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Abstract

Orienting the causal relationship between pairs of traits is a fundamental task in scientific

research with significant implications in practice, such as in prioritizing molecular targets

and modifiable risk factors for developing therapeutic and interventional strategies for com-

plex diseases. A recent method, called Steiger’s method, using a single SNP as an instru-

ment variable (IV) in the framework of Mendelian randomization (MR), has since been

widely applied. We report the following new contributions. First, we propose a single SNP-

based alternative, overcoming a severe limitation of Steiger’s method in simply assuming,

instead of inferring, the existence of a causal relationship. We also clarify a condition neces-

sary for the validity of the methods in the presence of hidden confounding. Second, to

improve statistical power, we propose combining the results from multiple, and possibly cor-

related, SNPs as multiple instruments. Third, we develop three goodness-of-fit tests to

check modeling assumptions, including those required for valid IVs. Fourth, by relaxing one

of the three IV assumptions in MR, we propose several methods, including an Egger regres-

sion-like approach and its multivariable version (analogous to multivariable MR), to account

for horizontal pleiotropy of the SNPs/IVs, which is often unavoidable in practice. All our

methods can simultaneously infer both the existence and (if so) the direction of a causal

relationship, largely expanding their applicability over that of Steiger’s method. Although we

focus on uni-directional causal relationships, we also briefly discuss an extension to bi-direc-

tional relationships. Through extensive simulations and an application to infer the causal

directions between low density lipoprotein (LDL) cholesterol, or high density lipoprotein

(HDL) cholesterol, and coronary artery disease (CAD), we demonstrate the superior perfor-

mance and advantage of our proposed methods over Steiger’s method and bi-directional

MR. In particular, after accounting for horizontal pleiotropy, our method confirmed the well

known causal direction from LDL to CAD, while other methods, including bi-directional MR,

might fail.
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Author summary

In spite of its importance, due to technical challenges, orienting causal relationships

between pairs of traits has been largely under-studied. Mendelian randomization (MR)

Steiger’s method has become increasingly used in the last two years. Here we point out

several limitations with MR Steiger’s method and propose alternative approaches. First,

MR Steiger’s method is based on using only one single SNP as the instrument variable

(IV), for which we propose a correlation ratio-based method, called Causal Direction-

Ratio, or simply CD-Ratio. An advantage of CD-Ratio is its inference of both the existence

and (if so) the direction of a causal relationship, in contrast to MR Steiger’s prior assump-

tion of the existence and its poor performance if the assumption is violated. Furthermore,

CD-Ratio can be extended to combine the results from multiple, possibly correlated, SNPs

with improved statistical power. Second, we propose two methods, called CD-Egger and

CD-GLS, for multiple and possibly correlated SNPs while allowing horizontal pleiotropy.

Third, we propose three goodness-of-fit tests to check modeling assumptions for the three

proposed methods. Finally, we introduce multivariable CD-Egger, analogous to multivari-

able MR, as a more robust approach, and an extension of CD-Ratio to cases with possibly

bi-directional causal relationships. Our numerical studies demonstrated superior perfor-

mance of our proposed methods over MR Steiger and bi-directional MR. Our proposed

methods, along with freely available software, are expected to be useful in practice for

causal inference.

Introduction

Mendelian Randomization (MR) has become increasingly popular and widely used to infer

causal relationships between pairs of traits, which can be molecular (such as gene expression

or DNA methylation), behavioral/educational or clinical [1–3]. MR (or two-sample MR) uti-

lizes genetic variants, almost exclusively single nucleotide polymorphisms (SNPs), as instru-

ments or instrumental variables (IVs) in two independent GWAS (summary) datasets for the

two traits respectively. Although the gold standard for causal inference is randomized clinical

trials (RCTs), RCTs are often too costly, unethical and infeasible, in which case MR offers a

cost-effective approach. The recent years’ popularity of MR coincides with the ever-increasing

availability of large-scale GWAS data and resources/tools like MR-Base [4]. As reviewed in [5],

the potential of MR has been fully demonstrated by several notable examples in the studies of

cardiovascular and metabolic diseases, such as MR analyses showing of C-reactive protein’s

and moderate alcohol consumption’s unlikely role in reducing coronary heart disease risk, and

replicating RCT findings of several drug targets (e.g. Niemann-Pick C1-like protein). In most

MR applications, one often assumes that the causal direction between two traits is known. Oth-

erwise, bi-directional MR can be applied [6, 7]: one first applies MR to infer whether there is a

causal relationship from one trait, say X, to another trait, say Y; then one reverses the roles of

the two traits to infer whether there is a causal relationship from Y to X. If one of the two causal

directions does hold, one would hope to detect it with bi-directional MR. Bi-directional MR

can be also more intuitively applied graphically [8]: the estimated effect sizes on the two traits

from the significant SNPs can be compared in two scatter plots, one from the SNPs significant

for each trait; it is expected that, if the causal direction is X! Y, then there should be a strong

relationship between the two sets of the effect sizes on the two traits of the SNPs significant for

X, but not necessarily so for the SNPs significant for Y. However, whether bi-directional MR

works depends on one critical, most often unknown, assumption: two sets of valid SNPs/IVs
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used in the two directions. That is, if an SNP primarily influences X, but influences Y only

through X, then it should be used as an IV to infer X! Y in the first step; at the same time, it

cannot be used as an IV to infer Y! X. In practice, due to limited knowledge, it is almost

impossible to always choose valid IVs. Instead, often one just uses all significant (and indepen-

dent) SNPs for X to infer X! Y, and vice versa for Y! X. As pointed out by [9], if an SNP

primarily influences X (and influences Y completely through X), it will be associated with both
X and Y. Hence, if the sample sizes are large enough, its associations with both X and Y will be

detected, and it will be used as an IV in both steps or directions in bi-directional MR, leading

to the incorrect conclusion that a causal relationship exists in both directions. This problem

with bi-directional MR will be confirmed in our real data examples later. Relatedly, the result

of bi-directional MR (or its graphical implementation) is confounded by possibly varying sta-

tistical power for the two traits (e.g., due to different sample sizes and different types of the

traits such as one quantitative and the other binary). In the above example that an SNP primar-

ily influences trait X but not Y, if the statistical power for detecting the association between the

SNP and Y is large while that for the other pair is small, it is likely that the SNP will be signifi-

cantly associated with Y but not with X, thus incorrectly used as an IV for Y but not for X,

likely leading to the false conclusion of a causal effect of Y on X.

Recently a simple and effective approach, called MR Steiger’s method, was proposed [9]. It

was discussed in the context of comparison with the main competitor of MR, mediation analy-

sis, which requires one-sample data (i.e. both SNPs and the two traits are observed in the same

sample). The proposed method is based on testing the difference of two (possibly correlated)

Pearson’s correlation coefficients using Steiger’s test, and thus named. It was shown that MR

Steiger’s method is more robust to measurement errors and hidden confounding than the

causal inference test (CIT) [10] and likely other mediation analysis approaches. However, MR

Steiger’s method has been most widely used in 2-sample MR applications. In [9], since MR

Steiger was discussed in the context of mediation analysis, its derivation was mostly done in

the absence of hidden confounding, though in an appendix the issue was briefly discussed

under confounding; in contrast, an appealing advantage of MR is its valid causal inference

while allowing the presence of hidden confounding, which is largely expected in practice.

Therefore, first, we will formulate the problem in the presence of confounding; along the way

we will point out for the first time that a key condition is needed for valid inference. Although

the condition is expected to hold often in practice, it would be useful to have a method to

check the condition; we propose such a method. Second, since MR Steiger’s method is based

on using only a single SNP as IV, to improve both its statistical power and applicability, we

extend it to allow multiple, and possibly correlated, SNPs. In particular, there is increasing

interest in applying transcriptome-wide association studies (TWAS, or PrediXcan) to identify

causal genes or other molecular/imaging endophenotypes by integrating GWAS with eQTL/

xQTL data [11–20]. In these applications, multiple correlated cis-SNPs near a gene are used as

IVs to impute or predict the gene’s expression level (or another endophenotype) to infer

whether the gene’s expression has a causal effect on a trait, say coronary artery disease (CAD);

it is assumed that the causal relationship (if existing) is from the gene to the trait. Albeit rea-

sonable, there is possibility of reverse causation: a gene’s expression change is not the cause,

but the consequence, of having CAD. Hence, it would be useful to apply a method to confirm

whether the causal direction is indeed from the gene to the trait (or vice versa). In such a case,

due to often a small sample size of an eQTL study, it would be low powered to apply MR Stei-

ger’s method with a single SNP; instead, it would be more powerful and thus more desirable to

apply a method with all the cis-SNPs used to predict the gene’s expression level. Our proposed

new methods are more suitable for such an application. The same argument was made for two

traits based on large-scale GWAS when single SNP summary statistics-based MR (SMR) [13]
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was generalized to GSMR with multiple (possibly correlated) SNPs [21]. Third, we develop

corresponding goodness-of-fit tests, similar to Cochran’s Q statistic, to check the IV and other

modeling assumptions for our proposed methods. Fourth, most importantly, with multiple

SNPs/IVs, we can relax one of the three key assumptions in MR for valid causal inference:

allowing the presence of horizontal pleiotropy, which is expected to be commonplace as

shown by previous studies [22, 23]. In particular, the likely violation of the IV assumptions for

TWAS and its severe consequences on invalid causal conclusions have been increasingly rec-

ognized and discussed in the literature [14, 24–26]. We propose a valid approach similar to

Egger regression, which has been widely used for exactly the same purpose (i.e. in the presence

of horizontal pleiotropy) in MR [27]. As a side product of allowing horizontal pleiotropy, each

of our methods can be applied to infer whether there is any causal relationship between two

traits and if so, what is the causal direction; in contrast, MR Steiger’s method can only infer

causal direction after assuming the existence of one of the two causal directions. Finally, we

introduce a multivariable approach, analogous to multivariable MR (MV-MR) [28, 29], as

another robust approach; although we focus on uni-directional causal relationships, we also

briefly discuss an extension to cases with possibly bi-directional causal relationships.

To demonstrate the wide-ranging utility and superior performance of our proposed meth-

ods, we applied both the new and existing methods to infer the causal directions between low

density lipoprotein (LDL) cholesterol, or high density lipoprotein (HDL) cholesterol, and

CAD. Multiple previous MR analyses have clearly established the causal role of LDL choles-

terol on CAD [30–33], confirmed by meta-analyses of RCTs with statins and other choles-

terol-lowering interventions [34–36]. Hence, the established causal direction of LDL! CAD
can serve as a positive control to test various methods. Indeed, after accounting for horizontal

pleiotropy, our methods reached the correct conclusion. In contrast, all other methods, includ-

ing our method without accounting for horizontal pleiotropy and bi-directional MR (with var-

ious MR methods either ignoring or robust to/accounting for horizontal pleiotropy), failed to

reach the correct conclusion. On the other hand, contrary to observational studies [37], HDL

cholesterol does not appear to have a causal role on CAD, as evidenced by several MR analyses

and recent RCTs [31–33, 38, 39]. Hence, it can serve as a negative control. Again our proposed

and most other methods, as expected, could not establish any causal direction between HDL

cholesterol and CAD. We also conducted extensive simulation studies to support the wide

applicability and validity of our proposed methods.

Methods

We will first discuss the ideal case when all chosen SNPs are valid IVs, which means each SNP

satisfies the three key IV assumptions: (i) each SNP is associated with the exposure; (ii) condi-

tional on the exposure, each SNP is not associated with the outcome; i.e., there is no direct

effect of each SNP on the outcome; (iii) each SNP is not associated with hidden confounders.

Then we will consider the case when assumption (ii) is violated when one or more SNPs have

direct effects, i.e. horizontal pleiotropic effects, on the outcome. We propose an Egger regres-

sion-like approach and an alternative based on the Generalized Least Squares (GLS) estimation

method, both performing well and similarly. Finally, we introduce a multivariable extension to

the Egger regression method, analogous to (MV-MR), as a more robust approach, and an

extension to cases with possibly bi-directional causal relationships.

Ideal case: With valid IVs (and hidden confounding)

True model. If two traits X and Y are causally related, we’d like to determine the true

causal direction, which can be either X! Y or Y! X. In the ideal case where all the SNPs
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used are valid IVs, two possible true models are shown in Fig 1. We use g to represent one SNP

(but later more SNPs) to be used as IV, and U is a hidden confounder (or an ensemble of all

confounders). Each directed edge represents a direct and causal effect with the effect size

above the line. As usual, we also assume that all the relationships in the models are linear.

For X! Y, the data-generative/causal models are:

X ¼ bX0 þ bXg � g þ bXU � U þ �X; ð1Þ

Y ¼ bY0 þ bYX � X þ bYU � U þ �Y ; ð2Þ

where �X and �Y are independent error terms.

For Y! X, we have the corresponding true models.

Steiger’s method based on a single SNP. Based on true models (1) and (2), we have the

(true) correlation between X and g, denoted by ρXg, and correlation between Y and g, denoted

by ρYg, as

rXg ¼
bXg � varðgÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðgÞ � varðXÞ

p ; rYg ¼
bXg � bYX � varðgÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðgÞ � varðYÞ

p : ð3Þ

From Eq (3) we obtain the correlation ratio:

rYg

rXg
¼
bYX �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðXÞ

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðYÞ

p ≔KYX: ð4Þ

We note that the correlation ratio KYX is a constant, independent of g. It is easy to see that,

if there is no confounder U in the true models, and without loss of generality assuming var
(�Y)> 0, we have

varðYÞ > b
2

YX � varðXÞ; ð5Þ

implying |KYX|< 1. On the other hand, if the true model is Y! X, we can similarly define and

derive that |KXY| ≔ |ρXg / ρYg|< 1.

It is noted that the two conditions, |KYX|< 1 and |ρYg|< |ρXg|, are equivalent. While we will

use the first one, the second one was used in MR Steiger’s method [9]. In spite of the trivial

equivalence between the two, a key insight is that, because KYX is independent of g, it can be

used to combine over multiple SNPs/IVs; furthermore, the first one can be used to infer

whether there is indeed a causal relationship between the two traits by checking whether KYX
= 0, equivalent to βYX = 0, in contrast to simply assuming the existence of a causal relationship

in Steiger’s method. These two points here are to be elaborated on later.

From two independent GWAS summary datasets with sample sizes nX and nY for traits X
and Y respectively, for SNP g, we have its marginal effect estimate on X and the variance, b̂M;Xg

and varðb̂M;XgÞ, and the corresponding ones for Y as b̂M;Yg and varðb̂M;YgÞ. Then we can

Fig 1. Two possible true models: Left one is X! Y, right one is Y! X.

https://doi.org/10.1371/journal.pgen.1009105.g001
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calculate its sample correlations with X and Y, denoted by rXg and rYg, from the summary data:

rXg ¼
b̂M;Xg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b̂2
M;Xg þ ðnX � 2Þ � varðb̂M;XgÞ

q ; rYg ¼
b̂M;Yg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b̂2
M;Yg þ ðnY � 2Þ � varðb̂M;YgÞ

q : ð6Þ

MR Steiger’s method [9] first applies Fisher’s Z-transformation to |rXg|:

ZXg ¼ FðjrXgjÞ ¼
1

2
ln

1þ jrXgj
1 � jrXgj

 !

� N
1

2
ln

1þ jrXgj

1 � jrXgj

 !

;
1

nX � 3

 !

;

and calculate ZYg = F(|rYg|). Then it infers the causal direction by comparing ZXg and ZYg to

obtain Zg = ZXg − ZYg and its variance var(Zg) = 1/(nX − 3) + 1/(nY − 3). The test statistic

Zg=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðZgÞ

q
is compared to a standard normal distribution N(0, 1) to yield a p-value. If the

p-value is larger than a given significance level, MR Steiger’s method would not make any con-

clusion; otherwise, depending on if Zg> 0 or not, it would conclude that the causal direction is

from X to Y, or from Y to X.

It is noted that, to test the suitable hypothesis on the magnitudes of the two correlations,

MR Steiger’s method takes the Fisher’s transformation on the absolute values of the two corre-

lations, i.e., |rXg| and |rYg|. For finite samples, using the non-negative |rXg| and |rYg| may lead to

poor approximations by their normal distributions, though it is asymptotically valid (under

usual regularity conditions, including each correlation is not 0 or ±1). S10 Text gives an

illustration.

It is clear that the key condition for Steiger’s method as proposed by [9] is inequality (5). It

is expected to hold with the following intuitive explanation: based on true model (2), var(Y)

represents the total variation of Y while b
2

YX � varðXÞ is only its partial variation mediated

through X. However, in the presence of confounder U, as shown in Eq (2), we have

varðYÞ ¼ b2

YXvarðXÞ þ varð�YÞ þ b
2

YUvarðUÞ þ 2bYXbYUcovðX;UÞ; ð7Þ

from which we cannot conclude that (5) holds, simply because the sum of the last three terms

in var(Y) can be negative. A sufficient condition for (5) is that βYX βYU cov(X, U) is (i) positive,

or (ii) negative but small in magnitude. Condition (i) means that the directions of the correla-

tions between X and U and between Y and U are consistent with the sign of βYX: for example,

if βYX> 0, then the effects of U on X and Y are in the same direction; on the other hand, if βYX
< 0, then the effects of U on X and Y are in different directions. A sufficient condition for (ii)

is the small confounding and small causal effect sizes. For complex traits, we believe that these

assumptions (i) and (ii) are often reasonable, albeit untestable directly due to that the con-

founder U is unobserved. Furthermore, [9] showed numerically that, if the proportion of the

variance explained between the two traits, R2
YX, is less than 0.2, then the condition almost

always holds. It is noted that for complex human traits X and Y that are influenced by many

genetic and environmental factors, R2
YX < 0.2 is expected to hold often.

Nevertheless, as an assumption, it would be desirable to check condition (5) in practice.

Next we propose such a method. First, we can obtain an estimate b̂YX of the causal effect βYX,

e.g. by MR Egger regression. Second, if we have individual level data, then we can estimate var
(X) and var(Y) directly, thus verify whether the condition holds. It is noted that var(X) and var
(Y) are just the marginal variances of the two traits, which can be consistently estimated by the

corresponding sample variances. On the other hand, if we only have GWAS summary data for

both traits, we propose the following procedure to estimate var(X) and var(Y). For each SNP g,
we have its marginal association estimate b̂M;Xg , varðb̂M;XgÞ and var(g) = 2MAF(1−MAF) in the
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marginal model X ¼ bM;0Xg þ bM;Xg � g þ �0X; where MAF is the minor allele frequency of the

SNP. Then it is easy to verify that

varðXÞ ¼ b̂2

M;XgvarðgÞ þ varð�
0

XÞ ¼ b̂
2

M;XgvarðgÞ þ ðnX � 2Þvarðb̂M;XgÞvarðgÞ;

where nX is the sample size. We can similarly estimate var(Y). Since such variance estimates

may depend on the SNP g being used, we can obtain many such estimates based on each of

many SNPs, then check the distribution of var(Y)/var(X) and compare to b̂2
YX to verify condi-

tion (5).

In practice, as to be shown in our real data examples, in order to apply MR Steiger’s method

and its extensions to be proposed next, we first assume that, if the causal direction is from X to

Y, condition (5) holds; we apply our above proposed procedure to check it.

New method with multiple and possibly correlated SNPs. Steiger’s method is based on

using only one SNP as IV. There is a good reason to extend it to multiple and possibly corre-

lated SNPs, e.g. from a genomic locus: to improve statistical efficiency with multiple SNPs. In

particular, in some applications such as TWAS [11, 12], it is necessary to use multiple corre-

lated cis SNPs to more effectively predict/impute one gene’s expression level; if we are inter-

ested in inferring whether the causal direction is from the gene to a GWAS trait, we have to

use multiple correlated SNPs to improve power.

Now we describe the new method for multiple, possibly correlated, SNPs. Due to linkage

disequilibrium (LD), it is likely that some SNPs at the same locus are correlated and are signifi-

cantly associated with both X and Y. Suppose we havem such SNPs denoted in g; for each SNP

i, from Eq (6), with summary statistics we can get its sample correlations with X and Y respec-

tively as rXgi and rYgi . Denote rXg ¼ ðrXg1 ; :::; rXgmÞ
T
, rYg ¼ ðrYg1 ; :::; rYgmÞ

T
, ρXg ¼ ðrXg1 ; :::; rXgmÞ

T

and ρYg ¼ ðrYg1 ; :::; rYgmÞ
T
. As discussed in [40], we obtain the asymptotic distributions of rXg

and rYg as

ffiffiffiffiffinX
p

� ðrXg � ρXgÞ ! Nð0;VXgÞ;
ffiffiffiffiffinY
p

� ðrYg � ρYgÞ ! Nð0;VYgÞ; ð8Þ

where the covariance matrices VXg and VYg depend on the correlation matrix of the SNPs in a

complicated way, as shown in S1 Text. With GWAS summary data, we use a reference panel,

such as one from the 1000 Genomes Project [41], to estimate the correlation matrix of the

SNPs. Given the asymptotic distributions of rXg and rYg, and the two independent GWAS data-

sets, rXg and rYg are also independent, leading to a block-diagonal covariance matrix for their

joint distribution. By the delta method, we can obtain:

rYg
rXg
¼

rYg1
rXg1

..

.

rYgm
rXgm

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

� N

rYg1
rXg1

..

.

rYgm
rXgm

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

; JTg �

VYg
nY

0m�m

0m�m
VXg
nX

0

B
B
B
B
@

1

C
C
C
C
A
� Jg

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

≔Nð1 � KYX;VYXgÞ; ð9Þ
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where “≔” represents “by definition”, 1 = (1, . . ., 1)T and

JTg ¼

1

rXg1
� � � 0 �

rYg1
r2Xg1

� � � 0

..

. . .
. ..

. ..
. . .

. ..
.

0 � � �
1

rXgm
0 � � � �

rYgm
r2Xgm

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

: ð10Þ

As we have already shown, rYg1=rXg1 ¼ � � � ¼ rYgm=rXgm ¼ KYX is a constant, independent

of the SNPs. Hence, the generalized least squares (GLS) method is applied to estimate KYX as

K̂ YX ¼
1T � V� 1

YXg �
rYg
rXg

1T � V� 1

YXg � 1
; varðK̂ YXÞ ¼

1

1T � V� 1

YXg � 1
:

ð11Þ

We call this method Causal Direction-Ratio, or CD-Ratio for short. It is noted that

CD-Ratio can be applied to special situations with only one SNP, or with multiple indepen-

dent SNPs. Note that for two independent SNPs, their sample correlations with the same trait

are in general non-independent.

With each individual estimate, or the combined estimate K̂ YX and its varðK̂ YXÞ, we can con-

struct a confidence interval for KYX. Similarly, from the other direction we can estimate KXY as

K̂XY with varðK̂XYÞ. Assuming condition (5) is satisfied, we infer the causal direction between

X and Y by comparing whether the confidence interval of KXY (or KYX) is completely within or

outside interval [-1, 1], as to be discussed later.

Extension to case with invalid IVs with direct effects

Now consider one or more SNPs/IVs with direct effects on the outcome as shown in Fig 2.

The true causal models are

X ¼ bX0 þ bXg � g þ bXU � U þ �X; ð12Þ

Y ¼ bY0 þ bYX � X þ aYg � g þ bYU � U þ �Y ; ð13Þ

Fig 2. True model for causal direction from X to Y in the presence of pleiotropic/direct effect (i.e. αYg).

https://doi.org/10.1371/journal.pgen.1009105.g002
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implying

Y ¼ ðbY0 þ bYX � bX0Þ þ ðaYg þ bYX � bXgÞ � g þ ðbYU þ bYX � bXUÞ � U þ ð�Y þ bYX � �XÞ:

Accordingly, we calculate the (Pearson’s) correlations between the SNP and X and Y,

rXg ¼ bXg �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
varðgÞ

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðXÞ

p ; ð14Þ

rYg ¼ ðaYg þ bYX � bXgÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
varðgÞ

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðYÞ

p ¼ aYg �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
varðgÞ

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðYÞ

p þ KYX � rXg≔bYg þ KYX � rXg: ð15Þ

Again by definition KYX≔bYX
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðXÞ

p
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðYÞ

p
; assuming condition (5) is satisfied, we

have |KYX|< 1. Furthermore, KYX = 0 is the sufficient and necessary condition for βYX = 0, i.e.

no causal relationship from X to Y. Different from that in the Ideal Model, as pleiotropic effects

are allowed now, even there is no causal relationship between X and Y, there could still be sig-

nificant SNPs g for both traits due to pleiotropy. By testing whether KYX = 0 or not, we can

determine the existence of a causal relationship.

It is noted that bYg/ αYg 6¼ 0. We next develop an estimation method by treating bYg’s as

random effects, similar to that in MR Egger regression [27]. For simplicity we assume g’s are

standardized to have mean 0 and variance 1, and the covariance matrix of g’s is Σ. Since g’s are

possibly correlated, we may have correlated bYg’s. Assuming the direct effects from g to Y are

independently from a normal distribution, we would have

bYg � N
b0 � Σ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðYÞ

p ;
s2

0
Σ2

varðYÞ

 !

: ð16Þ

See S2 Text for the derivation. For simplicity, in the following we denote v = Σ1 = (v1, � � �,

vm)T, b0 for b0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðYÞ

p
, and s2

0
for s2

0
=varðYÞ. Using the sample correlation coefficients to

approximate the population correlation coefficients in Eq (16) (while ignoring the errors in

rXg), we have

rYg ¼ b0 � vþ KYX � rXg þ ϵ; ϵ � N 0;
VYg
nY
þ s2

0
Σ2≔VYX

� �

; ð17Þ

in which the InSIDE assumption (i.e. the independence between βXg and αYg) is imposed (as

for MR Egger regression). Given s2
0
, estimating (b0, KYX) is a GLS problem, thus we estimate

(b0, KYX) and s2
0

iteratively, and obtain their standard errors seðb̂0Þ; seðK̂ YXÞ; see S2 Text for

details. Briefly, we simply regress the two sample correlations with an intercept term to esti-

mate the slope parameter KYX using the GLS method (which reduces to the weighted least

squares with the weight inversely proportional to var(eYg) if the SNPs are independent). This is

similar to Egger regression in MR, for which the effect size estimates, instead of the sample

correlation coefficients, are regressed against each other. We call this method Causal Direc-

tion-Egger, or CD-Egger for short.

A possible downside of the regression approach is its ignoring the variability of rXg while

account for that of rYg, similar to that in MR Egger regression [42]. To overcome this short-

coming, we propose a new method called Causal Direction-GLS, or simply CD-GLS. Since it

performs similarly to CD-Egger (due to small variability of rXg with a usually large sample size

of GWAS), we relegate its detail to S2 Text.
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Remarks on extension to case with invalid IVs associated with confounders

Now we consider an SNP with a direct effect on the hidden confounder, as shown in the DAG

in the left panel of Fig 3. This is the case when the third key IV assumption is violated. Note

that, as in [27], for simplicity we assume an effect size 1 of the confounder U on both X and Y,

while it can be easily generalized. The case can be converted to that as if the second key IV

assumption is violated, as shown in the right panel of Fig 3. It may appear that the two new

methods developed in the previous subsection can be applied. However, the InSIDE assump-

tion (i.e. the independence assumption of the IV effect on the exposure X, γ = γ1 + β, and that

on the outcome Y, α = α1 + β) is clearly violated because of their shared component β. Hence,

applying the two new methods developed in the previous section would lead to biased infer-

ence, unless the direct effect β is small and thus negligible. We will not pursue this challenging

topic further, which is beyond the scope of this paper.

Decision rules

For each of three methods CD-Ratio, CD-Egger, and CD-GLS, we would have K̂ XY and K̂ YX.

Along with their standard errors (SEs), we construct the confidence intervals at any signifi-

cance level, say α, for KXY and KYX respectively as CIXY ¼ K̂XY � Za=2SEðK̂ XYÞ and

CIYX ¼ K̂ YX � Za=2SEðK̂ YXÞ. Assuming Key Condition (5) holds, then our decision rules are:

(i) If CIXY is completely outside interval [-1, 1], while CIYX is inside [-1, 0) or (0, 1], we con-

clude that the causal direction is from X to Y; (ii) If CIYX is completely outside interval [-1, 1],

while CIXY is inside [-1, 0) or (0, 1], we conclude that the causal direction is from Y to X; (iii)

Otherwise, we cannot make a conclusion.

In the above, we have incorporated inferring whether there is indeed any causal relationship

between the two traits X and Y, in contrast to Steiger’s method [9] in simply assuming the exis-

tence of a causal relationship. As to be shown in simulations, this is advantageous over Steiger’s

method and expected to be useful in practice. Our proposal again exploits the use of our for-

mulated estimand KYX (or KXY): the sufficient and necessary condition for no causal relation-

ship with βXY = βYX = 0 is by definition equivalent to KYX = KXY = 0. Hence, we propose using

their confidence intervals to determine the existence of a causal relationship.

Goodness-of-fit tests

In MR the intercept estimate and its SE from Egger regression can be used as a goodness-of-fit

(GOF) test to check the assumptions of the valid IVs [27]; some extensions have also been

developed [43]. Accordingly, we can also use our estimate b̂0 and its CI for such a purpose. In

Fig 3. The case where the SNP/IV is directly associated with confounder U (left panel), which, by absorbing the

effect of SNP!U into SNP! X and SNP! Y, leads to the case where the SNP/IV has a direct effect on Y (right

panel).

https://doi.org/10.1371/journal.pgen.1009105.g003
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addition, as argued in [44], it is likely better and more powerful to conduct homogeneity test-

ing using Cochran’s Q statistics (for the IVW method) and Rucker’s Q0 statistics (for MR-Eg-

ger regression). We develop the corresponding three tests in the current context, similar to but

different from those for IVW or Egger regression in MR. Using the asymptotic distribution

(9), we can construct a chi-squared GOF test statistic for CD-Ratio:

QYXRatio ¼
rYg
rXg
� 1 � K̂ YX

 !T

V � 1

YXg

rYg
rXg
� 1 � K̂ YX

 !

; ð18Þ

where K̂ YX is the CD-Ratio (or any other consistent) estimate. Under the null hypothesis that

all SNPs are valid IVs, the (asymptotic) null distribution is QYXRatio � w
2
m� 1

, a chi-squared distri-

bution with degrees of freedomm − 1, wherem = dim(rXg) is the number of the SNPs/IVs

being used. Rejection of the null hypothesis may imply that the SNPs may have direct effects

on the outcome, i.e. there is horizontal pleiotropy.

Based on the asymptotic distribution (17), we can construct a similar GOF test for CD-Eg-

ger after accounting for the possible presence of horizontal pleiotropy:

QYXEgger ¼ ðrYg � b̂0 � V � K̂ YX � rXgÞ
TV � 1

YXðrYg � b̂0 � V � K̂ YX � rXgÞ; ð19Þ

where b̂0 and K̂ YX are the CD-Egger estimates of b0 and KYX respectively. Under the null

hypothesis that the model assumptions hold, the (asymptotic) null distribution is

QYXEgger � w
2
m� 2

. We can construct a similar GOF test based on CD-GLS, which we found per-

formed similarly to QYXEgger and thus is relegated to S3 Text. Rejection of the null hypthesis by

either test may imply that the SNPs/IVs are possibly correlated with some hidden

confounders.

For the other direction Y to X, similarly we can perform corresponding chi-squared GOF

tests with QXYRatio, Q
XY
Egger and QXYGLS.

Further extensions

Multivariable approach. Analogous to the extenstion of MR to multivariable MR

(MV-MR) [28, 29], we extend our CD-Egger method to its multivariable version, denoted

MV-CD-Egger, to explicitly account for pleiotropic/direct effects through a third (or more)

trait. Specifically, we introduce the third trait A, which may be an observed confounder for the

two traits of interest, X and Y. When the true causal direction is from X to Y, the true causal

model is:

A ¼ bAg � g þ bAX � X þ bAU � U þ eA;

X ¼ bXg � g þ bXA � Aþ bXU � U þ eX;

Y ¼ aYg � g þ bYX � X þ bYA � Aþ bYU � U þ eY :

ð20Þ

Here eA, eX, eY are independent random error terms. In model (20), we allow a general rela-

tionship between A and X, and between A and Y. When the true causal direction is from Y to

X, we have a corresponding true model. The two possible true models are illustrated in Fig 4.

Under the true model of the causal direction from X to Y, since the IV g is independent of

the hidden confounder U and error term eY, we can calculate the covariance between g and Y
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as:

covðY; gÞ ¼ aYg � varðgÞ þ bYX � covðX; gÞ þ bYA � covðA; gÞ ð21Þ

Let ρYg be the correlation between Y and g, and similarly define ρXg and ρAg, then we have

rYg ¼
covðY; gÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðYÞ � varðgÞ

p ¼ aYg �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
varðgÞ

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðYÞ

p þ bYX �
covðX; gÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðYÞ

p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
varðgÞ

p þ bYA �
covðA; gÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðYÞ

p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
varðgÞ

p ð22Þ

Let KYX ¼ bYX �
ffiffiffiffiffiffiffiffi
varðXÞ
p

ffiffiffiffiffiffiffiffi
varðYÞ
p , KYA ¼ bYA �

ffiffiffiffiffiffiffiffi
varðAÞ
p

ffiffiffiffiffiffiffiffi
varðYÞ
p , and bYg ¼ aYg �

ffiffiffiffiffiffiffiffi
varðgÞ
p

ffiffiffiffiffiffiffiffi
varðYÞ
p . Paralleling with the key

condition (5), we assume |KYX|< 1 and |KYA|< 1. Hence we have

rYg ¼ bYg þ KYX � rXg þ KYA � rAg: ð23Þ

As for CD-Egger, we model the distribution of bYg similarly, and apply an iterative method

to obtain the maximum likelihood estimates of parameters KYA and KYX with their standard

errors as shown in S2 Text; the only change is to redefine X ¼ ð v; rXg; rAg Þ. At the end, we

construct the normal-based confidence intervals for KYX and KXY, and apply the same decision

rules as before.

Bi-directional causal effects. So far we have restricted our discussion on uni-directional

causal effects. Inspired by [45], as suggested by a reviewer, we now briefly discuss an extension

of our CD-Ratio method to bi-CD-Ratio that works regardless whether there is no, a uni- or

bi-directional causal relationship between two traits. In the presence of bi-directional causal

effects, as discussed by [45], for the model identifiability, at least one valid IV is required for

each trait as shown in Fig 5, which is the case we consider here.

The true causal model is:

X ¼ b2 � Y þ g1 � g1 þ bXU � U þ �1;

Y ¼ b1 � X þ g2 � g2 þ bYU � U þ �2;
ð24Þ

where �1 and �2 are independent errors for X and Y respectively. The reduced form of the true

Fig 4. Two possible true models: The left one is for causal direction from X to Y, and the right one is for Y to X.

https://doi.org/10.1371/journal.pgen.1009105.g004
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model is

X ¼
1

1 � b1b2

g1 � g1 þ b2g2 � g2 þ bXU � U þ b2bYU � U þ �1 þ b2 � �2ð Þ;

Y ¼
1

1 � b1b2

g2 � g2 þ b1g1 � g1 þ bYU � U þ b1bXU � U þ �2 þ b1 � �1ð Þ;

ð25Þ

from which it is easy to calculate the correlation between X and g1, denoted by rXg1 , and simi-

larly rXg2 , rYg1 and rYg2 as:

rXg1 ¼
g1

1 � b1b2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðg1Þ

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðXÞ

p ; rXg2 ¼
b2g2

1 � b1b2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðg2Þ

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðXÞ

p ;

rYg1 ¼
b1g1

1 � b1b2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðg1Þ

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðYÞ

p ; rYg2 ¼
g2

1 � b1b2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðg2Þ

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðYÞ

p ;

and thus

K1 ¼
rYg1
rXg1
¼
b1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðXÞ

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðYÞ

p ; K2 ¼
rXg2
rYg2
¼
b2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðYÞ

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðXÞ

p : ð26Þ

As before, since b
2

1
� varðXÞ represents a part of the variance in Y due to the direct effect of

X on Y, we assume b
2

1
� varðXÞ < varðYÞ, and thus |K1|< 1. Similarly we assume |K2|< 1.

These two assumptions parallel with our key condition (5).

From the GWAS summary data for traits X and Y, we calculate the sample correlations rXg1 ,

rXg2 , rYg1 and rYg2 . Then we apply our CD-Ratio method with g1 to estimate K1 as K̂ 1 with its

standard error SEðK̂ 1Þ, and construct its 100(1 − α)% confidence interval

CIK1
¼ K̂ 1 � Za=2SEðK̂ 1Þ. If CIK1

is completely inside [−1, 0) or (0, 1], we conclude that X has a

Fig 5. The true model for two traits X and Y with a bi-directional causal relationship: g1 and g2 are valid IVs for X
and Y respectively, and U is unobserved confounder.

https://doi.org/10.1371/journal.pgen.1009105.g005
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causal effect on Y; if CIK1
covers 0, then we conclude that X has no causal effect on Y. Similarly

we construct a confidence interval for K2 and infer whether there is a causal effect from Y to X.

In this way, we may conclude with bi-directional causal effects between X and Y.

As to be shown in simulations, in the case with valid IVs, both our bi-CD-Ratio and bi-

directional MR performed well, being able to distinguish among no, uni- and bi-directional

causal relationships between two traits. In contrast, Steiger’s method did not work because it

cannot determine whether there is any causal relationship between two traits.

Other methods

In addition to Steiger’s method, bi-directional MR, also called reciprocal MR, is popular. For

the latter, it consists of two steps: first, an MR analysis is applied to infer the causal effect of X
on Y, often using a set of (approximately) independent SNPs significantly associated with X as

IVs; second, a separate MR analysis is applied to infer the causal effect of Y on X using a possi-

bly different set of independent SNPs that are significantly associated with Y. The decision

rules are similar to ours: 1) if the result is significant in Step 1, but not in Step 2, we conclude

that the causal direction is from X to Y; 2) If the result is significant in Step 2, but not in Step 1,

we conclude that the causal direction is from Y to X; 3) Otherwise, we cannot determine the

causal direction. However, an issue with bi-directional MR is that the differing sample sizes, or

generally differing statistical power, between the two GWAS for traits X and Y respectively,

would possibly confound the result. An extreme example for an ideal case is that, suppose that

both GWAS are sufficiently powered to detect all associated SNPs; it is easy to see that, if there

is indeed a causal relation from X to Y and that Y is completely determined by X genetically,

then all the SNPs associated with X would be associated with Y too, leading to that both Steps 1

and 2 would give significant results.

We will apply a wide range of MR methods, representing both well-established and new

ones as implemented in R package TwoSampleMR, for bi-directional MR. These include the

inverse-variance–weighted (IVW) method [46], MR-Egger regression [27], the weighted

median estimator [47], the weighted mode-based estimation [48, 49], and the Robust Adjusted

Profile Score (RAPS) method [42]. To save space, we will only present the results of RAPS with

the set-up of overdispersion and a squared-error loss; using other set-ups led to qualitatively

similar results. The IVW is perhaps the most popular, requiring all the three key assumptions

on valid IVs to hold, under which it is most efficient; the other ones either explicitly account

for or are robust to horizontal pleiotropy. Since all these MR methods require using indepen-

dent SNPs, we selected the most significant SNP from each locus if it contained more than one

significant SNPs, then applying MR to only independent SNPs in any simulated or real data.

GWAS data and reference panel

To draw inference on the causal direction between two traits using either our proposed meth-

ods or bi-directional MR, we only need two independent GWAS summary datasets for the two

traits respectively, and a reference panel to estimate LD-matrices for correlated SNPs.

We showcase an application to infer causal directions between LDL and CAD, and between

HDL and CAD. The large-scale GWAS summary data for traits LDL/HDL and CAD were

drawn from two year 2017 publications [50, 51] with sample sizes up to 295826 for LDL,

316391 for HDL and 336860 for CAD of primary European ancestry respectively. We used the

European samples of 489 unrelated individuals in the 1000 Genomes Project [41] as our refer-

ence panel to calculate the LD-matrix.

For our proposed methods and Steiger’s method, we chose the IVs from the SNPs signifi-

cantly associated with both traits, denoted as before as X and Y. Based on [52], we partitioned
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the whole genome into 1703 approximately LD-independent loci and assigned the significant

SNPs (associated with both X and Y) to one of these 1703 independent loci. We pruned out

highly correlated SNPs falling inside each locus in the following two steps. Step 1, we ordered

the significant SNPs in each locus according to their combined significance level with X and Y.

Suppose there werem significant SNPs with their p-values pX = (pX1, . . ., pXm) and pY = (pY1,

. . ., pYm) for two traits X and Y respectively. We sorted pX and pY in an ascending order. For

each SNP i, i = 1, . . .,m, we obtained the ranks of its p-values pXi and pYi, denoted as IXi and

IYi. Then we calculated its rank sum Ii = IXi + IYi, i = 1, . . .,m. After that, we reordered the

SNPs in the ascending order of Ii. Step 2, we pruned out some highly correlated (and signifi-

cant) SNPs in each locus. We kept SNP 1, and for each i = 2, . . .,m, if |cor(SNPi, SNPj)|� 0.8

for all j = 1, . . ., i − 1, we kept SNP i; otherwise we removed it. At the end, we had a set of the

significant SNPs with pairwise absolute correlations less than 0.8.

Main simulation set-ups

For our main simulations, to mimic the real data analysis for LDL and CAD, in which 22 SNPs

from 12 loci were used, we generated simulated data with the same 22 SNPs. We extracted the

genotype data of 489 European individuals from the 1000-Genomes Project, then replicated

the genotype data of the 22 SNPs from the 489 individuals 200 times, obtaining a sample of

size n = 97800.

Following [53], in each simulation, we generated the two traits from true models (12-13),

where g was the vector of the genotype scores of the 22 SNPs, βXg was the (row) vector of the

effect sizes of the 22 SNPs on trait X with each element independently drawn from a truncated

standard normal distribution (truncated at 0.5 to ensure jbXgj j � 0:5Þ, the confounder U* N
(0, 1); the causal effect size βYX from X to Y was fixed at one value, the direct effects of the

SNPs on Y, the elements of (row) vector α, were generated independently ai � Nðma; s2
a
Þ; and

both error terms were independently from N(0, 4). With various values of βYX, μα and σα, we

considered a total of 75 simulation set-ups, covering a wide range of situations from no pleiot-

ropy (i.e. μα = σα = 0) to balanced pleiotropy (i.e. μα = 0 and σα> 0) and direction pleiotropy

(i.e. μα 6¼ 0 and σα> 0).

After generating each simulated dataset, we performed single SNP-based univariate/mar-

ginal analysis for each trait, obtaining the corresponding two GWAS summary datasets. The

proposed methods, CD-Ratio, CD-Egger and CD-GLS, were then applied to the GWAS sum-

mary data, and for each method one of three possible decisions was made according to the

decision rule. For comparison, we also applied MR Steiger’s method to each of the 22 SNPs;

we then calculated the proportions among the 22 SNPs of the three possible decisions reached,

denoted by “Steiger-Prop”. In addition, we also pooled together the individual results from

each of the 22 SNPs by majority voting to reach a final decision; this method is denoted as

“Steiger-MV”.

Results

Real data examples

LDL and CAD. For LDL and CAD, at the significance cutoff of p< 5 × 10−8, out of 1703

(approximately) independent loci [52], we identified 39 significant loci for CAD, 102 for LDL,

and 12 common ones for both traits from the two GWAS summary datasets. There were 40

SNPs in these 12 common loci significant for both LDL and CAD. After pruning out highly cor-

related ones, we obtained 22 SNPs in the 12 loci. We applied MR Steiger’s method and our pro-

posed methods with these 22 SNPs as IVs. For each of the 22 SNPs, we applied MR Steiger’s
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method to obtain a 95% CI for Zg, as shown in Fig 6(A). If a CI covers 0, no conclusion would

be made; otherwise, depending on whether it is in the right or left side of the zero point, we con-

clude the causal direction of LDL to CAD or the opposite. A problem with single SNP-based

analysis is its lower power and thus possibly inconsistent results: as shown in Fig 6(A), although

we’d conclude the causal direction of LDL driving CAD based on most of the SNPs, we would

fail to conclude based on each of five SNPs while concluding CAD driving LDL on one SNP.

As an alternative, under the Ideal Model, at each locus, we first applied CD-Ratio to all indi-

vidual SNPs; if there were more than one SNP, we applied CD-Ratio to combine the SNP-spe-

cific results at the locus; then we applied CD-Ratio to all 22 SNPs from the 12 loci. For the

Pleiotropy Model, we applied CD-Egger and CD-GLS directly to all the SNPs across all the

loci. Fig 7 shows the results. First, we emphasize that, perhaps as expected, the single SNP-

based results varied with the specific SNP being used as the IV, presumably due to that some

SNPs were not valid IVs. For example, for the majority of the SNPs, CD-Ratio would give each

a 95% confidence interval (CI) of KLDL! CAD completely inside (0, 1], but a few outside, sup-

porting the causal direction from LDL to CAD. Also note that none of the CIs covered 0, sup-

porting the existence of a causal relationship between the two traits. Second, for the several loci

with multiple SNPs, by combining the results over the SNPs, our proposed CD-Ratio

improved statistical efficiency by giving shorter locus-specific CIs than the individual SNP-

specific ones. Finally, most importantly, under the Ideal Model, after combining over all 22

SNPs from 12 loci, the CD-Ratio method could not conclude on the causal direction, because

its CI for KLDL! CAD was inside (0,1] while that for KCAD! LDL covered 1, as given in Table 1.

In contrast, after accounting for possible horizontal pleiotropy, our proposed methods CD-Eg-

ger and CD-GLS would both conclude the causal direction from LDL to CAD, in agreement

with the previous MR analysis and RCT results reported in the literature [30, 34–36].

It is noted that, Locus 253 and Locus 1246 showed a negative (i.e. beneficial) effect of LDL

on CAD, in contrary to what is known in the literature. Treating each as an outlier, after

removing it, we applied the new methods, and all the three (including CD-Ratio) reached the

same conclusion on the causal direction from LDL to CAD; see S4 Text. On the other hand, if

we only selected and used one SNP from each locus, CD-Ratio could not conclude while both

CD-Egger and CD-GLS reached the same conclusion of LDL to CAD, as shown in S4 Text.

Fig 6. The results by Steiger’s method: 95% CI of the test statistics Zg for each SNP. (A) Results of 22 SNPs for LDL and CAD. (B) Results of 8 SNPs

for HDL and CAD.

https://doi.org/10.1371/journal.pgen.1009105.g006
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It is emphasized that the necessity of accounting for horizontal pleiotropy in this example

was supported by the statistically significant non-zero estimates of b0 in either direction, which

was interpreted as representing the mean of the pleiotropic effects; it was notably larger when

considering causal direction CAD! LDL than that in the other direction (Table 1). This latter

point was also confirmed by the results of MR Egger regression as to be shown. Furthermore,

we conducted the GOF test with QRatio = 337.1, leading to a p-value almost 0, rejecting the null

hypothesis that the Ideal Model was adequate. The GOF test QRatio = 527.2 for CAD! LDL,

leading to a p-value almost 0 too. For CD-Egger, for the direction LDL! CAD we got QEgger =

22.2 and p-value = 0.329; for the other direction, we obtained QEgger = 22.0 and p-
value = 0.340. The similar results were obtained from QGLS, supporting the adequacy of the

Pleiotropic Model and the good performance of CD-Egger and CD-GLS.

For comparison, we also applied bi-directional MR. In each of 39 loci significant for CAD,

we picked up the most significant SNP (i.e. with the smallest p-value) as the IV, then applied

various MR methods to estimate and test the causal effect of CAD on LDL. Similarly, in each

of 102 significant loci for LDL, we used the most significant SNP as the IV, then applied MR to

estimate and test the causal effect of LDL on CAD. The results are shown in Table 2. We can

see that, at the significance level 0.05, IVW, Egger and RAPS all showed some significant causal

effects of CAD on LDL, and of LDL on CAD. Although Weighted Median and Weighted

Mode concluded that CAD had no causal effect on LDL, and that LDL had causal effect on

CAD, it could be due to the low statistical efficiency of the two methods; one evidence is that

the two methods gave a negative effect of CAD on LDL, contrary to the known positive associ-

ation between the two. Overall, across all the methods, there was much stronger statistical evi-

dence to support the causal direction LDL! CAD than the other direction. Besides,

MR-Egger gave an estimate of the mean pleiotropic effect for direction LDL to CAD as -0.003

with standard error 0.003, and -0.054 with standard error 0.028 for CAD to LDL. In summary,

as expected, due to use of possibly invalid IVs, bi-directional MR tended to conclude causal

effects for both directions.

Fig 7. Forest plots for inferring the causal direction between LDL and CAD, showing the differently colored SNP- and locus-specific results and

the combined results across all SNPs and loci, respectively.

https://doi.org/10.1371/journal.pgen.1009105.g007
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Finally, since our proposed CD-Egger and CD-GLS suggested the causal direction from

LDL to CAD, we checked the key condition (5). Using all the 40 signfiicant SNPs in the 12

loci, we obtained the distribution of var(CAD)/var(LDL) ranging from 7.62 to 13.95 with

mean 9.44, much larger than any MR b̂2 for LDL! CAD listed in Table 2, supporting that

condition (5) held here.

HDL and CAD. For HDL and CAD, at the significance cutoff 5 × 10−8, out of 1703

(approximately) independent loci, we identified 39 significant loci for CAD, 119 for HDL, and

6 common ones for both traits. There were 19 SNPs significant for both HDL and CAD from

the 6 common loci; after pruning out highly correlated ones, we obtained 8 SNPs. We applied

the MR Steiger’s method and our proposed methods to the 8 SNPs in the 6 common and sig-

nificant loci. Fig 6(B) shows the results from Steiger’s method, while Fig 8 showing those for

CD-Ratio, CD-Egger and CD-GLS.

Again, similar to that for LDL and CAD, the single SNP results varied with different SNPs

being used. Combining multiple SNPs in a locus showed gains with higher statistical estima-

tion efficiency: for example, at Locus 1609 with 3 SNPs, CD-Ratio gave a shorter CI than the 3

individual SNP-specific ones. As shown in Table 3, we cannot conclude on the causal direction

using CD-Ratio under the Ideal Model, because its CIs for KHDL!CAD and KCAD!HDL were

both inside [−1, 0). After accounting for possible pleiotropy, both CD-Egger and CD-GLS

gave a stronger but not statistically significant result of the causal direction from HDL to CAD;

both reached the same conclusion: although each gave a CI of KHDL! CAD within (-1, 0), each

gave an estimate of KCAD!HDL< −1 but with a CI covering −1, failing to determine the causal

direction.

We also conducted GOF testing. First, we obtained QRatio = 78.1, leading to a p-value almost

0, thus rejecting the null hypothesis that the Ideal Model forHDL! CAD was adequate. Simi-

larly, we reached the same conclusion for CAD! HDL with QRatio = 163.9 and a p-value

almost 0. Next, for the Pleiotropic Model with CD-Egger, for the direction HDL! CAD, we

obtained QEgger = 7.99 and p-value = 0.239; for the other direction, we had QEgger = 8.07 and p-
value 0.233. Similar results were obtained with CD-GLS. Hence, we concluded the adequacy of

the Pleiotropic Model.

We applied bi-directional MR for comparison. The results are shown in Table 4. At the sig-

nificance level 0.05, IVW and RAPS showed significant causal effects of both HDL to CAD

Table 1. The results for inferring the causal direction between LDL and CAD after combining across all 22 SNPs in 12 loci.

Method LDL! CAD CAD! LDL

K̂ [95% CI] b̂0 (SE) K̂ [95% CI] b̂0 (SE)

CD-Ratio 0.151 [0.137, 0.165] NA 0.919 [0.807, 1.031] NA

CD-Egger 0.166 [0.103, 0.229] 0.006 (0.002) 3.303 [2.051, 4.555] -0.025 (0.010)

CD-GLS 0.165 [0.103, 0.227] 0.006 (0.002) 3.100 [1.971, 4.229] -0.023 (0.008)

https://doi.org/10.1371/journal.pgen.1009105.t001

Table 2. Results of bi-rectional MR for the causal relationship between LDL and CAD by various MR methods. Each cell gives “b̂ (SE), p-value”.

Causality IVW Egger Weighted Median Weighted Mode RAPS

LDL!CAD 0.51 (0.048), 0.57 (0.070), 0.47 (0.044), 0.54 (0.031), 0.52 (0.023),

3.6 × 10−26 1.5 × 10−12 3.0 × 10−27 1.0 × 10−31 2.3 × 10−113

CAD!LDL 0.37 (0.14), 0.98 (0.34), -0.011 (0.017), -0.020 (0.013), 1.8 (0.12),

0.0076 0.0063 0.52 0.14 6.9 × 10−54

https://doi.org/10.1371/journal.pgen.1009105.t002
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and CAD to HDL. MR Egger concluded with a significant causal effect of HDL to CAD but

not CAD to HDL, while Weighted Median gave the opposite result. Weighted Mode showed

that a causal effect from CAD to HDL was more significant than that from HDL to CAD,

though neither was significant at level 0.05. In summary, different bi-directional MR methods

gave different and contradictory results.

Finally, given the inconclusive results by our methods, we checked the key condition (5) for

both directions. Using all the 19 significant SNPs in the 6 loci, we obtained the distribution of

var(CAD)/var(HDL) ranging from 8.37 to 11.77 with mean 9.84, much larger than all MR b̂2

for HDL! CAD; on the other hand, var(HDL)/var(CAD) ranged from 0.0849 to 0.1195 with

mean 0.1032, larger than any MR b̂2 for CAD!HDL. Hence there was evidence supporting

condition (5) (or its analog) in either direction.

LDL/HDL and CAD: Multivariable approaches. Since MV-MR has been shown to be

more robust than MR, in particular in estimating causal effects of LDL and HDL on CAD [54],

we also applied bi-directional MV-MR and MV-CD-Egger to infer the causal direction

between LDL (or HDL) and CAD while adjusting for HDL (or LDL) as a potential confounder.

As shown in S5 Text, our proposed MV-CD-Egger concluded with the causal direction from

LDL to CAD, but no causal relationship between HDL and CAD. In contrast, both

MV-MR-IVW and MV-MR-Egger concluded with LDL and HDL causal to CAD; in addition,

MV-MR-Egger also identified a significant causal effect of CAD on LDL.

Fig 8. Forest plots for inferring the causal direction between HDL and CAD, showing the differently colored SNP- and locus-specific results and

the combined results across all SNPs and loci, respectively.

https://doi.org/10.1371/journal.pgen.1009105.g008

Table 3. Results of inferring the causal direction between HDL and CAD after combining across all 8 SNPs in 6 loci.

Method HDL! CAD CAD!HDL

K̂ [95% CI] b̂0 (SE) K̂ [95% CI] b̂0 (SE)

CD-Ratio -0.441 [−0.498, −0.385] NA -0.842 [−0.979, −0.706] NA

CD-Egger -0.445 [−0.685, −0.205] -0.001 (0.003) -1.414 [−2.174, −0.654] -0.001 (0.006)

CD-GLS -0.444 [−0.674, −0.215] -0.001 (0.003) -1.334 [−2.035, −0.634] -0.001 (0.006)

https://doi.org/10.1371/journal.pgen.1009105.t003
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Main simulation results

Estimation of KYX: CD-Ratio performed well with no pleiotropy while CD-Egger and

CD-GLS always performed well. First we show the simulation results in terms of estimating

KYX by CD-Ratio, CD-Egger and CD-GLS. For each simulation set-up and each method, we

show the mean and standard deviation (sd) of its estimates of KYX from 500 simulated datasets,

which are compared to the true value of KYX and the mean standard error (se) respectively; we

would like them to be as close as possible. From Table 5, we can see that CD-Egger and

CD-GLS always gave almost unbiased estimates (with good SE estimates too) in all situations,

suggesting their correct (and similar) inference on the causal direction. In contrast, while the

CD-Ratio estimator was almost unbiased in the absence of pleiotropy, it became more and

more biased as the mean pleiotropic effect (i.e. μα) increased. We obtained similar results and

reached the same conclusion from many other simulation set-ups as shown in S6 Text.

Inferring causal direction: CD-Ratio outperformed with no pleiotropy while CD-Egger

and CD-GLS always outperformed Steiger’s and bidirectional MR methods. We next

compare CD-Ratio, CD-Egger and CD-GLS with MR Steiger’s and bi-directional MR in terms

of their decisions made on the causal direction. Fig 9 shows some representative results; more

are given in S6 Text. First, we consider the case of no causal relationship between the two traits

(i.e. βYX = βXY = 0). It was confirmed that MR Steiger’s does not work if there is no causal rela-

tionship between two traits: it often incorrectly concluded with one of the two directions; in

contrast, our CD-Ratio based on single SNPs overcame this shortcoming if there was no pleiot-

ropy, and performed similarly to Steiger’s method otherwise (see S6 Text). In general, bi-direc-

tional MR performed reasonably well, though most of them might make incorrect

conclusions. For example, in the presence of balanced pleiotropy, all the five MR methods con-

sidered made incorrect decisions at least 10% time. In contrast, our proposed three new meth-

ods almost always reached the correct decision. Second, when the causal direction was from X
to Y, our methods CD-Egger and CD-GLS had high (and similar) power to detect it across all

the scenarios, regardless of the presence of balanced or directional pleiotropy. As expected,

CD-Ratio performed well only when there was no pleiotropy or only balanced pleiotropy, but

it completely lost power in the presence of directional pleiotropy. Steiger’s method was high

powered except that it would often conclude with the incorrect causal direction in the presence

of directional pleiotropy. On the other hand, all the five MR methods were low powered, and

would often conclude with the incorrect causal direction in the presence of directional pleiot-

ropy. Perhaps it is surprising to see so low power of bi-directional MR even in the ideal case of

no pleiotropy. The reason is that bi-directional MR tends to detect both directions being sig-

nificant (due to the use of invalid IVs), leading to no final conclusions by the decision rules

(since we assume either no or a uni-directional causal relationship); this is confirmed by Fig

10, in which the significant results in either direction are shown separately (without being

combined by the decision rules).

Table 4. Results of bi-rectional MR for the causal relationship between HDL and CAD by various MR methods. Each cell gives “b̂ (SE), p-value”.

Causality IVW Egger Weighted Median Weighted Mode RAPS

HDL!CAD -0.281(0.058), -0.197(0.096), -0.085(0.052), -0.083(0.061), -0.301(0.053),

1 × 10−6 0.041 0.100 0.176 1.4 × 10−8

CAD!HDL -0.0823(0.033), -0.104(0.084), -0.032(0.015), -0.027(0.014), -0.089(0.033),

0.013 0.225 0.029 0.061 0.006

https://doi.org/10.1371/journal.pgen.1009105.t004
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The GOF tests performed well. In S6 Text, we show the results of our proposed GOF

tests: all performed well with controlled type I error rates and high power in our simulations.

Secondary simulation results

Bi-CD-Ratio could detect bi-directional causal relationships. In S7 Text, we also show

the results for inferring no, uni- and bi-directional relationships between two traits with valid

IVs. It is confirmed that our proposed bi-CD-Ratio and (bi-directional) MR-Wald-Ratio per-

formed well, while Steiger’s method did not work due to its inability to determine whether

there is any causal relationship between two traits as discussed earlier.

CD-Ratio could perform in TWAS with relatively small sample sizes. We also did a

simulation study to investigate how the asymptotic theory for the sample correlations and

their ratios performs with smaller sample sizes as typical with molecular endophenotypes as in

TWAS. We generated simulated data under realistic set-ups mimicking real eQTL datasets

with sample sizes from around two hundreds to about a thousand, much smaller than those of

typical GWAS as used in our main simulations. We also considered the presence of some

highly correlated SNPs/IVs. As shown in S8 Text, our proposed CD-ratio performed very well:

it might be a bit conservative with empirical type I error rates smaller than the nominal level

Table 5. Simulation results for estimating KYX. The means, standard deviations (sd) and SEs (se) from each method are shown for each set-up based on 500 simulated

datasets. μα represents the mean of the pleiotropic/direct effects (with standard deviation σα = 0.1).

No pleiotropy

μα KYX CD-Ratio CD-Egger CD-GLS

Mean(K̂ ) sd(K̂ ) Mean ðseðK̂ ÞÞ Mean(K̂ ) sd(K̂ ) Mean ðseðK̂ ÞÞ Mean(K̂ ) sd(K̂ ) Mean ðseðK̂ ÞÞ
0 0 0.0001 0.0034 0.0035 0.0001 0.0034 0.0036 0.0001 0.0034 0.0036

0 0.2257 0.2256 0.0033 0.0036 0.2256 0.0033 0.0036 0.2256 0.0033 0.0036

0 -0.2344 -0.2341 0.0032 0.0036 -0.2341 0.0032 0.0036 -0.2341 0.0032 0.0036

Balanced pleiotropy

μα KYX CD-Ratio CD-Egger CD-GLS

Mean(K̂ ) sd(K̂ ) Mean ðseðK̂ ÞÞ Mean(K̂ ) sd(K̂ ) Mean ðseðK̂ ÞÞ Mean(K̂ ) sd(K̂ ) Mean ðseðK̂ ÞÞ
0 0 0.0013 0.0563 0.0037 -0.0007 0.0431 0.0410 -0.0005 0.0436 0.0419

0 0.2257 0.2181 0.0531 0.0037 0.2201 0.0397 0.0393 0.2203 0.0402 0.0401

0 -0.2344 -0.2233 0.0545 0.0037 -0.2296 0.0409 0.0408 -0.2295 0.0414 0.0416

Directional pleiotropy

μα KYX CD-Ratio CD-Egger CD-GLS

Mean(K̂ ) sd(K̂ ) Mean ðseðK̂ ÞÞ Mean(K̂ ) sd(K̂ ) Mean ðseðK̂ ÞÞ Mean(K̂ ) sd(K̂ ) Mean ðseðK̂ ÞÞ
0.2 0 -0.0112 0.0538 0.0039 -0.0005 0.0386 0.0368 -0.0004 0.0392 0.0375

0.4 0 -0.0183 0.0448 0.0041 -0.0004 0.0306 0.0291 -0.0003 0.0311 0.0297

0.6 0 -0.0317 0.0357 0.0042 -0.0003 0.0240 0.0228 -0.0002 0.0244 0.0233

1 0 -0.0506 0.0241 0.0043 -0.0002 0.0161 0.0153 -0.0002 0.0164 0.0156

0.2 0.2027 0.1898 0.0514 0.0039 0.1987 0.0369 0.0355 0.1989 0.0375 0.0362

0.4 0.1614 0.1438 0.0448 0.0041 0.1593 0.0301 0.0285 0.1595 0.0307 0.0290

0.6 0.1272 0.0944 0.0362 0.0042 0.1261 0.024 0.0225 0.1263 0.0244 0.0230

1 0.0856 0.0313 0.0244 0.0043 0.0851 0.0162 0.0152 0.0852 0.0165 0.0155

0.2 -0.2093 -0.2172 0.0517 0.0039 -0.2061 0.037 0.0366 -0.206 0.0373 0.0373

0.4 -0.1649 -0.1796 0.0435 0.0041 -0.1636 0.0298 0.0290 -0.1635 0.0300 0.0296

0.6 -0.1290 -0.1552 0.0351 0.0042 -0.1285 0.0236 0.0228 -0.1285 0.0238 0.0233

1 -0.0862 -0.1301 0.0238 0.0043 -0.0862 0.0159 0.0153 -0.0862 0.0161 0.0156

https://doi.org/10.1371/journal.pgen.1009105.t005
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when the sample size was small at a few hundreds; but as the sample size increased to a few

thousands, its type I error rates approached the nominal level. Importantly, it was confirmed

that by combining the results across the SNPs, even including some highly correlated ones,

CD-Ratio improved the statistical power over that based on single SNPs.

Fig 9. Relative frequencies of the causal directions reached by each method (from 500 simulations in each set-up) when there is no causal

relatuonship (top two panels) or a causal direction is from X to Y (βYX = 0.2; bottom two) with no pleiotropy, balanced pleiotropy (μα = 0, σμ =

0.1) and directional pleiotropy ((μα = 0.4, σμ = 0.1) respectively.

https://doi.org/10.1371/journal.pgen.1009105.g009
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Selection bias. We did simulations to study possible selection bias due to the double use

of the same sample for SNP/IV selection and estimation. The simulation setups are the same as

described in Main Simulation Set-ups section. We used 22 SNPs to generate simulated data,

and in Main Simulation Results section we applied our proposed three methods to all 22 SNPs

with the results shown in Table 5. Now for each simulated dataset, we used a p-value cutoff to

Fig 10. Relative frequencies of having significant results in each direction, in contrast to that of the final conclusions shown in Fig 9.

https://doi.org/10.1371/journal.pgen.1009105.g010
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select exactly N SNPs that were most significantly associated with both X and Y, then we

applied a method with these N selected SNPs. We tried with N = 10, 15 or 22; when N = 22, we

used all 22 SNPs as before. S9 Text shows the simulation results with no pleiotropy, balanced

pleiotropy, and directional pleiotropy respectively. We summarize the results below. First,

when there was no pleiotropy, all three methods gave almost unbiased estimates of KYX with

any of the three values of N, suggesting no or negligible selection bias. Second, with balanced

pleiotropy, there were small biases. Third, with directional pleiotropy, there could be large

biases. However, interestingly, under the null hypothesis of KYX = 0, CD-Egger and CD-GLS

yielded only small biases, leading to barely any inflation of their Type I error rates; see S9 Text.

Discussion

We have proposed several extensions to the increasingly popular MR Steiger’s method to infer

the causal direction between two traits. MR Steiger’s method is based on using a single SNP as

a valid IV; if there is strong biological knowledge to justify the use of the SNP as a valid IV, it is

both useful and simple to apply the method. However, in practice, due to incomplete knowl-

edge, one often just uses genome-wide significant SNPs as IVs, in which case there are several

potential problems. Some of the SNPs are likely invalid IVs due to wide-spread horizontal plei-

otropy. In addition, the results may be low-powered and inconsistent, each critically depend-

ing on the SNP being used. Our proposed multiple SNP-based approaches would alleviate the

above two problems. First, by using multiple SNPs, we allow and thus explicitly model possible

pleiotropic effects, leading to two new methods, CD-Egger and CD-GLS, that are robust to

and more powerful in the presence of pleiotropy. Second, combining the results over multiple

SNPs is both more robust and more powerful than a single SNP-based method. In applications

to inferring/confirming causal directions between molecular endophenotypes and complex

diseases or quantitative traits, such as in TWAS, one would typically use multiple SNPs in LD

from a local region to predict an endophenotype (e.g. a gene’s expression level) with relatively

small sample sizes; in these applications, it may be necessary to apply a multiple correlated

SNPs-based method like ours to achieve as high power as possible. Third, we can apply some

goodness-of-fit tests to check the modeling assumptions. Furthermore, our methods can

simultaneously infer both the existence and (if so) the direction of a causal relationship

between two traits. For this reason, even for single SNPs, our CD-Ratio is a useful alternative

to Steiger’s method because of the former’s ability to avoid incorrect conclusions of a causal

direction when there is no causal relationship (and no pleiotropy). In addition, our methods

have some advantages, i.e. higher statistical power and lower false positives, over, and are thus

useful alternatives to, multiple SNP-based bi-directional MR. These advantages over bi-direc-

tional MR are perhaps due to that our proposed methods take advantage of and thus exploit

some specific relationships between the Pearson correlations between each SNP/IV and the

two traits implicitly implied by the true causal models. These points were confirmed in both

extensive simulations and an application to infer the causal direction between LDL cholesterol

and CAD. In particular, bi-directional MR was found to be non-robust for inferring causal

directions in the presence of invalid IVs even when equipped with a robust MR method. In

summary, our proposed methods are expected to be useful in the toolbox for causal inference,

for which application of multiple complementary methods, called triangulation [55], is

strongly advocated.

Our methods have some limitations. First and foremost, our methods are based on the stan-

dard asymptotic theory for sample correlations under the assumption of a large sample size

(say n) and a small number of SNPs/IVs (saym). It has some important implications. Although

including more relevant SNPs/IVs is expected to improve the statistical estimation efficiency
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and power in the ideal case, in practice there are some arguments against doing so: 1) includ-

ing too many SNPs, i.e. makingm large relative to n, the standard asymptotic theory may

break down, leading to incorrect inference; 2) in particular, including some highly correlated

SNPs may gain little while being at the risk of inducing a covariance matrix nearly singular,

leading to bad estimates and inference with numerical problems; 3) our methods require esti-

mating a large covariance matrix of dimension in the order ofm2 ×m2 for a sample correlation

matrix in the order ofm ×m, demanding too much computer memory and computing time

even ifm is only in hundreds or thousands; 4) including more SNPs will increase the likeli-

hood of violating IV assumptions; 5) it might be harder to accurately impute with high LD

between any two SNPs for GWAS summary data based on a not-too-large reference panel. For

the above reasons, in our applications we pruned out those significant SNPs with pairwise cor-

relations larger than 0.8. We also emphasize that we require the selected SNPs/IVs to be statis-

tically significant for both traits. One reason is similar to avoiding biases due to weak IVs in

MR. Our methods are based on the ratios of sample correlations, say rYg/rXg. If the mean of the

denominator rXg is 0, regardless of whether the normality (approximately) holds for each sam-

ple correlation, the ratio cannot be well approximated by a normal approximation; our meth-

ods are based on the asymptotic joint normal distribution for the correlation ratios. Second,

we have mainly restricted to inferring uni-directional causal relationships. Although we have

outlined an extension of our CD-Ratio method (along with bi-directional MR) to the case with

bi-directional causal relationships, and shown some promising simulation results under the

ideal situation with valid IVs, it remains to see how to extend and apply the methods in prac-

tice without knowing which IVs are valid, in which case there may be issues of non-identifiable

models [45]. We note by passing that [45] considered a mediating analysis of how to estimate

direct/indirect effects given the presence of a bi-directional causal relationship, differing from

our task of estimating what causal direction if any. Third, as often done in applications with

MR, we have used the same two GWAS samples both for selecting SNPs as IVs and for subse-

quent estimation and inference. As expected, this double use of the data could lead to selection

bias. It was confirmed in our simulations in the presence of directional pleiotropy, though no

or only small biases were observed in cases of no or only balanced pleiotropy, possibly due to

our recommendation of selecting SNPs/IVs that are significant for both traits, alleviating the

problem as compared to selecting SNPs/IVs based on only one trait as commonly adopted in

MR. Nevertheless, this issue needs to be further studied; if possible, we may use a third inde-

pendent GWAS sample for such selection to avoid selection bias as in the three-sample MR

design [56]. Fourth, it is noted that our proposed methods are developed in the framework of

two-sample MR, which is more common and less restrictive than the one-sample set-up

(where both traits and SNPs are obtained from the same sample). Nevertheless, it will be use-

full to extend our methods to the one-sample set-up. In particular, such methods may be useful

for mediation analysis [57, 58], in which methods to determine causal directions (i.e. to deter-

mine between two traits which is the mediator and which is the outcome) lack and are urgently

needed while a bi-directional mediation analysis would be problematic as recently reported

[59]. In addition, we have not compared with structure equation modeling [60–62], Bayesian

network [63] and latent causal variable [64] approaches, mainly because of their lack of statisti-

cal significance testing or handling hidden confounding. Finally, we have pointed out a strong

connection between our proposed CD-Egger method and MR Egger regression in dealing

with horizontal pleiotropy. Taking advantage of this connection, one may be able to develop

other extensions as developed for MR [22, 29, 53, 65, 66] in addition to those used here (e.g.

weighted median and mode methods in MR) for inference of causal direction. These interest-

ing topics warrant future investigation.
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