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ABSTRACT: Background: It is well known in

Huntington’s disease that cytosine-adenine-guanine

expansion and age at study entry are predictive of the

timing of motor diagnosis. The goal of this study was to

assess whether additional motor, imaging, cognitive,

functional, psychiatric, and demographic variables

measured at study entry increased the ability to predict

the risk of motor diagnosis over 12 years.
Methods: One thousand seventy-eight Huntington’s

disease gene–expanded carriers (64% female) from the

Neurobiological Predictors of Huntington’s Disease

study were followed up for up to 12 y (mean 5 5, stand-

ard deviation 5 3.3) covering 2002 to 2014. No one had

a motor diagnosis at study entry, but 225 (21%) carriers

prospectively received a motor diagnosis. Analysis was

performed with random survival forests, which is a

machine learning method for right-censored data.
Results : Adding 34 variables along with cytosine-

adenine-guanine and age substantially increased predic-

tive accuracy relative to cytosine-adenine-guanine and

age alone. Adding six of the common motor and cognitive
variables (total motor score, diagnostic confidence level,
Symbol Digit Modalities Test, three Stroop tests) resulted
in lower predictive accuracy than the full set, but still had
twice the 5-y predictive accuracy than when using
cytosine-adenine-guanine and age alone. Additional anal-
ysis suggested interactions and nonlinear effects that
were characterized in a post hoc Cox regression model.
Conclusions: Measurement of clinical variables can
substantially increase the accuracy of predicting motor
diagnosis over and above cytosine-adenine-guanine and
age (and their interaction). Estimated probabilities can be
used to characterize progression level and aid in future
studies’ sample selection. VC 2015 The Authors. Movement
Disorders published by Wiley Periodicals, Inc. on behalf of
International Parkinson and Movement Disorder Society.
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Huntington’s disease (HD) is caused by an expanded
cytosine-adenine-guanine (CAG) repeat at the hunting-
tin gene.1 Huntington’s disease involves cognitive and
psychiatric impairments,2,3 but the clinical diagnosis
of disease in terms of manifestation of motor signs is
considered a landmark event.4

Motor diagnosis is associated with an accelerated lon-
gitudinal trajectory of motor impairments5 as well as
cognitive and functional decline.6,7 For this reason, prox-
imity to motor diagnosis is often the basis for indexes
used to characterize progression level in premanifest HD.

Huntington’s disease observational studies often
focus on the progression level at study entry. Proper
inferences require accounting for the different ages and
CAG expansions of individuals who enter the study.
Thus, most progression indexes are based on the use of
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CAG and age and possibly their interaction to predict
time of diagnosis.8,9 However, prediction based on
CAG and age at entry is far from perfect, leaving open
the possibility that additional variables measured at
study entry might improve prediction accuracy and pro-
vide a more accurate index of disease progression.

The overarching goal of this study is to use the Neuro-
biological Predictors of Huntington’s Disease (PREDICT-
HD) study database to examine whether the accuracy in
predicting the risk of motor diagnosis improves when
motor, imaging, cognitive, functional, psychiatric, and
demographic variables are considered in addition to CAG
repeat length and age at study entry. We plan to examine
collections of 34, 12, 2, and 0 predictors measured at
study entry. The collection of 34 variables was culled from
previous research10,11 and has representatives of all the
aforementioned domains. The set of 12 consists of varia-
bles obtained from a typical motor examination and may
be the only variables available in certain research or clini-
cal settings, especially if imaging is not possible. The set of
2 is CAG and age, and the 0 set is a reference for compari-
son. Additional (unplanned) sets might be examined based
on the initial results. Little is known about multivariate
prediction of motor diagnosis, and predictors might inter-
act in complex ways, might be highly correlated, or might
have nonlinear effects. To allow for such possibilities, the
machine learning method of random survival forests (RSF)
will be used for the analysis.12 Random survival forests do
not explicitly characterize predictor effects, as in a single
regression equation. Therefore, the final goal is to develop
a Cox regression model to illustrate potential predictor
effects and provide a reference for future research.

Methods

Participants

The study comprised 1,078 participants (64% female)
from PREDICT-HD study, which is a longitudinal obser-
vational study of prodromal HD.11,13,14 Data collection
covered 2002 to 2014, and dropout was less than 5% per
year. All participants had prior and independent genetic
testing for HD and were found to have CAG expansion
of 36 or more (mean 5 42.49, standard deviation
[SD] 5 2.69, min 5 36, max 5 62). Participants under-
went detailed motor, imaging, cognitive, psychiatric, and
functional evaluations at study entry and annually there-
after. All structural imaging measures were expressed as
a ratio of volume to intracranial volume. Detailed vari-
able description is provided in the Supplemental Data.
All study procedures were approved by institutional
review boards at each participating site, and written
informed consent was obtained from all participants.

The mean age at study entry was 39.78 years
(SD 5 10.39, min 5 18.11, max 5 75.85), and the mean
number of years of education was 14.46 (SD 5 2.60).
According to the diagnostic confidence level (DCL) of the

Unified Huntington’s Disease Rating Scale (UHDRS),
none of the participants had a motor diagnosis at study
entry (ie, all participants had DCL< 4). Time of motor
diagnosis was defined as the years in the study until the
first occurrence of DCL 5 4.

Participants were followed for up to 12 y (mean 5 4.78,
SD 5 3.30), and 225 (21%) had a prospective rating of
motor diagnosis. Over the duration of the study, 88
trained examiners performed the motor examination. The
mean number of examinations performed per examiner
was 49.43 (SD 5 61.99). Furthermore, 61% of the partic-
ipants had the same rater throughout, 24% had two
raters, and 10% had three or more raters. Additional
details are provided by Paulsen et al.10

Statistical Analysis

The goal was to predict the risk of motor diagnosis,
using variables measured at study entry. The outcome
was years to first motor diagnosis in the study, which
was censored for 79% of the sample (diagnosis
occurred sometime after the last observation).

The primary method of analysis was RSF, which is a
variant of random forests15 for right-censored data (see
Supplemental Data). The RSF begins by drawing a sam-
ple of size N with replacement from the sample data.
This bootstrap sample constitutes the initial node of a
recursive regression tree. At the initial node and all subse-
quent nodes, a random sample of the predictors is
selected. For each predictor sampled, all possible binary
splits (eg, TMS 5 0 vs. TMS>0) are formed from the
data of a node, and the log-rank statistic is computed
that indexes the extent of survival curve differences
between the binary splits. The predictor and its split-
value that produce the largest log-rank statistic are used
to partition a parent node into left and right daughter
nodes. For the daughter nodes, the splitting process is
repeated until a node has a minimum number of unique
diagnosed participants, which was set to 12 for all analy-
sis. Each participant in a terminal node has the survival
information of time to diagnosis or censoring, and a diag-
nosis indicator (0 if censored, 1 if diagnosed). This infor-
mation is used to compute a survival curve and
cumulative hazard function (CHF) for the terminal node
based on the Nelson-Aalen estimator. Many trees are
grown, and the CHF is averaged over all trees with simi-
lar terminal nodes. It is the average CHF that is the esti-
mated survival information for groups of participants
with the same predictor profile. The bootstrap sampling
and random sampling of predictors at each node tend to
de-correlate the trees, so that the averaging produces rela-
tively accurate predictions.16 The RSF requires minimal
data assumptions and automatically accounts for nonlin-
ear effects, complex interactions, and high correlations
among predictors.16

In the analysis, 2,000 trees were grown for each
group of predictors. A small amount of data were
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missing on some of the predictors, and this was
handled with dynamic imputation within RSF, using
an iterative algorithm.12 The 34-predictor analysis had
10% missing data, which dropped to 3% for the 12-
predictor analysis, and 0% for the 2-predictor analysis
(CAG and age) and the 0-predictor analysis (there
were no missing data for the outcome of time to diag-
nosis or censoring).

After averaging over the trees, two methods were
considered for evaluating the merit (strength) of a pre-
dictor: variable importance and minimal depth. Vari-
able importance compares the prediction error of
normally grown trees with that of trees in which the
daughter nodes are randomly assigned. If a predictor
has little merit in predicting survival, the random
assignment will have little effect relative to the normal
assignment, and variable importance will be small.
Conversely, if a predictor has much merit, a large dis-
crepancy will be seen between normal and random
node assignment, and the variable importance will be
large.12

Minimal depth indexes how close to the root node a
predictor tends to be among the trees.17 The predictor
used to split the initial node is the most important in
prediction for a tree, and merit decreases for variables
as they appear in deeper nodes. Minimal depth indexes
the first-appearance depth of a variable across all trees.
Smaller values of minimal depth indicate greater merit.

Four models were planned before the analysis, and
two models were unplanned, being specified based on
the results of the planned models. Details are provided
in Table 1 (The Cox model was considered unplanned,
because the number of predictors and nature of effects
were unknown before the analysis). Although RSF
produces relatively accurate predictions, when it is
used for an unplanned analysis, it is vulnerable to the
same biases as any variable selection method.16 In
addition to the variable selection bias, additional bias
was introduced by the data imputation, and a trial-

and-error approach to selecting a minimum of 12
diagnosed participants for the terminal nodes and the
number of predictors to randomly sample at each
node (which was set to the square root of the number
of predictors, rounded up). To help account for bias,
cross-validation was used to assess the performance of
the models in predicting observed diagnosis status. In
the cross-validation, a training sample was drawn
with replacement from the sample (not to be confused
with the RSF bootstrapping), all the models were
developed, and predicted probabilities of diagnosis
were computed. The predicted values of the training
sample were then compared with the observed diagno-
sis status of the test sample (participants not in the
training sample). The process was repeated 200 times,
and results were averaged over the replications. The
Brier score (BS) was computed to compare the
training-predicted probabilities and the test-observed
diagnosis status. BS is analogous to the mean squared
error in traditional regression. For a particular sur-
vival time, the estimate is BS5 1

M R Ytest2p̂trainð Þ2,
where Ytest is the observed diagnosis status in the test
data (Ytest 5 0 if not diagnosed and Ytest 5 1 if diag-
nosed), p̂train is the predicted probability of diagnosis
developed from the training data, and M is the num-
ber of participants in the test set. The BS ranges from
0% to 100%, and it will be small when the observed
diagnosed participants have a high estimated probabil-
ity of diagnosis accompanied by the undiagnosed par-
ticipants having a low estimated probability. Thus,
smaller values indicate more accurate prediction, with
perfection being BS 5 0% (and worse possible predic-
tion being BS 5 100%). A pseudo-R2 can be computed
that indexes the relative BS for two nested models. If
BSR is the value for the reduced model with fewer pre-
dictors and BSF is the value for the full model, then
pseudo-R2 5 (BSR 2 BSF) / BSR. Pseudo-R2 does not
have the same variance-accounted-for interpretation as
R2 in traditional regression and reflects only the rela-
tive size of the prediction error of two nested models.

Brier score can be biased with right-censored data.
To address potential bias, the statistic was computed
using weights reflecting the inverse of the probability
of censoring.18 Weights were obtained from a Cox
regression model with CAG and age as predictors, and
the results changed very little among different censor-
ing model choices. All analysis was carried out using
the R program for statistical computing.19 The ran-
domForestSRC package20 was used for the RSF analy-
sis, and the pec package21 was used for the cross-
validation.

Results

As shown in Table 1, there were four planned mod-
els and two unplanned models. Regarding the planned

TABLE 1. Cross-validation Brier scores and pseudo-R2

values for 5-year prediction (left) and 10-year prediction
(right)

5-Year 10-Year

Model Planned?

Brier

(%)

Pseudo-R2

(%)

Brier

(%)

Pseudo-R2

(%)

Reference-0 Yes 16 25
RSF-2 Yes 14 14 21 18
RSF-12 Yes 12 27 17 33
RSF-34 Yes 11 34 16 36
RSF-8 No 12 28 17 33
Cox-8 No 10 35 15 42

The second column (Planned?) denotes whether the model was planned
before the analysis. Reference-0, Kaplan-Meier estimates (no predictors);
RSF, random survival forest; Cox, the Cox regression model; the number of
predictors appears after the model type. Pseudo-R2 is relative to the Refer-
ence model and is not computed for that model.
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analysis, the no-predictor model (Reference-0) was the
reference for comparing all of the other models and
consisted of the Kaplan-Meier estimates. The CAG
and age model (RSF-2) represented traditional predic-
tion based on the so-called burden score in HD.8,9

The 34-predictor model (RSF-34) had all of the varia-
bles, and the 12-predictor model (RSF-12) included
only the UHDRS variables. The upper portion of
Table 1 shows the cross-validation 5-y and 10-y pre-
diction accuracy for the models. As the table shows,
all planned models (and unplanned) had greater pre-
dictive accuracy (lower error) than Reference-0, but
accuracy was highest for RSF-34 (eg, 5-y pseudo-
R2 5 34%), followed relatively closely by RSF-12 (5-
year pseudo-R2 5 27%), and more distantly by RSF-2
(5-year pseudo-R2 5 14%). The RSF-34 was at least
twice that of RSF-2. Figure 1 shows the variable merit
scatterplot of minimal depth by variable importance
for RSF-34 (left) and the RSF-12 (right). Variables
with greater merit appear in the lower right (red,
smaller numbers) and variables with minimal merit
appear in the upper left (blue, larger numbers). The
RSF-34 graph indicates the baseline UHDRS total
motor score (TMS) (1) was the best predictor, fol-

lowed by putamen volume (2), DCL (3), speeded tap-
ping (4), paced tapping (5), caudate volume (6), and
CAG expansion (7). The weakest baseline predictors
included scanner field strength (34) (1.5 T in most
cases), sex (33), the UHDRS total functional capacity
(TFC) (32), and Functional Assessment Scale (FAS)
(31).

The RSF-12 graph included four UHDRS cognitive
variables, the Symbol Digit Modalities Test (SDMT)
(8), and the Stroop word (15), color (14), and interfer-
ence (9) tests. The TMS (1) was again the best predic-
tor, followed by DCL (3), SDMT (8), CAG (7), the
Stroop tests (9, 14, 15), and age (18). The remaining
variables (education [27], FAS [31], TFC [32], sex
[33]) showed very little merit (weak prediction).

An unplanned eight-predictor model (RSF-8) was
considered after inspection of Figure 1. The RSF-12
graph indicates a possible cut-value for variable
reduction below education (27) (other cut-values are
possible). Subsequently, the four weakest variables
(education [27], FAS [31], TFC [32], and sex [33])
were excluded for RSF-8. Finally, an attempt was
made to characterize the important effects for the
eight-predictor subset by developing a Cox regression

FIG. 1. Scatterplot of variable merit (strength of prediction) based on the random survival forest analysis. Minimal depth is shown as a function of vari-
able importance for the group of 34 predictors (left) and 12 predictors (right). Variables are numbered by minimal depth (1 5 best), variables in the lower
right (red) have the most predictive strength, and variables in the upper left (blue) have the least predictive strength (detailed description of the varia-
bles is provided in the Supplemental Data). Key: [1], total motor score from the Unified Huntington’s Disease Rating Scale (UHDRS); [2], putamen vol-
ume; [3], diagnostic confidence level from the UHDRS; [4], speeded tapping; [5], paced tapping; [6], caudate volume; [7], cytosine-adenine-guanine
expansion; [8], Symbol Digit Modalities Test; [9], Stroop interference test; [10], accumbens volume; [11], site; [12], University of Pennsylvania Smell
Identification Test; [13], Trail Making Test Part A; [14], Stroop color test; [15], Stroop word test; [16], Trail Making Test Part B; [17], emotion recognition
test; [18], age (years); [19], Frontal Systems Behavioral Scale—executive subscale; [20], thalamus volume; [21], Symptom Checklist 90—obsessive-
compulsive scale; [22], hippocampus volume; [23], Symptom Checklist 90—Global Severity Index; [24], Frontal Systems Behavioral Rating Scale—
disinhibition subscale; [25], Beck Depression Inventory—II; [26], Symptom Checklist 90—anxiety subscale; [27], education (years); [28], Symptom
Checklist 90—hostility subscale; [29], Frontal Systems Behavioral Scale—apathy subscale; [30], Symptom Checklist 90—depression subscale; [31],
functional activity scale from the UHDRS; [32], total functional capacity from the UHDRS; [33], sex; [34], scanner field strength.
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model using additional analysis. Examination of first-
order interactions among all pairs of predictors was
performed by randomly assigning daughter nodes to
pairs of variables (see Supplemental Data). The largest
effect was for CAG 3 age, followed by CAG 3 TMS
and CAG 3 DCL, with a relatively large drop there-
after. Because TMS and DCL were highly correlated
(Spearman’s rho 5 0.81), only CAG 3 age and CAG
3 TMS were retained for the Cox model.

Investigation of nonlinear effects was conducted
with graphs such as Figure 2, which shows the rela-
tionship between 5-year log cumulative hazard of
diagnosis and TMS conditioning on CAG and age at
entry. The layered or slab plots in the margins indicate
which CAG and age ranges were used for the interior
scatterplots. For example, the extreme lower left scat-
terplot panel uses participants who had CAG expan-
sion in the range of 36 to 41 and age in the range of
18 to 33. The overlap of the slabs indicates that some
participants are used in multiple panels. The slabs for
the longest CAGs and the oldest ages are very long,

because few participants had this combination, and a
wide range had to be used to populate the upper right
scatterplot panels. The cubic spline curves of the inte-
rior panels illustrate nonlinear effects. For panels that
have sufficiently large TMS values (relatively large
CAG or older age), the rate of increase decelerates for
approximately TMS>10. Plots for the cognitive varia-
bles (not presented) showed much more mild nonlin-
ear trends that were considered negligible and not
viable candidate effects for the Cox model. Based on
the interaction analysis and the nonlinear TMS effects,
the following Cox model was specified:

h tð Þ5h0expfb1DCL11b2DCL21b3DCL3

1b4TMS1b5Color1b6Word1b7Inter1b8SDMT

1b9CAG1b10age1b11TMS3TMS

1b12CAG3TMS1b13CAG3ageg
(1)

where h tð Þ is the time-dependent hazard, h0 is the
baseline hazard, DCL1 is a dummy code taking the

FIG. 2. Five-year log cumulative hazard of motor diagnosis by total motor score, CAG, and age. The slabs of the marginal plots show ranges of the
conditioning variables that are used for the interior scatterplot panels. Overlap of the slabs indicates that some participants are used for multiple
panels. Smooth curves in the scatterplots (red) are cubic splines. Abbreviation: CAG, cytosine-adenine-guanine expansion.
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value 1 if DCL 5 1 and 0 otherwise, and DCL2 and
DCL3 are similarly defined. The sample-based esti-
mates for the Cox model along with standard errors
(SEs) and z-values are shown in Table 2.

Cross-validation prediction accuracy for the
unplanned models is shown in the bottom portion of
Table 1. The RSF-8 had nearly identical prediction
accuracy as RSF-12, indicating the lack of merit for
the four omitted variables. Cox-8 had the best predic-
tive accuracy of all the models, suggesting that the
terms in Equation (1) represented effects important for
prediction.

An illustration of the results is provided in Table 3.
The RSF-8 was used to compute estimated probability
of motor diagnosis at 2.5, 5, 7.5, and 10 years (at
right) for various predictor profiles (at left). The pro-
files were chosen to represent the spectrum of progres-
sion in the PREDICT-HD sample. Individuals with the
same profile have the same predicted probabilities, but
predicted probabilities can be computed for every
participant.

Discussion

The purpose of this study was to investigate whether
variables other than CAG repeat length and age (and
their interaction) enhanced the prediction of HD
motor diagnosis. Such prediction is important because
it is the foundation for progression indexes often used
to classify participants according to their progression
level at study entry.11 The PREDICT-HD database
was used to examine the ability of variables collected
at study entry to predict the risk of first DCL 5 4 up
to 12 y. Results based on a machine learning method
(RSF) indicate that predictive accuracy was substan-
tially improved by adding variables, consistent with
previous findings.22,23 To get a sense of the effect size,
the 5-y pseudo-R2 for RSF-8 (CAG, age, TMS, DCL,
Stroop [color, word, and interference], and SDMT)
was twice that of RSF-2 (CAG and age). Therefore,
the addition of the six motor and cognitive variables
doubled the 5-y predictive accuracy relative to using
just CAG and age (and their interaction). The effect
for all 34 variables was even stronger.

The results show that more accurate forecasting
information can be obtained by including the UHDRS
motor and cognitive variables collected at study entry.
Group-level forecasts can be computed based on base-
line predictor profiles (Table 3). The probabilities can
be used to index progression level at study entry. For
example, in Table 3, Profiles A and B have a low
probability of motor diagnosis in the near future (eg,
by 5 y) and represent less progression at study entry
than Profiles C and D.

One use for the probabilities is for planning clinical
trials and observational studies. If a clinical trial is
designed for early intervention, then the goal is to
recruit individuals who have a relatively long time
until motor diagnosis. A low criterion on 5-y probabil-
ity can be set, such as �0.20, to help ensure that early
progressors are selected based on their screening val-
ues. For an observational study, the goal might be to
recruit a variety of progression levels to maximize the
correlation with other variables. Recruitment might
target an equal number of individuals on either side of

TABLE 2. Cox model sample estimates used to illustrate
predictor effects on the risk of motor diagnosis

Effect Estimate SE z-Value

Diagnostic confidence level 1 0.5218 0.2330 2.24
Diagnostic confidence level 2 0.6691 0.2987 2.24
Diagnostic confidence level 3 1.2220 0.3568 3.43
Total motor score (TMS) 0.5723 0.1085 5.27
Stroop color test 20.0017 0.0081 20.21
Stroop word test 0.0000 0.0065 0.01
Stroop interference test 20.0242 0.0102 22.36
Symbol digit modalities test 20.0175 0.0088 21.99
CAG expansion 0.1548 0.0893 1.73
Age at study entry 20.2802 0.0969 22.89
TMS 3 TMS 20.0039 0.0012 23.16
CAG 3 TMS 20.0097 0.0025 23.92
CAG 3 Age 0.0086 0.0023 3.69

The “Estimate” column shows estimates of the b parameters in Equation
(1) of the text, and “SE” denotes standard error. Diagnostic Confidence
Level 1, etc., are dummy codes (1 if in the category and 0 otherwise) repre-
senting contrast with the first category (diagnostic confidence level 5 0).
CAG, cytosine-adenine-guanine expansion; TMS, total motor score.

TABLE 3. Estimated probability of motor diagnosis by year (right) computed using the predictor scores at study entry (left)

Predictor profile at baseline Year

Profile CAG Age TMS DCL SDMT Inter Word Color 2.5 5 7.5 10

A 42 41 1 0 65 46 104 78 0.01 0.05 0.23 0.33
B 42 44 3 1 48 38 118 89 0.02 0.08 0.25 0.42
C 42 53 7 2 38 47 99 68 0.20 0.56 0.72 0.82
D 42 56 20 3 27 18 64 37 0.62 0.83 0.94 0.95

Prediction is based on the random survival forest grown with the 8 variables and using the entire PREDICT-HD gene–expanded sample (N 5 1,078).
CAG, cytosine-adenine-guanine expansion; Age, age at study entry; TMS, total motor score; DCL, diagnostic confidence level; SDMT, Symbol Digit Modalities
Test; Inter, Stroop interference test; Word, Stroop word test; Color, Stroop color test.
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a 5-y probability of 0.50, for example. Although prob-
abilities can be computed for individuals, the probabil-
ities are at the group level, representing the estimated
proportion of individuals who become diagnosed over
time. A web-based HD calculator for computing the
estimated probabilities is available from the authors.

The results of the current study are related to the
CAG-Age Product (CAP) burden score previously
developed by PREDICT-HD researchers, which is used
to index progression at study entry.9 Our approach
with RSF is to work directly with diagnosis probabil-
ity rather than a proxy score, because the probability
is more readily interpretable. The cross-validation
results (Table 1) indicate that the RSF probabilities
are preferable to those underlying RSF-2 that repre-
sent CAP because of the superior predictive accuracy.

The Cox model (Equation (1) and Table 2) is an
attempt to explicitly characterize how the predictors
influence the risk of diagnosis. The z-values for Stroop
word and color are very close to 0, suggesting that
these variables are candidates for omission. The negli-
gible effects are attributable to a high intercorrelation
(r 5 0.76) and a high correlation with interference
(rs 5 0.68, 0.60). No additional cost is incurred in
gathering word and color, because they must be
administered before interference.24

The TMS 3 TMS effect in Table 2 has a relatively
large z-value. To our knowledge, the nonlinear finding
is novel. The effect is attributable to a much higher
maximum value for TMS than DCL. Once individuals
are diagnosed, the DCL no longer tracks progression,
whereas the TMS continues to do so. This phenom-
enon accounts for the log cumulative risk of diagnosis
remaining relatively constant as TMS continues to
increase (Fig. 2).

We emphasize the group of eight predictors (RSF-8)
in our discussion because it balances effect size and
parsimony. Parsimony is especially relevant when the
goal is screening individuals for study selection. Hun-
tington’s disease is a rare disease (approximately 6/
10,000 for whites),25 and conducting screenings can
be costly because of participant travel.26 The eight
predictors can be collected at an UHDRS examination
without expensive instrumentation or methods. The
added striatal volume and tapping measures in the 34-
predictor group appear to be the main reason why
RSF-34 had the best overall predictive accuracy (Fig.
1). A problem with the imaging and tapping variables
is the considerable resources required for their collec-
tion (magnetic resonance imaging scan and finger-
pressing apparatus). These variables might not be
available in all clinical or research contexts and may
be too expensive to be used in screening for study
selection.

The predictive ability of TMS and DCL shows that
earlier motor information predicts later motor status.

Because of the inclusion criteria for PREDICT-HD,
DCL at study entry involved categories 0 (normal) to
3 (90%-98% confident of likely signs of HD). The
predictive ability of these categories suggests that DCL
can track progression before motor diagnosis. The
absence of individuals with DCL 5 4 at study entry
did not necessarily prevent the inclusion of false nega-
tives or those with apparent motor signs. For example,
25% of participants rated as DCL 5 3 at study entry
had TMS> 20 (Supplemental Data Fig. S2). The cali-
bration of the TMS relative to the DCL and its applic-
ability to motor diagnosis is a continuing topic of
research.

A number of variables showed especially poor pre-
diction, most notably TFC and FAS. Almost all the
participants had normal or near-normal functioning at
study entry. Alternative measures of functioning might
be more sensitive early in the disease. For example,
the World Health Organization Disability Assessment
Schedule appears to show a greater variability than
TFC before motor diagnosis.27,28 Similar to the func-
tional variables, little variability in psychiatric symp-
toms was seen at study entry, limiting their ability to
predict future diagnosis.

Finally, the cross-validation used in the analysis was
an internal validation, and external validation with an
independent data set is needed to verify the present
results. The initial reduction in predictors from 34 to
12 was preplanned and motivated by practical consid-
erations. Additional reduction to eight predictors was
relatively straightforward given the obvious weakness
of TFC and FAS. A consequence of the strategy is that
the groups of predictors studied here might not be
optimal, and the list is by no means complete. Several
biofluid and genetic markers,29 and behavioral and
environmental variables,30 for example, show promise
for tracking HD progression and would be good can-
didates for inclusion in future research.
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