells and the communication
relation between adjacent cells.

Table 1: Properties of the test data sets.

Data Input Class
AD 5 2 250 2 5
Data 9 2 900 2 9
Square 4 1000 2 4
Sym 3 22 600 2 3
Iris, 150 4 3
BreastCancer 683 9 2
Newthyroid 215 5 3
LungCancer 32 56 3
Wine 178 13 3
LiveDisorder 345 6 2

algorithms, including GA [10], PSO [15], and ACO [16]. In
order to test the robustness of these clustering algorithms, we
repeat the experiments 50 times for each data set.

In the experiments, two kinds of data sets are used
to evaluate these clustering algorithms. First is the four
manually generated data sets used in the existing litera-
tures, AD 5 2, Data 9 2, Square 4, and Sym 3 22, shown
in Figure 4. Second is the six real-life data sets provided
in UCI [40], including the Iris, BreastCancer, Newthyroid,
LungCancer,Wine, and LiveDisorder.The sizes of the data sets
can be found in Table 1.

The proposed membrane clustering algorithm will be
compared with 𝑘-means and three evolutionary clustering
algorithms recently reported in the literature, including GA,
PSO, and ACO. These algorithms are implemented in Matlab
7.1 according to the following parameters.

(1) Tissue-like P systems. Each cell contains 100 objects
and communicates its first five best objects into
two adjacent cells. The maximum computing step
number is chosen to be 200. In the implementation,
evolution rules use the adaptive crossover probability
𝑝
𝑐
and mutation probability 𝑝

𝑚
. In order to study

performances of tissue-like P systems of different
degrees, four cases are considered in the experiments:
𝑞 = 4, 8, 16, 20.

(2) GA [10]. In the rotating wheel method, single-point
crossover and single-point mutation are used, where
the crossover and mutation probabilities, 𝑝

𝑐
and 𝑝

𝑚
,

are chosen to be 0.8 and 0.001, respectively. Let the
population size be 𝑁swarm = 100 and let maximum
iteration number be 𝑡max = 200.

(3) PSO [15]. The 𝑤 uses a linear decreasing inertia
weight, where 𝑤min = 0.4 and 𝑤max = 0.9; 𝑐1 = 𝑐2 =
2.0, the population size NP = 100, and maximum
iteration number is 200.

(4) ACO [16].The best parameter values are 𝛾
1
= 𝛾
2
= 1.0

and 𝜌 = 0.99.

In the experiments, we realize four tissue-like P systems
with degrees 4, 8, 16, and 20, respectively. The aim is to
evaluate the effects of the number of cells (i.e., different
degrees) on clustering quality. The four tissue-like P systems
are applied to find out the optimal centers for the ten data
sets, respectively. In this work, the 𝑀 value is also used to
measure the clustering quality of each clustering algorithm.
Considering that the evolution rules in the designed tissue-
like P system include stochastic mechanism, we indepen-
dently execute the tissue-like P systems of the four degrees 50
times on each data set and then compute their mean values
and standard deviations of the 50 runs. The mean values are
used to illustrate the average performance of the algorithms
while standard deviations indicate their robustness. Table 2
provides experimental results of the tissue-like P systems
of four degrees on ten data sets, respectively. The results of
degrees 16 and 20 are better than those of the other two
degrees, namely, lower mean values and smaller standard
deviations. It can be further observed that the tissue-like
P system with degree 16 obtains the smallest mean values
and standard deviations on most of data sets. The results
illustrate that the tissue-like P systemwith degree 16 has good
clustering quality and high robustness.
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Figure 4: Four artificial data sets: (a) AD 5 2; (b) Data 9 2; (c) Square 4; (d) Sym 3 22.

Table 2: The performance comparisons of tissue-like P systems of different degrees.

Data set 4 cells 8 cells 16 cells 20 cells
AD 5 2 327.01 ± 0.0944 326.94 ± 0.0277 326.44 ± 0.0105 326.94 ± 0.0312
Data 9 2 591.11 ± 0.1331 591.12 ± 0.0510 591.06 ± 0.0280 591.03 ± 0.0537
Square 4 2380.25 ± 0.1334 2380.26 ± 0.0956 2379.74 ± 0.0189 2380.00 ± 0.0729
Sym 3 22 1248.31 ± 0.3156 1248.11 ± 0.0554 1247.72 ± 0.0105 1248.05 ± 0.0333
Iris 96.84 ± 0.0751 96.81 ± 0.0435 96.75 ± 0.0428 96.77 ± 0.0361
BreastCancer 2974.24 ± 1.5431 2971.14 ± 1.5287 2970.24 ± 1.1225 2969.06 ± 1.0970
Newthyroid 1885.69 ± 14.377 1870.37 ± 1.7355 1869.29 ± 0.9215 1871.18 ± 2.2496
LungCancer 124.69 ± 0.0045 124.69 ± 0.0012 124.69 ± 0.0011 124.69 ± 0.0035
Wine 16309.01 ± 2.5053 16303.42 ± 1.9595 16292.25 ± 0.1529 16301.97 ± 2.8563
LiveDisorder 9860.54 ± 5.7239 9859.02 ± 0.5116 9851.78 ± 0.0347 9857.08 ± 0.1043

In order to further evaluate clustering performance, the
proposed membrane clustering algorithm is compared with
GA-based, PSO-based, andACO-based clustering algorithms
as well as classical 𝑘-means algorithm. Table 3 gives the
comparison results of the tissue-like P system of degree 16
with other four clustering algorithms on the ten data sets,

respectively. The comparison results show that the tissue-like
P system provides the optimum average value and smallest
standard deviation in comparison to those of other algo-
rithms. For instance, the results obtained on theAD 5 2 show
that the tissue-like P system converges to the optimum of
326.4478 at almost times and PSO reaches to 326.44 in most
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Input parameters: Data set,𝐷, the number of clusters, 𝑘, the number of cell, 𝑞, the number of objects in each cell,
𝑚, maximum execution step number, 𝑆max, crossover rate, 𝑝𝑐, and mutation rate, 𝑝

𝑚
.

Output results: the optimal centers, 𝐺.
Step 1. Initialization

for 𝑖 = 1 to 𝑞
for 𝑗 = 1 to 𝑚

Generate 𝑗th initial object for cell 𝑖, 𝑍
𝑖𝑗
;

Partition all data points into clusters, 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑘
;

Compute the𝑀 value of the object,𝑀
𝑖𝑗
;

end for
end for
Fill the global best object 𝐺 using the best of all initial objects;
Set computing step 𝑠 = 0;

Step 2. Object evolution in cells
for each cell 𝑖 (𝑖 = 1, 2, . . . , 𝑞) in parallel do

Evolve all object 𝑍
𝑖𝑗
(𝑗 = 1, 2, . . .) in its mating pool using evolution rules;

Use truncation operation to maintain its𝑚 best objects;
for 𝑗 = 1 to 𝑚

Partition all data points into clusters, 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑘
;

Compute the𝑀 value of the object,𝑀
𝑖𝑗
;

end for
end for

Step 3. Object communication between cells
for each cell 𝑖 (𝑖 = 1, 2, . . . , 𝑞) in parallel do

Transmit better objects in cell 𝑖 to its two adjacent cells;
Receive better objects from its two adjacent cells into its mating pool;
Update 𝐺 using the best object in cell 𝑖;

end for
Step 4. Halt condition judgment

if 𝑠 ≤ 𝑆max is satisfied
𝑠 = 𝑠 + 1;
goto Step 2;

end if
The system exports the global best object 𝐺 in the environment and halts;

Algorithm 1: Membrane clustering algorithm: a clustering algorithm based on tissue-like P systems.

Table 3: The results obtained by the algorithms for 50 runs on the ten data sets.

Data set P systems GA PSO ACO 𝑘-means
AD 5 2 326.44 ± 0.0105 332.31 ± 0.4792 326.44 ± 0.0128 326.45 ± 0.0344 332.47 ± 3.1286
Data 9 2 591.06 ± 0.0280 593.72 ± 0.2635 591.14 ± 0.0303 591.42 ± 0.0372 623.57 ± 3.1326
Square 4 2379.74 ± 0.0189 2380.33 ± 0.6319 2379.74 ± 0.0226 2379.79 ± 0.0428 2386.00 ± 4.5217
Sym 3 22 1247.72 ± 0.0105 1249.36 ± 1.2163 1247.72 ± 0.0149 1247.75 ± 0.0315 1255.45 ± 3.8725
Iris 96.75 ± 0.0428 99.83 ± 5.5239 97.23 ± 0.3513 97.25 ± 0.4152 104.11 ± 12.4563
BreastCancer 2970.24 ± 1.1225 3249.26 ± 229.734 3050.04 ± 110.801 3046.06 ± 90.500 3251.21 ± 251.143
Newthyroid 1869.29 ± 0.9215 1875.11 ± 13.5834 1872.51 ± 11.0923 1872.56 ± 11.1045 1886.25 ± 16.2189
LungCancer 124.69 ± 0.0011 129.52 ± 4.4961 127.23 ± 1.1528 127.31 ± 1.2936 139.40 ± 7.3136
Wine 16292.25 ± 0.1529 16298.42 ± 2.1523 16292.25 ± 0.1531 16292.25 ± 0.1672 16312.43 ± 9.4269
LiveDisorder 9851.73 ± 0.0347 9856.14 ± 1.9523 9851.73 ± 0.0356 9851.74 ± 0.0692 9868.32 ± 7.9274

of runs, while ACO, GA, and 𝑘-means attain 326.45, 322.31,
and 332.47, respectively. The standard deviations of𝑀 values
for the tissue-like P system, PSO, and ACO are 0.0105, 0.0128,
and 0.0344, respectively, which are significantly smaller than
the other two algorithms. For the results on the Iris, the
optimum value is 96.75, which is obtained in most of runs of

the tissue-like P system; however, the other four algorithms
fail to attain the value even once within 50 runs. The results
on the Newthyroid also show that the tissue-like P system
provides the optimum value of 1869.29 while the PSO, ACO,
GA, and 𝑘-means obtain 1872.51, 1872.56, 1875.11, and 1886.25,
respectively. In addition, the tissue-like P system obtains



The Scientific World Journal 7

Table 4: The results of 𝑃 values produced by Wilcoxon’s rank sum test.

P systems GA PSO ACO 𝑘-means
AD 5 2 4.1321𝑒 − 3 2.3256𝑒 − 2 2.6351𝑒 − 2 3.4273𝑒 − 3

Data 9 2 4.0536𝑒 − 3 2.2734𝑒 − 2 2.7932𝑒 − 2 3.2963𝑒 − 3

Square 4 3.9275𝑒 − 3 2.1482𝑒 − 2 2.8175𝑒 − 2 3.5387𝑒 − 3

Sym 3 22 3.7894𝑒 − 3 2.4357𝑒 − 2 2.8529𝑒 − 2 3.4416𝑒 − 3

Iris 4.0968𝑒 − 3 3.5823𝑒 − 2 3.2634𝑒 − 2 3.6528𝑒 − 3

BreastCancer 3.9235𝑒 − 3 2.9527𝑒 − 2 2.8192𝑒 − 2 3.4632𝑒 − 3

Newthyroid 3.8864𝑒 − 3 2.5162𝑒 − 2 2.9355𝑒 − 2 3.5381𝑒 − 3

LungCancer 3.8575𝑒 − 3 2.7346𝑒 − 2 2.7358𝑒 − 2 3.5138𝑒 − 3

Wine 3.7639𝑒 − 3 3.2189𝑒 − 2 2.7963𝑒 − 2 3.6348𝑒 − 3

LiveDisorder 3.8398𝑒 − 3 2.4671𝑒 − 2 2.8846𝑒 − 2 3.5822𝑒 − 3

smallest standard deviation on each data set in comparison
to the other four algorithms, which illustrates that it has high
robustness.

Wilcoxon’s rank sum test is a nonparametric statistical
significance test for independent samples. The statistical
significance test has been conducted at the 5% significance
level in the experiments. We create five groups for the ten
data sets, which are corresponding to the five clustering algo-
rithms (tissue-like P system, GA, PSO, ACO, and 𝑘-means),
respectively. Each group consists of the 𝑀 values produced
by 50 consecutive runs of the corresponding algorithms. In
order to illustrate if the goodness is statistically significant,
we have completed a statistical significance test for these
clustering algorithms. Table 4 gives the 𝑃 values provided by
Wilcoxon’s rank sum test for comparison of two groups (one
group corresponding to the tissue-like P system and another
group corresponding to some other method) at a time. The
null hypothesis assumes that there is no significant difference
between the mean values of two groups, whereas there is
significant difference in the mean values of two groups for
the alternative hypothesis. It is evident from Table 4 that all
𝑃 values are less than 0.05 (5% significance level). This is
a strong evidence against the null hypothesis, establishing
significant superiority of the proposed membrane clustering
algorithm.

5. Conclusion

In this paper, we discuss a membrane clustering algorithm,
a novel clustering algorithm in the framework of membrane
computing. Distinguished from the existing evolutionary
clustering techniques, two inherent mechanisms of mem-
brane computing are exploited to realize the membrane
clustering algorithm, including evolution and communica-
tion mechanisms. For this purpose, a tissue-like P system
consisting of 𝑞 cells is designed, in which each cell as parallel
computing unit runs in maximally parallel way and each
object of the system represents a group of candidate centers.
Moreover, the communication rules impliedly realize a local
neighborhood structure; namely, each cell exchanges and
shares the best objects with its two adjacent cells. Under
the control of evolution and communication mechanisms
of objects, the tissue-like P system is able to search for the

optimal centers for a data set to be clustered. In addition,
the local neighborhood structure can guide the exploitation
of the optimal object and enhance the diversity of evolution
objects.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was partially supported by the National Natural
Science Foundation of China (Grant nos. 61170030 and
61472328), the Chunhui Project Foundation of the Education
Department of China (nos. Z2012025 and Z2012031), and
the Sichuan Key Technology Research and Development
Program (no. 2013GZX0155), China.

References

[1] J. A. Hartigan, Clustering Algorithms, John Wiley & Sons, 1975.
[2] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data,

Prentice Hall, Engiewood Cliffs, NJ, USA, 1988.
[3] R. Xu andD.Wunsch II, “Survey of clustering algorithms,” IEEE

Transactions on Neural Networks, vol. 16, no. 3, pp. 645–678,
2005.

[4] A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern
Recognition Letters, vol. 31, no. 8, pp. 651–666, 2010.

[5] B. Everitt, S. Landau, and M. Leese, Cluster Analysis, Arnold,
London, UK, 2001.

[6] S. Saha and S. Bandyopadhyay, “A symmetry based multiobjec-
tive clustering technique for automatic evolution of clusters,”
Pattern Recognition, vol. 43, no. 3, pp. 738–751, 2010.

[7] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko,
R. Silverman, and A. Y. Wu, “An efficient k-means clustering
algorithms: analysis and implementation,” IEEETransactions on
Pattern Analysis andMachine Intelligence, vol. 24, no. 7, pp. 881–
892, 2002.

[8] D. Steinley, “K-means clustering: a half-century synthesis,” The
British Journal of Mathematical and Statistical Psychology, vol.
59, no. 1, pp. 1–34, 2006.

[9] X. Wu, Top Ten Algorithms in Data Mining, Taylor & Francis,
Boca Raton, Fla, USA, 2009.



8 The Scientific World Journal

[10] S. Bandyopadhyay and U. Maulik, “An evolutionary technique
based on K-means algorithm for optimal clustering in R𝑁,”
Information Sciences, vol. 146, no. 1–4, pp. 221–237, 2002.

[11] S. Bandyopadhyay and S. Saha, “GAPS: a clustering method
using a new point symmetry-based distance measure,” Pattern
Recognition, vol. 40, no. 12, pp. 3430–3451, 2007.

[12] M. Laszlo and S. Mukherjee, “A genetic algorithm that
exchanges neighboring centers for k-means clustering,” Pattern
Recognition Letters, vol. 28, no. 16, pp. 2359–2366, 2007.

[13] D. X. Chang, X. D. Zhang, and C. W. Zheng, “A genetic
algorithm with gene rearrangement for K-means clustering,”
Pattern Recognition, vol. 42, no. 7, pp. 1210–1222, 2009.

[14] C. D. Nguyen and K. J. Cios, “GAKREM: a novel hybrid
clustering algorithm,” Information Sciences, vol. 178, no. 22, pp.
4205–4227, 2008.

[15] Y. T. Kao, E. Zahara, and I. W. Kao, “A hybridized approach to
data clustering,” Expert Systems with Applications, vol. 34, no. 3,
pp. 1754–1762, 2008.

[16] P. S. Shelokar, V. K. Jayaraman, and B. D. Kulkarni, “An ant
colony approach for clustering,” Analytica Chimica Acta, vol.
509, no. 2, pp. 187–195, 2004.

[17] T. Niknam and B. Amiri, “An efficient hybrid approach based
on PSO, ACO and k-means for cluster analysis,” Applied Soft
Computing Journal, vol. 10, no. 1, pp. 183–197, 2010.
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