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ABSTRACT Cas1 integrase is the key enzyme of the clustered regularly interspaced
short palindromic repeat (CRISPR)-Cas adaptation module that mediates acquisition
of spacers derived from foreign DNA by CRISPR arrays. In diverse bacteria, the cas1
gene is fused (or adjacent) to a gene encoding a reverse transcriptase (RT) related to
group II intron RTs. An RT-Cas1 fusion protein has been recently shown to enable
acquisition of CRISPR spacers from RNA. Phylogenetic analysis of the CRISPR-
associated RTs demonstrates monophyly of the RT-Cas1 fusion, and coevolution of
the RT and Cas1 domains. Nearly all such RTs are present within type III CRISPR-Cas
loci, but their phylogeny does not parallel the CRISPR-Cas type classification, indicat-
ing that RT-Cas1 is an autonomous functional module that is disseminated by hori-
zontal gene transfer and can function with diverse type III systems. To compare the
sequence pools sampled by RT-Cas1-associated and RT-lacking CRISPR-Cas systems,
we obtained samples of a commercially grown cyanobacterium—Arthrospira platensis.
Sequencing of the CRISPR arrays uncovered a highly diverse population of spacers.
Spacer diversity was particularly striking for the RT-Cas1-containing type III-B system,
where no saturation was evident even with millions of sequences analyzed. In con-
trast, analysis of the RT-lacking type III-D system yielded a highly diverse pool but
reached a point where fewer novel spacers were recovered as sequencing depth
was increased. Matches could be identified for a small fraction of the non-RT-Cas1-
associated spacers, and for only a single RT-Cas1-associated spacer. Thus, the princi-
pal source(s) of the spacers, particularly the hypervariable spacer repertoire of the
RT-associated arrays, remains unknown.

IMPORTANCE While the majority of CRISPR-Cas immune systems adapt to foreign
genetic elements by capturing segments of invasive DNA, some systems carry re-
verse transcriptases (RTs) that enable adaptation to RNA molecules. From analysis of
available bacterial sequence data, we find evidence that RT-based RNA adaptation
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machinery has been able to join with CRISPR-Cas immune systems in many, diverse
bacterial species. To investigate whether the abilities to adapt to DNA and RNA mol-
ecules are utilized for defense against distinct classes of invaders in nature, we se-
quenced CRISPR arrays from samples of commercial-scale open-air cultures of Arthro-
spira platensis, a cyanobacterium that contains both RT-lacking and RT-containing
CRISPR-Cas systems. We uncovered a diverse pool of naturally occurring immune
memories, with the RT-lacking locus acquiring a number of segments matching
known viral or bacterial genes, while the RT-containing locus has acquired spacers
from a distinct sequence pool for which the source remains enigmatic.

KEYWORDS CRISPR, RNA spacer acquisition, cyanobacteria, deep sequencing,
horizontal gene transfer, host-parasite relationship, phylogeny, reverse transcriptase

Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas systems pro-
vide adaptive immunity in most of the archaea and many bacteria (1). Short

genomic segments of invading genetic elements (protospacers) are inserted as spacers
between direct repeats in the CRISPR array(s) of the host genome during CRISPR
adaptation (2–4). The primary transcript of the CRISPR array is processed into small-RNA
guides that consist of a spacer with portions of the flanking CRISPR repeats, which are
used by CRISPR-associated (Cas) nucleases to identify and degrade cognate nucleic
acids (5, 6). The information content of CRISPR spacers is integrated directly into the
prokaryotic genome and is inherited upon cell division, creating a durable genomic
record of a host-pathogen interaction.

CRISPR-Cas systems have been classified into six types and more than 20 subtypes
on the basis of gene content and locus architecture (7–9). CRISPR repeat sequences of
the various types and subtypes show conservation in related bacteria, while the spacer
content of the CRISPR arrays is extremely variable (10). Genomes of different strains of
the same bacterial species often contain similar configurations of CRISPR-Cas systems
with closely similar repeat sequences but substantially different and, in many cases,
non-overlapping spacer repertoires (11).

Several type III CRISPR-Cas systems contain genes encoding fusions of reverse
transcriptases (RTs) with the major CRISPR adaptation enzyme, the Cas1 integrase
(12–15). Here, we explore the possible origins of RT-associated CRISPR loci, the routes
of their evolution, and their spacer content. In particular, we address several open
questions. When and how did putative functional associations between RTs and cas1
genes arise? What constraints exist for the association of RT-Cas1 fusions with CRISPR-
Cas systems? Do RT-Cas1-containing CRISPR loci acquire spacers from a distinct source,
i.e., from genomic RNA, plasmid RNA, DNA phage transcripts, or RNA phage sequences,
or from some other, uncharacterized RNA pool?

We have previously shown that RT-Cas1 fusions enable CRISPR spacer acquisition
directly from RNA (16). The ability of the RT-Cas1 adaptation modules to acquire spacers
from RNA, coupled with the ability of type III CRISPR-Cas effector modules to target RNA
(17–24), implies the potential to provide adaptive immunity against parasites with both
RNA and DNA genomes. We wondered whether such a capability might lend itself to
an expanded immune function for RT-associated CRISPR-Cas systems in the environ-
ment.

The population of spacers contained within CRISPR arrays in a natural community of
RT-Cas1-carrying organisms is a potential “memory bank” of the pools of nucleic acids,
particularly RNAs, that are perceived as “threats” by these microbes (25). To gain insight
into this form of microbial immune memory, we interrogated the spacer repertoire of
a natural population of RT-Cas1-bearing cyanobacteria Arthrospira platensis grown in
vast enriched cultures for commercial sale as a food supplement known as Spirulina.
The A. platensis genome contains both an RT-linked type III-B CRISPR-Cas locus and an
RT-lacking type III-D locus. We identified diverse spacer repertoires from each CRISPR-
Cas system. Protospacers were identified in the Spirulina metagenome for a few type
III-D spacers, but virtually none of the RT-linked type III-B spacers could be traced to any
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source. These findings suggest that the vast majority of RT-linked CRISPR spacers come
from a distinct sequence pool, the nature of which remains enigmatic.

RESULTS
Phylogeny of reverse transcriptases associated with CRISPR-Cas systems. Pre-

vious phylogenetic analysis of the RT superfamily has suggested that the CRISPR-
associated RTs could be derived from a single acquisition event, and that they are most
similar to the RTs encoded by group II introns (15). To study the origin and extent of
the RT association with CRISPR loci in greater detail, we retrieved 266 islands from a
large dataset of both complete and draft bacterial and archaeal genomes that con-
tained at least one cas gene and at least one RT gene (see Table S1 at https://figshare
.com/s/3a8dab8ed7138922f693). From this collection of genomic loci, we selected a
nonredundant set of proteins that could be expected to contain a full-sized RT domain
(~300 amino acids [aa]). As reported previously, the CRISPR-associated RTs do not show
specific phylogenetic affinity to any subgroup of the group II intron-encoded RTs (15).
To build a phylogenetic tree, we included several group II intron-encoded RTs as an
outgroup (Fig. 1; also see Fig. S1 in the supplemental material for details). The resulting
tree topology is largely consistent with the phylogenetic analysis in the previous work
(15), with the seven distinct groups described in the previous analysis reproduced in
our tree (Fig. 1). Because our dataset included almost an order of magnitude more RTs
than were used in the previous set, we were able to identify additional, well-supported
branches that had not been described previously. These new groupings include branch
1, which consists of proteins containing fused Cas6, RT, and Cas1 domains; the
Cyanobacteria-specific branch 5, which consists of RT-Cas1 fusion proteins; minor
branches 8, 9, and 10 (Fig. 1); and the Methanomicrobia-specific branch 11 in the
outgroup (Fig. S1). The RT from Marinomonas mediterranea, for which activity in spacer
adaptation has been studied (16), belongs to branch 1, and the RT from A. platensis
belongs to branch 5 (Fig. 1).

To investigate the origin of the fusions between RT and cas genes, we examined the
domain organizations of all Cas proteins fused to RT domains (or encoded by adjacent
genes) in the context of the RT tree (Fig. 1). The tree suggests the original establishment
of a functional connection between RT and cas1 within the adaptation module, first as
adjacent genes. The tree topology is further consistent with the parsimonious evolu-
tionary scenario of single points of origin, first of the RT-Cas1 fusion and then of the
Cas6-RT-Cas1 fusion (clades 1 and clade 2, respectively) (Fig. 1). However, there are
many variations in protein architecture in different branches of the tree. Some of this
variation in clades 1 and 2 can be explained by secondary fissions (i.e., split of the fusion
protein into separate Cas1 and RT proteins), although the possibility of there being
several additional, independent cases of RT-Cas1 fusion within or outside these clades
(e.g., Roseburia in branch 8) cannot be ruled out. The Cas1 phylogeny largely follows the
RT phylogeny (Fig. S2), which suggests that the two proteins (or domains in fusion
proteins) generally coevolve. Recombination between RT and Cas1 domains could have
occurred on several occasions and might account for the inconsistencies between the
topologies of the RT and Cas1 trees (for example, see Pirellula staleyi DSM 6068 in Fig. 1
and Fig. S2).

We also mapped the known CRISPR-Cas system subtypes onto the RT tree to
determine whether the RTs coevolved with the respective CRISPR effector complexes.
The RT-Cas1 fusions were associated with diverse subtypes and variants of type III
CRISPR-Cas systems (Fig. 1). On the whole, we observed virtually no link between the
RT phylogeny and the phylogeny of the effector modules. Furthermore, even within the
RT-encoding loci classified as being of the same CRISPR-Cas subtype, gene content was
often notably different (Fig. 2). About half of the RT-cas loci lack genes for effector
complex subunits but often include a CRISPR array (Fig. 2). Taken together, these
observations indicate that the RT-containing adaptation module represents an
autonomous functional unit that spreads by horizontal transfer and can promiscuously
combine or function in trans with any type III system (with the possible exception of
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 1088252880 III-A Cas6 RT Cas1 Candidatus Magnetoovum chiemensis CS 04
 1303679027 III-A Cas6 RT Cas1 Cloacimonetes bacterium

 1303515529 III-D Cas6 RT Cas1 Cloacimonetes bacterium
 1300790090 III-B Cas6 RT Cas1 Teredinibacter turnerae T8602

 1004510433 III-B Cas6 RT Cas1 Marinomonas mediterranea MMB 1
 1093696980 III-A Cas6 RT Cas1 Photobacterium aphoticum DSM 25995

 1082524531 III-A Cas6 RT Cas1 Vibrio sinaloensis T08
 1104661247 III-A Cas6 RT Cas1 Vibrio metoecus 07 2435

 1304691071 III-D Cas6 RT Cas1 Oceanospirillum beijerinckii DSM 7166
 1115227208 III-D Cas6 RT Cas1 Vibrio MEBiC08052

 1032985138 III-A Cas6 RT Cas1 Photobacterium marinum AK15
 1088988843 III-D Cas6 RT Pseudoalteromonas piscicida S2040

 1303089113 III-B Cas6 RT Cas1 Vibrio gazogenes ATCC 43941
 1302439752 III-A Cas6 RT Cas1 Teredinibacter turnerae T8412
 1048640372 NA Cas6 RT Cas1 uncultured Thiohalocapsa PB PSB1

 1048646038 III-A Cas6 RT Cas1 uncultured Thiohalocapsa PB PSB1
 1902099493 III-A Cas6 RT Cas1 Thiocapsa KS1

 1300886478 III-A RT Teredinibacter turnerae T0609
 1506802023 III-D Cas6 RT Cas1 Thiomicrospira Milos T1

 1090715113 NA RT Cas1 Candidatus Brocadia fulgida
 1002963976 III-A Cas6 RT Cas1 Pirellula staleyi DSM 6068

 1304393235 III-D RT Cas1 Rubrivivax benzoatilyticus
 1502208823 III-B RT Deinococcus marmoris DSM 12784

 1058961788 III-B RT Cas1 Candidatus Accumulibacter SK 02
 1201212090 NA RT Fretibacterium fastidiosum SGP1

 1092793668 NA RT Frankia BMG5 1
 1903149240 NA RT Actinomadura latina NBRC 106108

 1024034068 NA RT Actinomyces oral taxon 849 F0330
 1029415510 III-A RT Cas1 Rhodovulum PH10

 1015996973 III-A RT Cas1 Rhodovulum sulfidophilum DSM 2351
 1049572367 III-A RT Cas1 Rhodobacter capsulatus B6

 1000605655 III-A RT Cas1 Azospirillum B510
 1006463014 NA RT Cas1 Azospirillum lipoferum 4B

 1006120646 III-A RT Cas1 Tistrella mobilis KA081020 065
 1104750302 III-A RT Cas1 Rhodobacter capsulatus B41

 1302570882 III-B RT Cas1 Woodsholea maritima DSM 17123
 1003987782 III-D RT Rhodomicrobium vannielii ATCC 17100

 1903860234 III-A RT Pseudoruegeria sabulilitoris GJMS 35
 1029415371 III-A RT Cas1 Rhodovulum PH10 PH10

 1003629427 III-A RT Cas1 Desulfarculus baarsii DSM 2075
 1205936010 III-B RT Candidatus Kuenenia stuttgartiensis
 1087155203 III-B RT Candidatus Brocadia sinica JPN1
 1004585928 NA RT Desulfobacca acetoxidans DSM 11109

 1506222675 III-A RT Cas1 Methylobacter tundripaludum 31 32
 1002202822 III-B RT Cas1 Chlorobium limicola DSM 245
 1001306044 III-A RT Cas1 Chlorobium phaeobacteroides DSM 266

 1002227457 III-A RT Cas1 Pelodictyon phaeoclathratiforme BU 1
 1050755037 III-A RT Cas1 Candidatus Entotheonella TSY2

 1089011684 NA RT Cas1 Pseudoalteromonas rubra S2471
 1000439684 III-D RT Cas1 Vibrio vulnificus YJ016

 1702134942 III-D RT Cas1 Vibrio CAIM 1540 CAIM 1540
 1007073441 NA RT Crinalium epipsammum PCC 9333

 1205957111 NA RT Fischerella PCC 9339
 1300387099 NA RT Scytonema hofmanni PCC 7110

 1007024076 NA RT Rivularia PCC 7116
 1406819263 NA RT Scytonema hofmanni UTEX 2349
 1300387311 III-B RT Scytonema hofmanni PCC 7110
 1205952197 III-B RT Mastigocladopsis repens PCC 10914
 1085644015 NA RT Scytonema tolypothrichoides VB 61278

 1033003331 NA RT Gloeocapsa PCC 73106
 1002407007 NA RT Cyanothece PCC 7424

 1031264456 NA RT Microcystis aeruginosa PCC 9717
 1031583770 III-A RT Cas1 Leptolyngbya PCC 7375
 1033011578 NA RT Cas1 Pseudanabaena biceps PCC 7429
 1303316709 III-D RT WS1 bacterium JGI 0000059 K21
 1500071761 NA RT Cas1 Microcystis aeruginosa PCC 7005
 1022197393 III-B RT Cas1 Arthrospira platensis NIES 39
 1508011554 NA RT Cas1 Leptolyngbya KIOST 1
 1206858827 NA RT Cas1 Leptolyngbya PCC 6406
 1103532473 NA RT Cas1 Phormidesmis priestleyi Ana
 1020739598 III-B RT Cas1 Oscillatoria PCC 6506

 1007083862 III-D RT Cas1 Microcoleus PCC 7113
 1405464152 NA RT Fischerella PCC 9605 PCC 9605
 1086624345 NA RT Cas1 Mastigocladus laminosus UU774
 1007001097 III-D RT Cas1 Calothrix PCC 7507

 1206050585 NA RT Cas1 Fischerella muscicola PCC 7414
 1003731256 III-B RT Cas1 Cyanothece PCC 7822

 1303700560 NA RT Poribacteria bacterium WGA 3G 
 1090715873 NA RT Candidatus Brocadia fulgida

 1002482245 NA RT Chloroflexus Y 400 fl
 1001578681 NA RT Roseiflexus RS 1
 1001882957 NA RT Herpetosiphon aurantiacus DSM 785

 1022977554 NA RT Thiorhodococcus drewsii AZ1
 1500704209 NA RT Nitrosomonas cryotolerans ATCC 49181

 1023173022 NA RT Thiorhodospira s ibirica ATCC 700588
 1607657511 NA RT Thioalkalimicrobium microaerophilum ASL8 2

 1900620237 NA RT Thiohalocapsa ML1
 1048641679 NA RT uncultured Thiohalocapsa PB PSB1

 1500883143 NA RT Thiothrix lacustris  DSM 21227
 1007201614 III-B RT Thioflavicoccus mobilis 8321

 1301710365 III-D RT Thioalkalivibrio ALgr3
 1301617557 III-D RT Thioalkalivibrio ALE14
 1703842961 NA RT Candidatus Achromatium palustre
 1102039043 NA RT Candidatus Magnetomorum HK 1
 1305228243 III-D RT Desulfovibrio zosterae DSM 11974

 1007471285 NA RT Edwardsiella piscicida C07 087
 1082772242 NA RT Morganella morganii FDAARGOS 63

 1020080723 NA RT Roseburia inulinivorans DSM 16841
 1028348694 NA RT Brevibacillus CF112

 1042736851 III-D RT Roseburia CAG 303
 1086151787 III-D RT Lachnospiraceae bacterium TWA4
 1050185416 III-A RT Candidatus Magnetoglobus multicellularis

 1019675870 NA RT Caminibacter mediatlanticus TB 2
 1500299078 III-B RT Bacteroides barnesiae DSM 18169
 1060602543 III-B RT Bacteroides fragilis 3988T B 14

 1025813329 I-E RT Streptococcus oralis  SK10
 1017567800 I-E RT Streptomyces clavuligerus ATCC 27064

 RT

 Cas1

 Cas6

 Cas3

 1012160905 I-E RT Streptomyces lydicus A02
 1089132062 I-E RT Streptomyces MUSC164 MUSC164
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type III-C). It should be noted, however, that given the absence of the hallmarks of
group II introns, including both the typical elements of RNA secondary structure and
additional domains of the intron-encoded proteins (26), these RT-encoding modules
are not predicted to spread as retroelements. With a single exception described below,
RTs were not found associated with other CRISPR-Cas types.
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FIG 2 Architectures of selected RT-associated CRISPR-Cas loci. For each locus, the species name, genome accession number, and respective nucleotide
coordinates are indicated. Genes are shown roughly to scale; CRISPR arrays are indicated in brackets and are not shown to scale. Homologous genes are
color-coded, with the exception of numerous ancillary genes, which are all shown in light green with a green outline, and unknown proteins are shown in gray.
The gene names largely follow the nomenclature in reference 7, but the RAMP proteins of groups 5 and 7 are denoted gr5 and gr7, respectively. The CRISPR-Cas
system subtype is indicated for the loci encoding the respective effector genes.

FIG 1 Phylogeny of a representative set of reverse transcriptases encoded within CRISPR-cas loci. A
maximum likelihood phylogenetic tree was reconstructed for 134 RT sequences using the FastTree
program. SH (Shimodaira-Hasegawa)-like node support values calculated by the same program are
shown if they are greater than 70%; node support values for key nodes are highlighted. Major
well-supported distinct branches are shown by blue rectangles. Each sequence in the tree is shown with
a local numeric identifier (ID) and species name; these are also provided in Table S1 (https://figshare
.com/s/3a8dab8ed7138922f693) for comparison. RT protein domain architecture is coded in each
sequence description as follows: Cas6_RT_Cas1 and RT_Cas1 for the respective fusions, RT for the
systems with known subtypes, and NA_RT for all other cases. A typical domain or gene organization for
each branch and for selected sequences is shown to the right of the tree. Independent genes are shown
with distinct arrows, while fused genes are displayed as single arrows with multiple colors. The text is
color-coded to denote CRISPR-Cas system subtypes as follows: III-A, dark blue; III-B, magenta; III-D, sky
blue; I-E, orange. The outgroup is collapsed and is indicated by a triangle. The details for the outgroup
branch are provided in Fig. S1. For the sequences that were classified previously (15), the respective
groups are indicated in green.
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In the course of this analysis, we detected two unusual RT-associated CRISPR-Cas
architectures. One of these belongs to branch 11 in the outgroup (i.e., among group II
intron-encoded RTs) and is present mostly in Methanosarcina species. In this case, the
RT gene is located next to a cas6 gene but there is no cas1 gene in the locus (Fig. 2).
This RT is confidently placed within the outgroup containing mostly RTs of group II
introns (Fig. 1). Thus, this is most likely a case of independent recruitment of an RT into
a CRISPR-Cas system. The second unusual architecture occurs in association with a small
number of type I-E systems. The RT genes in this case are located next to the effector
module genes (Fig. 2). This arrangement was detected in several Streptomyces species
and in Streptococcus oralis (Fig. 1). The RT in this system seems to have been acquired
from the main, type III-associated group described above (Fig. 1). The fixation of this
gene arrangement in bacterial evolution implies that this RT functions as part of the
type I-E CRISPR-Cas system, which is unexpected given the lack of RNA targeting by the
type I systems that have been studied so far, and could be an interesting direction for
experimental study.

A diverse repertoire of CRISPR spacers in commercially grown Arthrospira
platensis. To compare the nucleic acid sequence repertoires sampled by RT-Cas1-
associated and RT-lacking CRISPR-Cas systems in a physiological setting, we obtained
a series of independent samples from the cyanobacterial species Arthrospira platensis,
grown commercially in open-air “raceway” ponds and marketed as Spirulina. We chose
this species because it represented an easily accessible, natural population of RT-Cas1-
encoding bacteria, grown in a large culture exposed to the open environment.

The various A. platensis strains with sequenced genomes (8005, C1, NIES-39) contain
type III-A, type III-D, and type III-B CRISPR-Cas systems, and two classes of CRISPR arrays
with conserved CRISPR repeat sequences that are associated with either the III-D or III-B
systems. None of the strains harbor any type I or type II CRISPR-Cas systems. One type
III-B locus (denoted III-B–RT) in each strain carries an RT-Cas1 fusion in addition to a
separate Cas1 gene without an RT domain. Additionally, InsQ and COG2452 trans-
posases, as well as apparent pseudogenes of IS1, IS607, and IS630 family transposases
and group II intron-type RTs, can be found in the immediate neighborhoods of the type
III-B loci. The arrangement of various CRISPR-Cas systems in the type strain A. platensis
NIES-39 is shown (Fig. 3A to C).

We designed primers specific to the distinct III-D (RT-lacking) and III-B (RT-Cas1-
associated) CRISPR repeat sequences in the A. platensis NIES-39 genome to amplify
spacers selectively from each CRISPR array (Fig. S3). Spacers are typically integrated into
CRISPR arrays in a directional manner: new spacers are inserted close to the “leader”
sequence (which also contains the CRISPR promoter) and are pushed down the array
when more spacers are acquired (4). Older spacers would therefore be seen more
frequently in a bacterial population as they are propagated through cell division. Our
sequencing method retains strand information but should lead to the amplification of
all spacers with similar efficiencies irrespective of the ordering of the spacers in a
CRISPR array.

We purchased Spirulina from various Spirulina vendors at local grocery stores and
extracted genomic DNA from the cyanobacteria. This DNA served as the template for
amplification of CRISPR spacers, and the amplicons formed the characteristic “ladder”
expected of primers that bind only in the repeat sequences of CRISPR arrays (Fig. 3D
and E). We also used as an amplification control a similarly marketed raw probiotic
blend that does not contain Arthrospira platensis and did not observe any amplicons
(data not shown).

By high-throughput sequencing of the smallest amplicon from each reaction (cor-
responding to one repeat-spacer-repeat unit), we recovered a diverse repertoire of
spacer sequences. To group highly similar spacers, we first trimmed CRISPR repeats
from the reads and allowed up to 2 mismatches to account for sequencing error. This
procedure yielded a total of about 2 � 106 unique spacers. Variation in spacer
sequences caused by mutations arising during cyanobacterial cell division could result
in multiple “unique” spacers being identified that were likely derived from the same
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acquisition event. To obtain a more conservative estimate of the complexity of the
spacer pools, we utilized a less stringent threshold for spacer equivalence. Spacers
were ranked by the frequency with which they were encountered in the dataset
and were then compared pairwise with every less prevalent sequence. If the two
sequences were different at 4 or fewer sites (allowing for arbitrarily long deletions on
either end to account for potential trimming artifacts), the less prevalent sequence was
discarded. For every spacer observed 100 times or more, we also discarded any less
frequent sequences that shared any 12-mer with their presumed “parents.” This pro-
cedure yielded a dataset of ~2 � 105 spacer clusters (Fig. 4A). The clustered spacers
were typically observed only once in the dataset (Fig. 4B).

The spacers from the III-B system were shorter than those from the III-D system, as
expected from their sizes in the sequenced CRISPR arrays in the reference genome

FIG 3 CRISPR-Cas systems in Arthrospira platensis. (A) Distribution of CRISPR-Cas systems by phylogenetic type in
three sequenced reference strains of A. platensis (�Others�: types I, II, IV, V, and VI). The tree at the right side of the
panel shows the evolutionary relationship between type III subtypes. (B) List of CRISPR-Cas systems and arrays in
type strain A. platensis NIES-39 (left panel). The approximate location in megabases (Mb) on the circular chromo-
some in the direction of the arrow is indicated (right panel). The cas10 cmr2 and cmr6 family genes in the III-B–RT
system (but not the III-B system) show signs of mutational atrophy. (C) Alignments of CRISPR direct repeats from
the various CRISPR arrays. (D) Gel image showing PCR products amplified from CRISPR arrays. The first lane shows
a 25-bp DNA ladder. (E) List of Spirulina brands used in this study.
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(Fig. 4C). Coincidence analysis (27, 28) revealed that spacers amplified from the III-D and
III-B loci indeed came from distinct sequence pools (Fig. S4). We found the spacers from
CRISPRs B1/B2, CRISPR B3, and CRISPRs D1/D2/D3 to be mutually disjoint. Further
validating the specificity of our PCR method, spacers in the CRISPR arrays in the
reference genomes of various A. platensis strains were efficiently recovered, and there

FIG 4 Sequencing of spacers from Spirulina purchased from grocery stores. (A) Numbers of unique spacers
recovered from type III-D and type III-B CRISPR arrays before and after clustering. The last two columns show
Chao-1 estimates of species richness/diversity (57). The Chao-1 estimate corresponds to an approximate lower
bound for the total number of unique spacers in the sample. The 95% confidence lower bound for the Chao-1
estimate has also been calculated. (B) Histogram of spacer frequency before and after clustering. The last bin
contains all sequences observed 100 times or more. (C) Histogram of spacer lengths for III-D and III-B spacers. (D)
Saturation curves calculated for III-D and III-B spacer pools using the clustering algorithm described for panel A
showing the number of sequence clusters obtained as progressively larger subsets of the spacer datasets were
considered.
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were no instances of crossovers between the III-D and III-B spacer pools at the genomic
CRISPR loci. To assess whether we have approached a point of diminishing returns in
our sequencing efforts, we randomly sampled spacers from our dataset in 10% incre-
ments and quantified whether the total number of unique spacers (counted according
to the clustering method described above) kept increasing. We found that the spacer
pools appeared to be approaching diminishing returns for the type III-D loci but not for
the type III-B loci (Fig. 4D).

Sampling the extracellular environments of A. platensis. We reasoned that the
appropriate environment in which to find the sequence pool from which A. platensis
captures spacers would be open-air “raceway ponds”. We collected samples of the
cyanobacteria and their extracellular environment from a commercial Spirulina farm
(Earthrise Nutritionals LLC, Calipatria, CA). Several samples of enriched culture were
collected directly from the Spirulina raceway ponds and separated into cellular and
extracellular fractions by centrifugation (see Materials and Methods). A summary of the
sequencing data thus obtained is shown in Fig. S5A. Mapping of the DNA sequences
from the cellular fraction to the A. platensis reference genomes (strains NIES-39, C1, and
8005) revealed a highly polymorphic population (Fig. S5B). Because we were most
interested in potentially rare and/or structured RNA species, the isolated RNA was
sequenced using several different methods to mitigate inherent biases among the RNA
sequencing protocols (see Materials and Methods). Virus-like contigs were detected in
both extracellular RNA and DNA fractions (Fig. S5C and D; also see Text S1 in the
supplemental material). In addition to the data from Spirulina raceway ponds, small
amounts of metagenomic data were collected from the nearby saline rift lake, the
Salton Sea. We also obtained a metagenomic DNA dataset from a separate study of
Lake Bogoria in Kenya (unpublished); this lake is a natural habitat of cyanobacteria,
including A. platensis, which serve as the food source for one of the world’s largest
populations of flamingos.

Additionally, we sequenced CRISPR spacers from the cellular DNA using the ampli-
fication scheme from Fig. S3. The resulting “native” spacer repertoire exhibited char-
acteristics similar to those of the previous dataset from store-bought Spirulina, and both
store-bought and native spacers were included in subsequent searches (Fig. S6).

An enigmatic source of the RT-associated CRISPR spacers from Spirulina. We
attempted to identify a source for Spirulina spacers from the combined pool of ~2.5 �

106 sequences representing �2 � 105 clusters. Since searches through the A. platensis
reference genomes and public (NCBI NR/NT) databases yielded very few matches (see
Text S1), we shifted our focus to datasets that specifically aimed to collect bacterio-
phage sequences that were not present in NR/NT collections. Several such datasets
were screened: a cyanobacterial virome sequenced from hot-spring microbial mats in
Octopus Spring in Yellowstone National Park (29); all viral contigs from the Tara Ocean
Viromes project, which contained many DNA bacteriophages of abundant marine
cyanobacteria such as Synechococcus sp. (30); and a source-agnostic virome curated
from a comprehensive analysis of thousands of metagenomic DNA samples (31, 32).
None of the datasets yielded any conclusive identification of the Spirulina spacers
(Fig. 5A). Next, to leverage the possibility that the type III-B CRISPR arrays were
acquiring spacers exclusively from RNA, we also searched through an RNA virome
constructed through a meta-analysis of metatranscriptomic contigs (unpublished) from
the IMG/M system (33) containing RNA viral hallmark genes, including RNA-dependent
RNA polymerase (RdRp) genes and other genes specific to RNA viruses. Again, we did
not find any confident matches (Fig. 5A).

Next, leveraging the Spirulina metagenomes and viromes, we set out to find spacers
that might have been derived from a sequence in the local environment which we
could then potentially identify in external databases (also see Fig. S7, S8, and S9 and
Text S1). While a few more hits for type III-D spacers were observed in the Spirulina
metagenomic data relative to public sequence databases (Fig. 5B), the overwhelm-
ing majority still could not be matched. Notably, only matches to a single site in
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thymidylate synthase were observed among the type III-B spacers (Fig. S9B).
Alignments of spacers to metagenomic reads that could be identified as homo-
logues of known open reading frames (ORFs) are presented in Table S2 (https://
figshare.com/s/16f85dbabc34e314a828). Finally, we also screened metagenomic se-
quencing data from Lake Bogoria but found only ~540 hits in a total search space of
over 37 million reads. Almost all of these hits contained stretches of low-complexity
sequence and were unlikely to represent genuine matches.

In summary, screening of the various databases detailed here led to the identifica-
tion of only a small proportion of spacers with protospacers detectable in the Spirulina
spacer pool. Several protospacers were identified for the RT-lacking type III-D system,
but only a single potential target was detected for the RT-associated III-B system. The
low prevalence of detectable protospacers in the Spirulina metagenome points to an
unknown origin of the great majority of the type III-D and (especially) type III-B
protospacers in A. platensis.

Several RT-linked CRISPR spacers appear to target DNA viruses. We then
broadened our search to all CRISPR spacers in published genomic datasets. To assess
whether any CRISPR spacers were specific to any RNA phages, we aligned all unique
sequences from known RNA phage species (see Table S3 at https://figshare.com/s/
f373935a1da886040791) (34) to CRISPR spacers from published genomes (35). No RNA
phage sequences showed significant similarity to any CRISPR spacer. Given the lack of
detected protospacers at this stage, we expanded the search to include all spacers from
CRISPR arrays associated with the RT-encoding loci (see Table S1 at https://figshare
.com/s/3a8dab8ed7138922f693) to look for possible matches to the viral subset of the
NR/NT database (NCBI taxid 10239) and against the prokaryotic database. Only a few
matches were found among the 2,054 spacers (see Table S4 at https://figshare.com/s/
72fccf4e2ad9503b5a0e), and most of these originated from DNA phages or predicted
prophages. The CRISPR arrays containing the spacers with matches are scattered
among different branches of the RT tree (Table S4, https://figshare.com/s/
72fccf4e2ad9503b5a0e).

DISCUSSION

The dynamic evolution of the CRISPR loci, both in their “hardware” (adaptation and
effector enzymatic machinery) and “software” (spacer repertoires), provides a valuable
opportunity to track virus-host coevolution (36). In this work, we analyzed the prevalent
variants of type III CRISPR-Cas systems that contain reverse transcriptase domains and
appear to acquire spacers from RNA molecules. To gain insight into the evolution and

B. Summary of spacer searches through Spirulina metagenomic sequencing data

Metagenomic sample

Raceway pond metagenomic contigs

Raceway pond metagenome raw reads

Lake Bogoria metagenome

Size of database

205 Mb (553,272 contigs)

5.81 Gb (49,158,657 reads)

6.88 Gb (37,617,952 reads)

288
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418

-
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(Spacer     Metagenome)

Unfiltered alignments
(Metagenome     NR)
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-
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-

III-D          III-BIII-D                  III-B
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328

20

III-D                III-B
8

5

-

A. Summary results of spacer search in external datasets

Database

Yellowstone Virome

Tara Oceans Virome

Metagenomic DNA virome

Size of 
database

180 Mb (501,240 reads)

1.05 Gb (279,773 contigs)

4.2 Gb (264,413 contigs)

Unfiltered
hits

9

17

Satisfactory
alignments

0

0

0

Metatranscriptomic RNA virome 35 Mb (380,923 contigs)

80

6 0

FIG 5 Summary of Spirulina spacer search attempts. (A and B) BLAST results matching ~2 million CRISPR spacers
to reads and contigs from (A) various virome datasets and (B) Spirulina metagenomic data. The “unfiltered hits”
columns show the number of matches returned at e-value stringency cutoffs based on the size of the database. The
“Unfiltered alignments” column in panel B denotes the subsets of reads and contigs from the unfiltered hits that
could in turn be identified in public protein sequence databases (NR) at the protein level. The “Satisfactory
alignments” columns list the manually curated hits remaining after low-complexity and low-confidence matches
were eliminated.

Silas et al. ®

July/August 2017 Volume 8 Issue 4 e00897-17 mbio.asm.org 10

https://figshare.com/s/16f85dbabc34e314a828
https://figshare.com/s/16f85dbabc34e314a828
https://figshare.com/s/f373935a1da886040791
https://figshare.com/s/f373935a1da886040791
https://figshare.com/s/3a8dab8ed7138922f693
https://figshare.com/s/3a8dab8ed7138922f693
https://figshare.com/s/72fccf4e2ad9503b5a0e
https://figshare.com/s/72fccf4e2ad9503b5a0e
https://figshare.com/s/72fccf4e2ad9503b5a0e
https://figshare.com/s/72fccf4e2ad9503b5a0e
http://mbio.asm.org


functions of these CRISPR-Cas systems, we examined the broad phylogeny of the
RT-associated adaptation machineries and interrogated the resultant spacer repertoire
in detail in a readily accessible bacterial species carrying such a locus (Arthrospira
platensis).

Phylogenetic analysis of CRISPR-linked RTs revealed monophyly of the RT-Cas1
fusion, with some subsequent, lineage-specific fission events. The CRISPR-linked RTs are
most closely related to group II intron-encoded RTs (26), suggesting that the initial
recruitment of RT by the CRISPR-Cas system followed integration of a group II intron
next to a type III cas1 gene. This scenario is compatible with the detection of several
cases of independent RT recruitment by narrow groups of archaea and bacteria,
including bacterial type I-E. The apparent fixation of the association between the RT
and CRISPR-Cas systems in each of these groups suggests that the group II intron RT is
relatively easily adopted for spacer acquisition from RNA, and that fusion with Cas1 is
not required. Nevertheless, the phylogenetic trees of the RT and Cas1 moieties of the
RT-Cas1 fusion proteins are largely congruent, indicating that the two domains are
involved in a functional interaction and tightly coevolve (although several isolated
recombination events were detected). In contrast, there was little concordance be-
tween the phylogeny of CRISPR-linked RTs and the CRISPR type classification (largely
based on the sequence and arrangements of CRISPR effector modules [7]), suggesting
that the RT-Cas1 adaptation module is functionally autonomous, is disseminated via
horizontal gene transfer, and can combine and function (perhaps even in trans) with
diverse type III effector modules.

The various sources of commercial Spirulina provided a rich sampling of environ-
mentally derived CRISPR spacers for both RT-linked (type III-B) and non-RT-linked (type
III-D) CRISPR arrays in the same host genome. Both repertoires were remarkably diverse,
rivaling the host genome in sequence content. Furthermore, while the spacer repertoire
of the RT-lacking III-D system seemed to show signs that it was approaching saturation,
the repertoire of the RT-containing III-B systems did not. Consistent with our relative
ignorance of the natural populations of genome parasites for A. platensis (or for most
microbes), we were able to identify protospacers for only a small fraction of spacers.
Almost all of the identified spacers were from the type III-D arrays, making the origin
of the spacers in the RT-linked type III-B loci particularly enigmatic. These findings
indicate that the type III-B system might acquire spacers from a nucleic acid sequence
pool distinct from the source of type III-D spacers. Such a distinct pool could potentially
include viruses that are encountered only transiently by A. platensis in its natural
environment. As a few intriguing (and unsupported) possibilities, the type III-B spacers
could be generated from a pool of autonomously replicating RNA (37), by a random
process (38), or from an as-yet-unknown pool of environmental nucleic acids.

Type III CRISPR-Cas systems can target RNA (17–24), and, given the demonstrated
ability of the RT-containing type III-B system to also integrate spacers from RNA via
reverse transcription (16), it appeared an interesting possibility that these variants of
CRISPR-Cas could provide adaptive immunity against RNA-based parasites, such as RNA
bacteriophages. However, no natural examples of CRISPR immunity against RNA phage
have been described so far, nor have CRISPR spacers mapping to an RNA virus been
identified in any prokaryote. In this work, we were unable to identify any spacers
derived from RNA viruses despite extensive metagenomic sampling of the extracellular
environment. Such efforts could be stymied by the relatively small number of currently
characterized RNA phage (34, 39).

Type III CRISPR-Cas systems can also mediate defense against transcriptionally active
DNA phages (40, 41). The ability to acquire spacers from RNA could help direct CRISPR
immunity toward phage transcripts that are expressed early in the infection cycle, and
toward highly expressed phage genes. Spacer acquisition from RNA could also enable
sampling of phage genomes that could be protected from DNA-targeting CRISPR-Cas
nucleases through DNA modification (42). Furthermore, a transcription-dependent
targeting mechanism could allow microbes to tolerate lysogenic viruses integrated
stably in the host genome and yet have a ready response upon prophage induction

On Reverse Transcriptase-Containing CRISPR-Cas Systems ®

July/August 2017 Volume 8 Issue 4 e00897-17 mbio.asm.org 11

http://mbio.asm.org


(20). A broad search of the CRISPR spacers linked to RTs in all available prokaryotic
genomes against all nonredundant protein records indeed yielded several matches to
DNA phage-like sequences. These results suggest that the RT-mediated mechanism of
spacer acquisition by CRISPR-Cas systems may be used at least in part to provide
defense against transcriptionally active DNA-based parasites.

The origin of the CRISPR spacers is a general, unresolved problem. A substantial
majority of the spacers in most CRISPR arrays (over 90% on average, according to the
latest comprehensive survey [43]) have no detectable matches in known sequences.
However, to our knowledge, very few spacer repertoires and associated metagenomes
have been sequenced to the depth reported here for A. platensis. The extreme diversity
of spacers, especially in the RT-linked arrays, combined with the effective lack of
detectable protospacers, indicates that a key element is missing from our picture of
CRISPR-Cas biology: the sources of the spacers remain enigmatic. Part of the problem
could stem from the high rate of spacer loss and mutation and, likely, an even higher
rate of mutational escape of viruses, which result in accumulation of mismatches
between a spacer and its cognate protospacer, rendering the latter unrecognizable.
Nevertheless, another cause of the lack of detectable protospacers is likely to be the
existence of a virtually untapped pool of mobile genetic elements that, at any given
time, are not represented in a given environment (10). This paucity of spacer matches
is conceivably explained by the vastness and diversity of viromes combined with the
rapid evolution of the (proto)spacers (43). Longitudinal studies on metagenomes could
help characterize that vast and currently enigmatic sequence pool (25, 36).

MATERIALS AND METHODS
Prokaryotic genome database and open reading frame annotation. Archaeal and bacterial

complete and draft genome sequences were downloaded from the NCBI FTP site (ftp://ftp.ncbi.nlm.
nih.gov/genomes/all/) in March 2016. For incompletely annotated genomes (coding density of less than
0.6 coding DNA sequences [CDS] per kbp), the existing annotation was discarded and replaced with a
Meta-GeneMark 1 (44) annotation with the standard model MetaGeneMark_v1.mod (heuristic model for
genetic code 11 and GC 30). Altogether, the database includes 4,961 completely sequenced and
assembled genomes and 43,599 partially sequenced genomes. Profiles for RT families (cd01651,
pfam00078, and COG3344) that are included in the NCBI CDD database (45) were used as queries for a
PSI-BLAST search (e-value � 1e�4) to identify RT homologs. The RT genes were used as a seed to identify
defense islands as described previously (46). All ORFs within loci were annotated using RPS-BLAST
searches with 30,953 profiles (COG, pfam, cd) from the NCBI CDD database and 217 custom Cas protein
profiles (7). The CRISPR-Cas system (sub)type identification for all loci was performed using previously
described procedures (7).

Sequence clustering, alignment, and phylogenetic analyses. To construct a nonredundant,
representative RT sequence set, sequences were clustered using the NCBI BLASTCLUST program (ftp://
ftp.ncbi.nih.gov/blast/documents/blastclust.html) with a sequence identity threshold of 90% and length
coverage threshold of 0.9. Short fragments or disrupted sequences were discarded. Multiple alignments
of protein sequences were constructed using MUSCLE (47). Sites with gap character fraction values of
�0.5 and homogeneity values of �0.1 were removed from the alignment. Phylogenetic analysis was
performed using the FastTree program (48), with the WAG evolutionary model and the discrete gamma
model with 20 rate categories. The same program was used to compute SH (Shimodaira-Hasegawa)-like
node support values.

High-throughput sequencing of CRISPR spacers. This method is a slight modification of a
previously published protocol for CRISPR spacer sequencing (16); we have provided the protocol in its
entirety for completeness, retaining relevant text from the original protocol. CRISPR spacers were
amplified by PCR from 1 to 2 ng genomic DNA per �l PCR mix using primers anchored in the various
CRISPR repeat sequences. The primers used for type III-D CRISPR arrays were as follows: SS-4F, CGACG
CTCTTCCGATCTNNNNNCTTGCGGGGAATTGGTAGGG; SS-4R, ACTGACGCTAGTGCATCAAATTCCCCGCAAG
GGGACGG; SS-5F, CGACGCTCTTCCGATCTNNNNNCCAATTCCCCGCAAGGGGAC; SS-5R, ACTGACGCTAGTG
CATCATGCGGGGAATTGGTAGGGTC; SS-8F, CGACGCTCTTCCGATCTNNNNNCCAATTCCCCGTCAGGGGAC;
and SS-8R, ACTGACGCTAGTGCATCAGACGGGGAATTGGTAGGGTT. The primers used for type III-B CRISPR
arrays were as follows: SS-19F, CGACGCTCTTCCGATCTNNNNNTAACTTTCARAGAAGTYTAA; SS-19R, ACTG
ACGCTAGTGCATCATGAAAGTTAAACGTATGGAA; SS-20F, CGACGCTCTTCCGATCTNNNNNCGACTTTCAAAG
AAGTCTCA; SS-20R, ACTGACGCTAGTGCATCATGAAAGTCGAACGTATGGCA; SS-51F, CGACGCTCTTCCGATC
TNNNNNTTCTYTGAAAGTTAAACGTA; and SS-51R, ACTGACGCTAGTGCATCATTTAACTTTCARAGAAGTTT. F
and R denote forward and reverse primers. Primers with the same numeric code were used together.
Letters correspond to IUPAC nucleic acid notation. CRISPR repeat matching regions are underlined.

Sequencing adaptors were then attached in a second round of PCR with 0.01 volumes of the previous
reaction mixture as the template, using AF-SS-44:55 (CAAGCAGAAGACGGCATACGAGATNNNNNNNNGT
GACTGGAGTTCAGACGTGTGCTCTTCCGATCACTGACGCTAGTGCATCA) and AF-KLA-67:74 (AATGATACGGC
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GACCACCGAGATCTACACNNNNNNNNACACTCTTTCCCTACACGACGCTCTTCCGATCT), where the (N)8 bar-
codes correspond to Illumina TruSeq HT indexes D701 to D712 (reverse complemented) and D501 to
D508, respectively. Template-matching regions in primers are underlined. Phusion High-Fidelity PCR
master mix with HF buffer (Fisher Scientific) was used for all reactions. Cycling conditions were as follows:
98°C for 1 min; 2 cycles of 98°C for 10 s (60°C for 20 s for primer pairs AF-SS-4, AF-SS-5, and AF-SS-8; 44°C
for 20 s for primer pair AF-SS-19; 50°C for 20 s for primer pair AF-SS-20) and 72°C for 30 s; 18 cycles of
98°C for 15 s (70°C for 15 s for primer pairs AF-SS-4, AF-SS-5, and AF-SS-8; 63°C for 15 s for primer pair
AF-SS-19; 66°C for 15 s for primer pair AF-SS-20) and 72°C for 30 s; and 72°C for 9 min for round 1, and
98°C for 1 min; 2 cycles of 98°C for 10 s, 54°C for 20 s, and 72°C for 30 s; 4 cycles of 98°C for 15 s, 70°C
for 15 s, and 72°C for 30 s; and 72°C for 9 min for round 2. The dominant amplicons (250 to 275 bp)
containing a mixture of spacer sequences were excised following agarose electrophoresis (3%, 4.2 V/cm,
2 h) of round 2 PCR products. Libraries were quantified by Qubit and sequenced with Illumina MiSeq v3
kits (150 cycles for read 1; 8 cycles for index 1; 8 cycles for index 2).

Spacers were trimmed from reads using a custom python script and were considered identical if they
differed by only 1 nucleotide. Protospacers were mapped using Bowtie 2.0 (–very-sensitive-local align-
ments). These methods preserve strand information.

Preparation of cellular and extracellular fractions from Spirulina samples. Prepackaged Spirulina
samples were purchased from various vendors as described for Fig. 1. A similar probiotic blend
containing a variety of plant matter but lacking A. platensis was also tested as a negative control for
CRISPR spacer amplification.

Spirulina metagenomic samples were collected in 50-ml polypropylene centrifugal tubes (Corning)
from open-air raceway ponds operated by Earthrise LLC, Calipatria, CA, and were transported on ice to
our laboratory for processing the same day (without freezing). Spirulina at these farms is grown in an
interconnected network of open-air ponds, containing approximately 1 million liters of water seeded
with inorganic nutrients and injected with carbon dioxide to support the high growth rate of the
enriched cyanobacterial culture. The culture is kept in continuous circulation between ponds using
paddle wheels and is maintained continuously from April through October. Growth of unwanted “weed
algae” is prevented by raising the pH of the culture to leverage the rare ability of A. platensis to grow in
alkaline environments.

Cyanobacteria were pelleted from ~120 ml of pond water by centrifugation at 4,000 � g for 1 h
(Beckman Allegra X-15R) (4°C). The supernatant was then divided into four 30-ml polypropylene
high-speed centrifugal tubes (Nalgene Oak Ridge) and subjected to a preclearing spin at 12,000 � g for
1 h (Avanti J-25I centrifuge with JA-17 rotor; Beckman Coulter, Inc.) (4°C). The cleared sample was further
subdivided into 15-ml open-top Polyallomer tubes (Seton), and extracellular material was collected by
ultracentrifugation at 200,000 � g for 16 h (Optima XE-90 Ultracentrifuge with SW41 Ti rotor; Beckman
Coulter, Inc.) (4°C) with and without prior filtration through a 0.45-�m-pore-size Polysulfone membrane
(Pall Corp.).

Nucleic acid extraction from Spirulina. The cyanobacteria marketed as Spirulina are typically
subjected to cold compression into pellets sold as food supplements, or flash-dried and sold as a powder
intended to be mixed into kitchen recipes. Genomic DNA would be expected to remain intact through
the packaging process, which eschews heat and mechanical granulation. Genomic DNA was extracted
from Spirulina grocery store samples and metagenomic cellular fractions as previously described (49).
RNA was extracted from Spirulina grocery store samples and metagenomic cellular fractions using a
combined TRIzol/RNeasy method (16).

DNA extractions from metagenomic extracellular fractions were performed using a modified SDS/
protease K method. Briefly, pellets were resuspended in 100 �l of lysis buffer (10 mM Tris, 20 mM EDTA,
50 �g/ml protease K, 0.5% SDS) and incubated at 56°C for 1 h. DNA was precipitated with the addition
of isopropanol at up to 50% of the total volume. DNA pellets were washed with 70% ethanol and
resuspended in 10 mM Tris (Qiagen) (pH 8.5). Metagenomic extracellular DNA samples were prepared by
two methods: with and without RQ1 RNase-Free DNase (Promega) pretreatment of the ultracentrifuged
pellet (per the manufacturer’s instructions). The data obtained through the two methods were similar.

RNA samples from metagenomic extracellular fractions were prepared by two methods: with and
without RQ1 DNase pretreatment of the ultracentrifuged pellet. RNA was extracted from the pellets using
TRIzol (Life Technologies, Inc.) per the manufacturer’s instructions. Purified RNA was treated with RQ1
RNase-Free DNase, which was subsequently removed by extraction performed with a 1:1 mixture of
acidified phenol (Ambion) and chloroform (Fisher Scientific), followed by an extraction performed with
chloroform and precipitation of RNA from the aqueous phase through the addition of ethanol at up to
70% of the total volume. RNA pellets were washed with 70% ethanol and resuspended in RNase-free
water (Qiagen).

DNA sequencing of Spirulina samples. Genomic DNA extracted from Spirulina grocery store
samples and metagenomic cellular fractions was prepared for high-throughput sequencing using a
Nextera DNA Library Prep kit (Illumina) according to the manufacturer’s instructions.

RNA sequencing of Spirulina samples. Three different methods were employed for RNA sequenc-
ing. The first was described previously (16); this method provides unbiased sequencing, especially of
shorter RNA fragments that may be missed by other protocols. The second was carried out according to
the instructions provided with a SMARTer Stranded RNA-Seq kit (Clontech); this method was especially
useful in generating libraries from low-concentration RNA samples (e.g., Spirulina metagenome extra-
cellular RNA fractions). The third method was developed previously in our laboratory for detecting
low-abundance RNA species. Up to 100 ng of RNA was diluted to 6 �l in RNase-free water and incubated
at 90°C for 1 min and then at 70°C for 4 min and was transferred to ice for 2 min. A 13.5-�l volume of
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reverse transcription master mix (4 �l 5x First Strand buffer, 2 �l 0.1 M dithiothreitol, 2 �l 10 mM
deoxynucleoside triphosphate [dNTP] mix, 1 �l RNase-Out, 1.5 �l Superscript II reverse transcriptase, 3 �l
RNase-free water [all components from Life Technologies, Inc.]) was added to each sample, and the
mixture was incubated at 42°C for 30 min. A 0.5-�l volume of 100 ng/�l exonuclease-resistant random
hexamers (Fisher Scientific) was then added, and the reaction mixtures were incubated at 25°C for 2 min
and at 42°C for an additional 60 min. The reaction was terminated by heating to 95°C for 5 min.
Subsequently, 127.5 �l of multiple-displacement amplification (MDA) master mix (6 �l of 25 mM dNTP
mix [Roche], 15 �l of 10x Phi29 DNA polymerase reaction buffer [NEB], 7.5 �l of 1 �g/�l exonuclease-
resistant random hexamers, 7.5 �l of 0.1 M dithiothreitol, 93 �l of RNase-free water) was added to each
reaction, and the mixture was split into 3 tubes at 47.5 �l each and incubated at 95°C for 5 min and then
at 4°C during the addition of 2.5 �l of Phi29 DNA polymerase (NEB) to each tube. The reaction mixtures
were incubated at 30°C for 6 to 8 h. The MDA product was purified using Zymo DNA clean-and-
concentrator columns and prepared for sequencing using a Nextera DNA Library Prep kit.

RNA from cellular fractions of the Spirulina metagenome was sequenced using all three methods.
RNA samples from extracellular fractions (with and without filtration using 0.45-�m-pore-size filters and
with and without DNase treatment) were sequenced using only the SMARTer Stranded and MDA
methods as there was not enough input material for the small-RNA sequencing method described in
reference 16. The samples processed via the SMARTer Stranded protocol were prepared with and without
the built-in RNA fragmentation step in an effort to capture shorter RNA fragments.

Computational analyses of Spirulina datasets. CRISPR spacers were trimmed from high-
throughput sequencing reads and clustered to account for sequencing errors, with 1 allowed mismatch
on the Illumina MiSeq platform and 2 allowed mismatches on the Illumina HiSeq platform. All searches
for sources of spacer sequences were carried out using NCBI blast package 2.2.25, with a culling limit of
1 and an empirically determined e-value cutoff for each dataset to minimize false negatives as reported
in the text. Blast databases were formatted using formatdb. Preformatted nucleic acid datasets (NT;
nucleotide collection; posted 9 February 2013) and protein datasets (NR; ll nonredundant GenBank CDS
translations plus PDB plus SwissProt plus PIR plus PRF, excluding environmental samples from whole-
genome sequencing [WGS] projects; posted 13 March 2015) were obtained from NCBI. HMM searches for
RdRP-related ORFs were carried out using HMMER 3.1 (50), and phage-like contigs were identified using
the PHASTER online interface (51). Contigs were assembled using both Velvet 1.1.07 (velveth run with a
maximum Kmer length of 31 and velvetg with a minimum contig size of 200) (52) and SPAdes 3.7.1 (53)
in metagenomic mode. Alignments of metagenomic sequencing reads and CRISPR spacers to the
reference genome(s) were carried out using bowtie 2.2.6 using the –very-sensitive-local option. The
bedtools 2.25.0 merge program was used to collapse redundant alignments on the basis of the location.
Custom python scripts were written for “greedy” spacer assembly, clustering of spacer sequences,
translation of putative ORFs in metagenomic contigs, and curation of BLAST result files.

Metagenomic protospacer analysis. For broader metagenomic searches, the CRISPRfinder (54) and
PILER-CR (55) programs were used with default parameters to identify CRISPR arrays found in Cas7f and
TnsA/TnsD loci. The MEGABLAST program (56) (word size, 18; otherwise, default parameters) was used
to search for protospacers in the virus subset of NR database and the prokaryotic genome database. We
considered only those matches with 95% identity and 95% length coverage or better with respect to the
NR database.

Accession number(s). Sequencing data have been deposited at SRA (SRP107814).
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