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Abstract: Glycans are involved in various metabolic processes via the functions of glycosyltransferases
and glycoside hydrolases. Analysing the evolution of these enzymes is essential for improving the
understanding of glycan metabolism and function. Based on our previous study of glycosyltransferases,
we performed a genome-wide analysis of whole human glycoside hydrolases using the UniProt,
BRENDA, CAZy and KEGG databases. Using cluster analysis, 319 human glycoside hydrolases were
classified into four clusters based on their similarity to enzymes conserved in chordates or metazoans
(Class 1), metazoans (Class 2), metazoans and plants (Class 3) and eukaryotes (Class 4). The eukaryote
and metazoan clusters included N- and O-glycoside hydrolases, respectively. The significant
abundance of disordered regions within the most conserved cluster indicated a role for disordered
regions in the evolution of glycoside hydrolases. These results suggest that the biological diversity of
multicellular organisms is related to the acquisition of N- and O-linked glycans.
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1. Introduction

Glycans are present in various biological molecules including glycoproteins, glycolipids and
proteoglycans and in more than half of all human proteins. Glycans are widely distributed in
eukaryotes, bacteria and archaea [1] and have similar structures in different organisms, including
yeasts, plants, insects and chordates [2]. The high conservation of glycans in different species is
biologically meaningful [3]. Human glycans can be classified into four major categories: O-linked
(mucin-type) glycans, N-linked glycans, glycosphingolipids, and glycosaminoglycans. These glycans
play important roles in vivo, including in cell membrane/extracellular matrix (ECM) construction,
cell adhesion, protein stabilisation and transmission of information [4,5]. Abnormalities in glycan
structures are closely related to certain diseases such as neurological disorders, cancer metastasis,
Alzheimer’s disease and diabetes [6]. The diversity of glycan functions depends on the diversity of
glycan structures, i.e., the combination of monosaccharides constituting a glycan, differences in binding
sites and differences in branching modes. However, the mechanisms mediating the acquisition of
various glycan categories, balance between biosynthesis and degradation, and essential biological
significance of glycans are unclear.

The biosynthesis and degradation of various glycan structures are mainly catalysed by
glycosyltransferases and glycoside hydrolases, respectively. Glycosyltransferases function to regulate
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the elongation of glycans, and variations in glycosyltransferases result in diverse substrate specificities
such as the type of sugar to be transferred and specific binding position of the sugar. For genome-wide
evolutionary analysis of glycosyltransferases, we previously performed lineage profile analysis of
173 human glycosyltransferases [3]. The results indicate that human glycosyltransferases can be
roughly divided into four categories based on their similarity to enzymes conserved in deuterostomes
(Class 1), metazoans (Class 2), eukaryotes (Class 3), and eukaryotes, bacteria and archaea (Class 4).
Two glycosyltransferase groups, synthesise O- and N-linked glycans, are present in the Golgi apparatus
in deuterostomes and metazoans and in the endoplasmic reticulum of eukaryotes. Thus, we found that
the localisation and function of glycosyltransferases conserved among deuterostomes, metazoans and
other eukaryotes were distinctly different. Furthermore, our findings suggested that N-linked glycan
structures existed before O-linked glycans during the evolution of these molecules in humans [3].

Glycoside hydrolases have substrate specificities similar to those of glycosyltransferases; however,
many of glycosyltransferases have a strict substrate specificity, whereas glycoside hydrolases show a
looser substrate specificity. Glycoside hydrolases function to cleave glycosidic bonds in glycans, and
many are in lysosomes [7]. In addition to glycan degradation in lysosomes, glycoside hydrolases are
closely associated with in vivo functions, such as the quality control of proteins by the processing of
high-mannose-type (N-linked-type) glycans and remodelling of ECM comprising O-linked glycans
and glycosaminoglycans [8]. Notably, glycoside hydrolases have been shown to play roles in lysosomal
storage diseases. The lysosome is an intracellular organelle that decomposes waste products via the
functions of various hydrolytic enzymes. Lysosomal storage diseases are caused by the accumulation of
undegraded substances because of genetic abnormalities affecting the expression of glycoside hydrolases
in lysosomes [9]. Symptoms of lysosomal storage diseases are diverse and severe. Additionally, both the
synthesis of glycans and decomposition of glycans are involved in biological functions; however, the
detailed functions of sugar hydrolases in lysosomes have not been determined. Particularly, the roles
of glycoside hydrolases for O-linked glycans are unclear in lysosomal storage diseases [8].

Protein evolution is driven by function, which critically depends on the structure. This is
supported by comparison of evolutionary rates between ordered and disordered structured proteins.
Disordered regions commonly evolve faster than ordered structures [10–14] because of differences in
the relative constraints that maintain folding interactions [15]. However, there are exceptions to this
rule. For instance, specific functional binding and modification regions of a disordered structure are
constrained [13,14,16], thus introducing heterogeneity into evolutionary rates.

In this study, we evaluated glycan degradation by performing a genome-wide analysis of 319
human glycoside hydrolases. By comparing the results of analysis of glycosyltransferases [3] and their
protein structures, we clarified the acquisition process of each glycan category during evolution.

2. Results

2.1. Human Glycoside Hydrolase Dataset

In this study, 319 human glycoside hydrolases (Table S2) were retrieved from the UniProt [17],
CAZy [18], and BRENDA [19] databases. The dataset was verified using the Gene Ontology (GO) term
GO:0016798. Of the 319 human glycoside hydrolases in the dataset, 251 overlapped with glycoside
hydrolases in the GO database (Table S1); among the 251 genes involved in the GO, 178 genes
overlapped with glycoside hydrolases in the InterPro database [20]. Most data extracted using GO
were related to nucleic acid-related glycoside hydrolases.

2.2. Human Glycoside Hydrolases Belong to Four Evolutionary Classes

The 319 human glycoside hydrolases in the dataset were classified into four clusters by phylogenetic
profiling (Figure 1, Tables S3 and S4) and cluster analysis. The four clusters included enzymes with
orthologs primarily conserved in chordates or metazoans (Class 1), metazoans (Class 2), metazoans
and plants (Class 3) and eukaryotes (Class 4). The molluscs Octopus bimaculoides, Crassostrea gigas,
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Lottia gigantea and cnidarian Nematostella vectensis were classified in the same cluster as the Chordata.
Additionally, two deuterostome taxa, i.e., Choanoflagellatea and Dictyostelium, showed greater
conservation relative to all fungi (Figure 1).
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Next, we characterised the types of glycans degraded by each class of glycoside hydrolases. The 
results showed that Classes 1 and 2 (Figure 2a,b) contained glycoside hydrolases such as 
hyaluronidase, lysozyme and chitinase which degraded glycosaminoglycans, and glycoside 
hydrolases such as glucosyl ceramidase and sialidase that degraded glycolipids. Class 4 contained 
glycoside hydrolases that only degraded N-linked glycans (Figure 2d). Our analysis showed that 
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Figure 1. Phylogenetic profiling of human glycoside hydrolases. The X-axis shows 326 organisms
(Table S3) that underwent genome sequencing, and the Y-axis shows the 319 human glycoside hydrolases
(Table S2). Based on the phylogenetic tree, human glycoside hydrolases were classified into four
characteristic clusters, defined as Classes 1–4, which included 85, 149, 38 and 47 human glycoside
hydrolases, respectively. The black regions indicate the presence of human glycoside hydrolase orthologs
in specific groups of organisms, shown in different colours on the X-axis. In Class 1, chordates or
metazoans are included. In the metazoans in Class 1, some metazoan animals such as some fly species
were excluded.

2.3. Functions of Human Glycoside Hydrolases Differ Among Classes

Next, we characterised the types of glycans degraded by each class of glycoside hydrolases.
The results showed that Classes 1 and 2 (Figure 2a,b) contained glycoside hydrolases such as
hyaluronidase, lysozyme and chitinase which degraded glycosaminoglycans, and glycoside hydrolases
such as glucosyl ceramidase and sialidase that degraded glycolipids. Class 4 contained glycoside
hydrolases that only degraded N-linked glycans (Figure 2d). Our analysis showed that glycoside
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hydrolases degrading galactose and N-acetylgalactosamine, which are commonly found in O-linked
glycans, were unevenly distributed in Classes 1 and 2 (Figure 2). These results suggest that O-linked
glycans were obtained after acquisition of N-linked glycans in the evolution of glycosyl hydrolases
(GHs) as shown in the analysis of glycosyltransferases (GTs) [3].
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Figure 2. Degradation substrates of human glycoside hydrolases from each class. The X- and Y-axes
show the degradation substrates and number of human glycoside hydrolases, respectively. Degradation
substrates are shown for Class 1 (a), Class 2 (b), Class 3 (c) and Class 4 (d).

2.4. Comparison of Decomposition Substrates Among Classes of Glycoside Hydrolases

Next, we investigated other differences among the classes of sugar hydrolases. Substrates and
products of human glycoside hydrolases were referenced according to the Kyoto Encyclopaedia
of Genes and Genomes (KEGG) database [21], and the relationships between the degradation of
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glycan structures and glycoside hydrolases were mapped (Figure 3). Human glycoside hydrolases of
the high-mannose-type N-linked glycans, particularly those with processing function, were widely
conserved in eukaryotes (Figure 3a). Glycoside hydrolases classified into Class 2 or 3 were involved in
the degradation of complex N-linked glycans. This result suggests changes in substrates from complex
glycans to functional substances in human glycoside hydrolases that originated from multicellular
organisms (Figure 3b). Glycans of N-linked glycoproteins and glycolipids were degraded by specific
glycoside hydrolases at the nonreducing end (Figure 3c). Many glycoside hydrolases had exo-type
functions allowing for the decomposition of monosaccharides at nonreducing ends. In contrast,
glycoside hydrolases were classified into Class 1 had endo-type functions and acted to decompose the
interior region of carbohydrate chains. An endo-type glycoside hydrolase was shown to enhance the
efficiency of endoplasmic reticulum-associated degradation (ERAD) of folding-deficient proteins in the
protein quality control process [22]. These findings suggest that the acquisition of a mechanism involved
in alleviating endoplasmic reticulum stress contributed to chordate evolution. The structure of human
glycosaminoglycans was largely degraded by glycoside hydrolases obtained from chordates, except
keratan sulphate, which was decomposed by glycoside hydrolases from Classes 2 and 3 (Figure 3d).
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Figure 3. Mapping of evolutionary information to metabolic pathways. Different classes are shown by
different colours, as indicated. The links connecting human glycoside hydrolase classes and degradation
substrates show bonds degraded by each class of enzymes. The single glycan is shown based on the
Consortium for Functional Glycomics symbol. The figure shows high-mannose-type N-glycans (a),
complex-type N-glycans (b), glycolipids (c) and glycosaminoglycans (d).

2.5. Identification of Glycoside Hydrolases Important for the Evolution to Mammals

Molecular phylogenetic analysis was conducted to investigate how human glycoside hydrolases
evolved in the process of evolution from chordates to mammals (Figure 4). Sialidase, which is involved
in neuronal and muscle differentiation, and lysozyme, which plays an important role in mammalian
embryos, were acquired before the emergence of cartilaginous fish and of the common ancestor of
birds and mammals, respectively. Glucosylceramidase, a Class 2 glycolipid-metabolising enzyme,
was conserved in most Chordata but was lost during evolution in some chordates including Gallus spp.
and Xenopus laevis. Accordingly, we hypothesised that sialidase, lysozyme and glucosylceramidase
were necessary for the evolution to mammals.
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2.6. Evolution of Glycosyltransferases and Glycoside Hydrolases

To compare the acquisition processes of human glycosyltransferases and human glycoside
hydrolases (Table S5), phylogenetic profiling analysis of human sugar hydrolases and human
glycosyltransferases was performed (Figure 5a, Table S6). The results showed that human
glycosyltransferases and human glycoside hydrolases were classified into four characteristic clusters,
defined as classes 1–4, based on their similarity to enzymes conserved in chordates or metazoans
(Class 1), metazoans (Class 2), metazoans and plants (Class 3) and eukaryotes (Class 4). In this
analysis, Strongylocentrotus were classified together with Class 1, whereas enzymes of the chordates
Ciona intestinalis and Branchiostoma floridae were classified together with Class 2. However, degradation
enzymes for the core structure of N-linked glycans had a lower degree of conservation in other
organisms than that of human glycosyltransferases. Additionally, β-1,4-mannosyl-glycoprotein
4-β-N-acetylglucosaminyltransferase (MGAT3), a human glycosyltransferase of a bisecting GlcNAc,
was found to be conserved in the complex type (N-glycan). Because few studies have evaluated
human glycoside hydrolases, it was difficult to map O-glycans to a metabolic pathway; however, this
O-glycan hydrolase was classified in the same cluster as a human glycosyltransferase. Additionally,
when we focused on sialic acid modifications, which were shown to be required for protein stabilization
and neuronal differentiation, the human sialic acid glycoside hydrolase and human sialic acid
glycosyltransferase were found to have be acquired in the same period during evolution (Figure 5b,c).
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Figure 5. Phylogenetic profiling of human glycoside hydrolases and human glycosyltransferases. In (a),
the X-axis indicates 326 organisms that underwent genome sequencing (Table S3), and the Y-axis
indicates 319 human glycoside hydrolases and 172 glycosyltransferases (Tables S5 and S6). Based on the
phylogenetic tree, the enzymes were classified into four characteristic clusters, defined as Classes 1–4,
which included 145, 225, 45 and 76 enzymes, respectively. Classes are indicated by different colours.
Links between human glycosyltransferases and glycoside hydrolases classes (a) and degradation
(b) or synthesis (c) substrates are shown. The single glycan is shown based on the Consortium for
Functional Glycomics symbol. Addition or removal of Neu (magenta triangle) occurs during sialic
acid modification.
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2.7. Intrinsically Disordered Regions of Glycoside Hydrolases

The ratios of the lengths of intrinsically disordered regions (IDRs) to the total amino acid protein
sequences [24] were analysed for the 319 human glycoside hydrolases (Figures 6 and 7). The presence
of continuous stretches of IDRs was predominant within Class 4, which showed significantly higher
ratios than those in the other classes (Figure 6). More than 50% of Class 4 members had a continuous
stretch of IDR of more than or equal to 30 amino acids, whereas only 10% or less members of the other
classes had this continuous stretch of IDR. These results are consistent with the distribution of protein
lengths, which were commonly longer among Class 4 members than among those from the other
classes (Figure 7).Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 8 of 15 
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3. Discussion

In this study, we performed phylogenetic analysis of human glycoside hydrolases to evaluate the
evolution of glycan-mediated biological systems. We found that 319 human glycoside hydrolases were
classified into four clusters, including enzymes with orthologs in chordates, metazoans, metazoans
and plants and eukaryotes. We also compared the dataset in this study to enzymes annotated by GO
and found that 78.7% enzymes overlapped. Thus, most enzymes in the dataset of this study have
already been annotated by using GO. Based on these findings, we propose that the acquisition of
each human-type glycoside hydrolase gene was associated with the development of an intracellular
protein-producing system and extracellular glycan-dependent biological interactions, as well as with the
development and diversification of neuronal and neuromuscular functions. Consistent with data from
a previous study showing that N-linked glycosyltransferases were widely conserved from the ancestral
species of eukaryotes [3], the acquisition of high-mannose-type N-glycan-degrading enzymes occurred
from ancestral species of eukaryotes. Among these enzymes, endo-β-N-acetylglucosaminidase and
α-mannosidase 2C1 are localised in the endoplasmic reticulum, with the ERAD machinery facilitating
accurate quality control of glycosylated proteins [25]. Similarly, the acquisition of high-mannose-type
N-glycan-degrading enzymes was closely correlated with lectin-mediated glycoprotein folding [26].
Thus, precise regulation of N-glycan synthesis and degradation may play a central role in ensuring
the integrity of N-glycan-mediated biological processes in eukaryotes. Our results showed that
human-type N-glycan-degrading enzymes and the intracellular ERAD-related quality control of the
protein-producing system were conserved throughout eukaryotes.

During the evolution of metazoans, polysaccharide-degrading enzymes such as lysozyme and
chitinase, glycosaminoglycan-degrading enzymes and hyaluronidase were acquired. These molecules
are essential in the defence against bacterial infections, as well as for fertilisation and ECM
remodelling [27–29], therefore the acquisition of these degrading enzymes may play important
roles in regulating glycan-mediated biological functions. Among the glycosaminoglycan-degrading
enzymes, keratan sulphate-processing enzymes are involved in many biological processes, whereas
other degrading enzymes such as hyaluronidases, chondroitinases, heparitinases and dermatan
sulphate-degrading enzymes are mainly involved in neuronal functions [30]. Thus, during
the evolutionary development of neuronal tissues, regulation of O-glycan modifications by
O-glycan-degrading hydrolases may have played important roles in both plasma membrane-mediated
and ECM-dependent biological functions. In terms of glycan degradation of N-glycans and glycolipids,
ancestrally acquired human glycoside hydrolases can show degradation activity for the nonreducing
end, whereas the sialic acid-degrading enzyme sialidase is essential for degrading the reducing end.
Thus, complex-type N-glycans and glycolipids may have evolved by the addition of new sugars at the
nonreducing end of ancestrally acquired glycans in multicellular organisms.

During evolution to chordates, an endo-α-mannosidase, MANEMA, was acquired. As described
above, most exo-type mannosidases were acquired from ancestral eukaryotes, and the acquisition of
the endo-type mannosidase MANEMA conferred organisms with the ability to efficiently degrade
misfolded proteins. During evolution to chordates, genomic gains of sialidase genes occurred
twice before the ancestral chordates evolved into teleosts. Sialic acid-mediated modification of
proteins is essential for muscle, neuronal and lysosomal functions [30], therefore the acquisition of
sialidases may have been essential for the development of neuronal and neuromuscular structures,
and lysosome-mediated protein degradation systems during evolution to chordates.

In Rowe’s phylogenetic tree (Figure 8), sialidases and lysozyme were acquired during the evolution
of mammals. Sialidases regulate higher cerebral functions, therefore the acquisition of these enzymes
may have yielded more highly organised neuronal and muscular structures, facilitating the evolution of
neuromuscular development. Similarly, the acquisition of lysozyme by ancestral species of mammals
may have facilitated the development of the viviparous system in these organisms.
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Although glucosylceramidase genes are conserved both in ancestral chordates and mammals,
these genes disappeared during the diversification of Chondrichthyes, amphibians and
birds. These results indicate that glucosylceramidases are essential enzymes regulating the mammalian-
specific functions of glycolipids. Alternatively, glucosylceramidases may not have been essential but
were continuously maintained during the evolution of mammals. Glucosylceramidases are highly
regulated in higher vertebrates, therefore glucosylceramidase activity may have been essential for
nervous system development in mammals. Further studies are required to confirm these hypotheses.

Most high-mannose-type human N-linked glycosyltransferases and N-glycoside hydrolases
co-evolved in eukaryotes, therefore high-mannose-type human N-glycan-dependent ERAD is thought
to be essential for the precise regulation of N-glycan-mediated biological processes. Similarly,
both glycosyltransferases and glycoside hydrolases for glycolipids and O-glycans were acquired
at nearly the same time and co-evolved together. Thus, the development and diversity of glycolipid-
and O-glycan-mediated biological systems were likely essential for multiple functions, including
formation of the mucous membrane system and highly organised immune system, in the evolution to
metazoans and vertebrates. Complex-type bisecting GlcNAcs inhibit elongation of the β-1,6-GlcNAc
branch at the nonreducing end of the core mannose of an N-glycan to stabilise the structure of the
glycan, therefore we focused on the timing of the acquisition of bisecting GlcNAc hydrolase and
transferase. In contrast to bisecting GlcNAc hydrolases, which were acquired from more distant
ancestral species, the complex-type bisecting GlcNAc transferase MGAT3 was acquired later and is
conserved in most metazoans. Complex-type bisecting GlcNAcs stabilise various biological functions
including the E-cadherin-dependent cell adhesion system, therefore the acquisition of bisecting GlcNAc
elongation enzymes may have been involved in the evolution of metazoans [31].

However, the best approach to the direct evolution of these glycoside hydrolases remains unclear.
Previously, we suggested that the evolutionary origin and functional acquisition of proteins are
closely related to their IDRs [24]. Our results showed that the most conserved class also contained the
greatest number of consecutive stretches of IDRs. Additionally, Class 4 proteins commonly contain
N-glycan-degrading enzymes and intracellular ERAD-related quality control proteins, such as ER
degradation-enhancing mannosidase-like proteins (EDEMs), which are ER-resident members of the
glycoside hydrolase 47 family, recruiting terminally misfolded polypeptides present in the ER lumen to
the downstream ERAD pathway [23,32]. In this study, all EDEMs, including EDEM1–3, were predicted
to have disordered regions. The presence of disordered regions at the N-terminus of EDEM1 has been
reported previously based on modelling and prediction studies. These regions have been shown to
be important for recognising glycosylated and non-glycosylated misfolded proteins, even when the
carbohydrate-binding domain is highly impaired [23]. Long consecutively disordered residues (>30)
may function as entropic chains or can be involved in interactions using combinations of recognition
motifs or domains [33]. We previously reported that residues within disordered regions that function
as entropic chains evolve quickly, whereas those involved in protein–protein interactions tend to be
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constrained [13,14]. Thus, it may be relevant for some ancient glycoside hydrolases to harbour long
stretches of disordered regions because the conformational plasticity of these regions enables the
recognition of or binding to multiple partners, which is beneficial for identifying misfolded proteins.

Several mechanisms may shape the evolution of GH. Despite gene duplication, acquisition of
genes may occur through other processes. Some genes may be acquired de novo from a stretch of
non-coding DNA. The acquisition of this gene may coincide with environmental conditions such
as codfish antifreeze glycoprotein genes that have evolved de novo from non-coding DNA in the
cooling time of its habitat 13–18 million years ago [34]. Another possible mechanism is horizontal
gene transfer which involves the movement of transposable elements between different species; this
mechanism is well-known in prokaryotes and unicellular eukaryotes and remains controversial and
less established in higher organisms [34]. However, several studies have exemplified this case clearly
in a complex organism such as GH genes that are found nearly exclusively and to the largest extent
in western corn rootworm (Diabrotica virgifera virgifera) among insects and the presence of Bovine-B
(BovB) retrotransposons in mammals [35,36]. In contrast, by utilizing symbiotic relationships such
as gastrointestinal tract and microbiome, the acquisition of new genes or GH may not necessary to
gain a function. In this case, some bacteria in the human gastrointestinal tract utilize their GH to
cleave glycans that humans are unable to process; for instance, Bifidobacteria longum biovar infantis
process oligosaccharides in milk that are not digestible by human infants [37]. The acquisition of GH
by horizontal gene transfer from the microbiome also appears possible, but requires further analysis.

4. Materials and Methods

4.1. Human Glycoside Hydrolase Dataset

The glycoside hydrolase sequence data were obtained from UniProt (release 2017_03) [17] using the
following queries: “glycoside hydrolase” and “organism: human”. To confirm the annotation of each
retrieved sequence as glycoside hydrolase, we extracted all UniProt IDs within the glycoside hydrolase
category (EC3.2) from the CAZy [18] and BRENDA [19] databases and confirmed the presence of the
UniProt ID for each retrieved sequence in the CAZy [18] and BRENDA [19] databases; unannotated
sequences in any of these databases were removed. This was an alternative method used to obtain
more data on human glycoside hydrolase sequences than would be obtained by using GO [38] and
InterPro [20] using InterPro entry glycoside hydrolase superfamily (IPR017853), and was the easiest
way to obtain human glycoside hydrolases with UniProt IDs in CAZy and BRENDA. In addition,
we verified our data with glycoside hydrolases obtained using GO, 553 glycoside hydrolases that
have been annotated as GO: 0016798, Taxon: Homo sapiens were isolated and compared to the dataset.
Further, to analyse the evolution of glycoside hydrolases, we categorised these enzymes based on their
substrates and products into four categories including O-glycans (mucins), N-glycans (high-mannose
type, complex type), glycolipids and glycosaminoglycans based on the metabolic map in the KEGG
database [21].

4.2. Phylogenetic Profiling and Cluster Analyses

Phylogenetic profiles were generated for 326 genome-wide eukaryotic sequences using KEGG OC
default parameters in the KEGG database and extracted human glycoside hydrolase data as queries.
Human glycoside hydrolase conservation in eukaryotes was examined using a BLAST search (E-value:
10−3; NIH). A bit score of 1 was assigned if orthologs of the protein of interest were present in the other
genome; otherwise, a bit score of 0 was assigned. Proteins with similar bit patterns were expected to
have similar interactions and functions. Further, using the bit pattern as an input, cluster analysis of
the 319 human GHs and 326 eukaryotes from KEGG OC were performed using Ward’s method [39]
based on the Manhattan distance. Computational and cluster analyses were performed using Ruby
and R programming languages.
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4.3. Molecular Phylogenetic Analysis

A phylogenetic tree of glycoside hydrolases was manually constructed, and a model for the time
divergence of chordates to mammals during evolution was presented as described by Rowe [40].

4.4. Protein IDR Analysis

Human glycoside hydrolases were classified based on structural order/disorder into three
categories: structured proteins, proteins with structured domains and disordered regions and
intrinsically disordered proteins (IDPs). Allocation into these categories was performed according to
the proportion of short IDRs (functional regions) of 15 residues [41]. The structured proteins were
defined as proteins without any IDRs; IDPs were defined as proteins with IDRs spanning throughout
the entire sequence, and the last category included proteins made up of both IDRs and structured
regions [33]. The structural order/disorder propensity of the dataset was predicted using IUPred2a with
0.5 as the cut-off between order and disorder [42]. A value of 0 indicated a strong propensity for being
ordered, and that of 1 indicated a strong propensity for being disordered. Continuous stretches of IDRs
were plotted at n ≥ 30, 40, . . . , 130, as a stretch of more than 30 residues was required for categorisation
as a long disordered region, with potential functions in recognition or interactions [33,43].

4.5. Source Code

The source codes used for our experiments are available at https://github.com/ritsumei-infobio/

phylogenetic_profiling.

5. Conclusions

In summary, we performed genome-wide phylogenetic profiling and cluster analysis of human
glycoside hydrolase proteins. Our results suggest that the acquisition of human glycoside hydrolase
genes was essential for the development of the intracellular ERAD system in eukaryotes and for
glycan-dependent extracellular signalling in multicellular organisms. Analysis of human glycoside
hydrolase genes using Rowe’s phylogenetic tree indicated that the modulation of glycan-dependent
biological functions by sialidases and lysozyme and that the divergence of glucosylceramidases
occurred during chordate evolution (Figure 8).
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Abbreviations

UniProt The Universal Protein Resource
CAZy Carbohydrate-Active Enzymes
KEGG Kyoto Encyclopedia of Genes and Genomes
O-linked Oxygen-linked-type
ECM Extracellular matrix
N-linked Nitrogen-linked-type
GO Gene Ontology
GHs Glycosyl hydrolases
ERAD Endoplasmic reticulum-associated degradation
MGAT3 β-1,4-mannosyl-glycoprotein 4-β-N-acetylglucosaminyltransferase
GlcNAc N-acetylglucosamine
N-glycan N-linked glycan
O-glycan O-linked glycan
IDRs Intrinsically disordered regions
EDEMs ER degradation-enhancing mannosidase-like proteins
BovB Bovine-B
IDPs Intrinsically disordered proteins
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