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Vicarious trial and error behaviors (VTEs) indicate periods of indecision during

decision-making, and have been proposed as a behavioral marker of deliberation.

In order to understand the neural underpinnings of these putative bridges between

behavior and neural dynamics, researchers need the ability to readily distinguish VTEs

from non-VTEs. Here we utilize a small set of trajectory-based features and standard

machine learning classifiers to identify VTEs from non-VTEs for rats performing a

spatial delayed alternation task (SDA) on an elevated plus maze. We also show that

previously reported features of the hippocampal field potential oscillation can be used

in the same types of classifiers to separate VTEs from non-VTEs with above chance

performance. However, we caution that themodest classifier success using hippocampal

population dynamics does not identify many trials where VTEs occur, and show that

combining oscillation-based features with trajectory-based features does not improve

classifier performance compared to trajectory-based features alone. Overall, we propose

a standard set of features useful for trajectory-based VTE classification in binary decision

tasks, and support previous suggestions that VTEs are supported by a network including,

but likely extending beyond, the hippocampus.

Keywords: hippocampus, vicarious trial and error, VTE, machine learning, decision-making, neural oscillations,

theta, gamma

1. INTRODUCTION

Introduced and popularized in the 1930s, vicarious trial and error (VTE) is a well documented
behavioral phenomenon where subjects vacillate between reward options before settling on their
final choice (Muenzinger and Gentry, 1931; Tolman, 1938). This behavior is best understood in
rats making decisions to go left or right, and as such, VTE trajectories tend to have curves that
change direction at decision points. Current theories claim that subjects mentally assess possible
options before making a final decision during VTEs (Redish, 2016), suggesting that they may
be related to, but not necessarily identical to, an underlying deliberative process. While such a
relationship to deliberation is complex and outside of the scope of this paper, it is clear that VTEs
are a valuable behavioral variable to take into account when studying decision-making, particularly
when investigating neural processing during decisions.

The majority of recent experiments examining the neural underpinnings of VTEs have focused
on the rodent hippocampus (HPC). Bilateral electrolytic HPC lesions decrease the mean number
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of VTEs in a visual discrimination task, particularly during
early learning (Hu and Amsel, 1995); though see Bett et al.
(2012). Similarly, bilateral ibotenic acid HPC lesions decrease
the number of VTEs rats exhibit before they have located a
reward in a spatial task (Bett et al., 2012). In addition to lesion
studies, several electrophysiological findings link the HPC to
VTEs. Dorsal HPC recordings during VTEs show serial sweeps
of place cell sequences, which first trace the initial direction
of the VTE before sweeping in the direction a rat ends up
choosing (Johnson and Redish, 2007). Furthermore, dorsal HPC
place cell recordings are more likely to represent locations of
an unchosen option during VTEs than non-VTEs (Papale et al.,
2016). There is also evidence that the field potential oscillation
recorded from dorsal HPC differs on decisions where VTEs do
and do not occur. In particular, characteristics of HPC theta (4–
12 Hz) oscillations, such as its shape and duration, appear to be
altered during VTEs, as do aspects of gamma-band (35–100 Hz)
oscillations (Amemiya and Redish, 2018; Schmidt et al., 2019),
but see Dvorak et al. (2018).

Despite decades-long interest and their utility as a behavioral
marker of a putative cognitive process, VTEs have been studied
by only a small number of labs. We suspect part of the reason
they have not received more attention is that VTE trajectories
can be highly variable, which makes it difficult to identify
them algorithmically (Goss and Wischner, 1956). The Redish
lab has proposed the zIdPhi metric, which quantifies changes
in heading angles as rats traverse choice points, for identifying
VTEs (Papale et al., 2012, 2016; Amemiya and Redish, 2016,
2018; Redish, 2016; Schmidt et al., 2019; Hasz and Redish,
2020). While successful in their hands, zIdPhi, admittedly, “does
not provide a sharp boundary between VTE and not” (Papale
et al., 2016, Supplementary Material, section Experimental
Procedures). Here we show that standard machine learning
models trained on data from a spatial delayed alternation task
are able to robustly and reliably distinguish VTE trajectories from
non-VTEs in such a task.

Additionally, we assess how the same types of classifier
models perform when trained on features of the dorsal HPC
oscillation that have been shown to differ betweenVTEs and non-
VTEs (e.g., differences in gamma power and theta wave shape;
Amemiya and Redish, 2018; Schmidt et al., 2019). In doing so,
we demonstrate that these features are indeed able to separate
decision types better than would be expected by random binary
classification, though with worse performance than trajectory-
based features. Furthermore, we show that providing a classifier
with HPC oscillatory dynamics from when animals make choices
yields better performance than oscillations from the immediately
preceding delay interval, which is when information about the
previous choice would need to be held in memory. We also show
that a more comprehensive description of the HPC oscillation,
the power spectrum, does not perform any better than the
model trained on curated features. Finally, we demonstrate
that combining informative trajectory- and oscillation- based
features does not change classifier performance when compared
to classification using trajectory features alone, leading us to
conclude that the HPC oscillation does not contain information
that complements what can be extracted from the trajectories.

2. METHODS

2.1. Behavioral Task
Food restricted (85% of body weight) Long Evans rats (n = 9,
Charles River Laboratories) were trained on a previously
described spatial delayed alternation task (SDA) task (Baker
et al., 2019; Kidder et al., 2021). Briefly, sessions were run on
an elevated plus maze (black plexiglass arms, 58 cm long ×

5.5 cm wide, elevated 80 cm from floor), with moveable arms
and reward feeders controlled by custom LabView 2016 software
(National Instruments, Austin, TX, USA). Each trial consisted of
a rat leaving its starting location in a randomly chosen “north”
or “south” arm, then navigating to an “east” or “west” arm for
a 45 mg sucrose pellet reward (TestDiet, Richmond, IN, USA).
Sessions typically consisted of 60 trials, though not all trials
were used for analysis (see section 2.6 for details). Rewards were
delivered when rats alternated from their previously chosen arm
(i.e., if they selected the “east” arm on trial n − 1 then they had
to select the “west” arm for reward on trial n). After making
a choice, rats had the opportunity for reward consumption (if
correct) before they returned to a randomly assigned start arm
and entered into a 10 s delay period preceding the next trial.
Based on this structure, we divided the task into three epochs—
choice, return, and delay. The choice epoch was defined as
the period when rats left the start arm up until they chose an
“east” or “west” reward arm. The return epoch was the period
between when the rats were rewarded (or not, depending on their
choice) and when they entered the randomly chosen start arm
for the upcoming trial. The delay epoch was the 10 s after the
animal entered the randomly chosen start arm (before the next
choice epoch began). All animal care was conducted according
to guidelines established by the National Institutes of Health and
approved by the University of Washington’s Institute for Animal
Care and Use Committee (IACUC).

2.2. Microdrive Implantation
Micro-drive bodies were 3-D printed (Form 2 Printer; Formlabs,
Sommerville, MA) to contain between 8 and 16 gold plated
tetrodes (nichrome; SANDVIK, Sandviken, Sweden), which were
implanted unilaterally into the CA1 region of HPC (AP: −3.0,
M/L:±2.0 mm, D/V:−1.8 mm). One animal had two optic fibers
implanted bilaterally into the medial prefrontal cortex (mPFC),
as well as AAV carrying the Jaws photostimulation construct
injected into the mPFC, and was used for additional experiments.
The remainder (6) also had tetrodes implanted into the ipsilateral
lateral habenula for additional experiments. All animals ran the
same behavioral task, and data used for this study were from
before any optogenetic stimulation was ever delivered. Tetrodes
were connected to a 64-channel Open Ephys electrode interface
board (EIB) (open-ephys.org). To eliminate external noise, drive
bodies were shelled in plastic tubes lined with aluminum foil
coated in a highly conductive nickel spray. One ground wire
connected the shell with the EIB and, during surgery, another
ground wire was implanted near the cerebellum just inside the
skull. After surgery, rats were allowed to recover for ∼7 days
before entering into testing, and HPC tetrodes were lowered
over the course of several days until at least one tetrode showed
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an oscillation consistent with the CA1 fissure (high-amplitude,
asymmetric theta).

2.3. Data Acquisition
2.3.1. Behavior Tracking
Two LEDs were attached to either the rat’s microdrive or the
tethers plugged into themicrodrive’s headstage before recordings.
Rat locations were determined by subtracting a background
image taken at the beginning of the session from each frame.
Pixels containing the LEDs showed an above threshold difference
in brightness, which allowed us to determine rat head locations
in each frame. Camera frames were recorded at ∼35 Hz using
a SONY USB web camera (Sony Corporation, Minato, Tokyo).
Frames were time-stamped with a millisecond timer run by
LabView and sent to the Open Ephys acquisition software
(open-ephys.org) for later alignment of electrophysiological and
position information.

2.3.2. Electrophysiology
Electrophysiological data were sampled at 30 kHz using
Intan headstages (RHD2132; Intan Technologies, Los Angeles,
California) connected to the Open-Ephys EIB. Digitized signals
were sent via daisy chained SPI cables through a motorized
commutator that prevented tether twisting (AlphaComm-I;
Alpha Omega Co., Alpharetta, GA) and into an Open-Ephys
acquisition board (open-ephys.org). All further processing and
filtering was done offline using custom MATLAB scripts (see
section 2.4.2 for more details).

2.4. Classifier Features
2.4.1. Trajectory-Based Features
Trajectories on our maze always started from either a “north”
or “south” arm, ended on either an “east” or “west” arm, and
required rats to traverse narrow bridges between arms and a
center platform (see section 2.1 for more details). Furthermore,
we attached the LEDs used for tracking to the microdrives
implanted on the rat’s head, and record from above the maze. As
such, our features were optimized for behaviors where heads are
being tracked from above along narrow corridors that require a
large change in the orientation of motion to get from a starting
point to ending point. For example, we suspect the same features
can be used to identify VTE behaviors on binary decision tasks
run on T-mazes, Y-mazes, and other mazes where searchers must
change their orientation of motion toward the left or right as
they make their decision. It is yet to be determined whether
the features we describe for this paper would be suitable for
tasks like radial arm mazes or Barnes mazes, where searchers
usually exhibit complex trajectories due to the multitude of
choice options.

We calculated seven features of choice epoch trajectories—the
standard deviation (SD) of the x-position (xσ ), the SD of the y-
position (yσ ), the trial’s z-scored, integrated change in heading
angle (zIdPhi), the trial duration (dur), how well the trial was
fit by a sixth degree polynomial (r2), and the number of Fourier
coefficients needed to describe the fit of the polynomial (ncoef ).
Both xσ and yσ were calculated using the std method from
Python’s numpy package for the x and y position vectors of

the rat’s trajectory on a given trial. The IdPhi score for a trial was
defined as:

φ = arctan2(dy, dx) (1)

IdPhi =

b∑

i=a

|φa − φa−1| (2)

where arctan2 is the 2-argument arctangent function and dx and
dy are changes in the trajectory’s x and y position, respectively.
This value was transformed to zIdPhi by converting to a z-score,
which was calculated for each session individually. We set the
zIdPhi threshold value, above which something was assigned as
a VTE, by iterating through values from the 50th to the 80th
percentile and choosing the value that maximized area under the
receiver operating characteristic (ROC) curve. The dur feature
measures the duration a rat was within an experimenter defined
choice point on the maze. The r2 value was determined using
a two-step process. First, optimal coefficients for each of the
terms in the polynomial were calculated using the curve_fit
method of the scipy.optimize package with the vector of x
positions as the independent variable and the vector of y positions
as the dependent variable. From here, we used the optimized
outputs as inputs to a generic sixth degree polynomial function,
calculated the error sum of squares between the observed y values
and modeled outputs (SSE, see Equation 3), and calculated the
total sum of squares (SST, see Equation 4). The calculation of the
r2 value is shown in Equation (5).

SSE =

n∑

i=1

(yi − ŷi)
2 (3)

SST =

n∑

i=1

(yi − ȳ)2 (4)

r2 = 1−
SSE

SST
(5)

In (3), ŷi is the estimated y position at the i-th location in the
trajectory, and ȳ is the mean y position of the trajectory in (4).
We noticed that plotting the polynomial estimates with poor
fits (which were mainly VTEs) created a trajectory that looked
similar to a damped oscillation, so we devised the ncoef feature—
which is the number of Fourier coefficients needed to describe
the polynomial fit estimate—to capture this oscillatory character.
Intuitively, higher values of ncoef were expected to correlate with
instances of VTE.

2.4.2. Oscillation-Based Features
To quantify features of the HPC CA1 oscillation, we down-
sampled our data by a factor of 30, going from a 30 kHz sampling
rate to a 1kHz sampling rate, and z-scored the downsampled
timeseries to put amplitude in units of standard deviations.
Based on previous work (Amemiya and Redish, 2018; Schmidt
et al., 2019), we were interested to see if we could use features
of the HPC CA1 oscillation to classify VTE vs non-VTE
trials. We used seven features—the asymmetry index (AI) of
the wide-band theta oscillation, average ascending (asc) and

Frontiers in Neuroscience | www.frontiersin.org 3 July 2021 | Volume 15 | Article 676779

https://open-ephys.org
https:/open-ephys.org
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Miles et al. Detecting Vicarious Trial and Errors

descending (desc) durations of the wide-band theta oscillation,
the average (normalized) low and high gamma powers (LG and
HG, respectively), the cycle-averaged gamma ratio (GR), and
the average duration of a theta cycle. Each trial had multiple
measurements of each value, so we also used the SD of these
measurements as a feature for all but the asc and desc features,
giving a 12-variable feature vector for each trial.

Previous reports have demonstrated asymmetric theta
oscillations in different layers of the HPC (Buzsáki et al., 1985,
1986; Buzsáki, 2002), so we used a low-pass filtered signal with
the cutoff frequency at 80 Hz to identify peaks and troughs of the
theta oscillation as well as the ascending duration, descending
duration, and total duration of each theta cycle (Belluscio et al.,
2012; see Figure 3A for an example). We define a theta cycle
as beginning at identified peaks in the low-pass filtered signal,
and require peaks be separated by at least 0.0833 s (the upper
frequency range of the theta band). The AI is defined as:

AI = log(asc)− log(desc) (6)

such that cycles with longer ascending than descending durations
will give positive values, cycles with equal ascending and
descending durations will equal 0, and cycles with shorter
ascending than descending durations will give negative values.
Because different HPC recording locations can have differently
shaped theta oscillations (Buzsáki et al., 1985, 1986; Buzsáki,
2002), we ensured that all days used for analysis had AI
distributions that were skewed in the same direction.

To estimate gamma powers, first we bandpass filtered our
downsampled timeseries between 35 and 55 Hz for low gamma
and 61–100 Hz for high gamma using third order, zero-lag
Butterworth filters. These values were then z-scored, putting
units of amplitude into standard deviations. The power in a
gamma-band timeseries, g(t), was estimated using:

p(t) = |g̃(t)|2 (7)

where g̃(t) denotes the Hilbert transform of g(t). We then used
these power estimates to calculate cycle-by-cycleGRs. For a given
cycle, the gamma ratio was defined as:

GR =
L̂G(t)

ĤG(t)
(8)

where the hat denotes the time average of the bandpassed gamma
power trace across a theta cycle. The gamma ratio for the entire
trial was the average of these cycle-by-cycle values.

Oscillation-based features were calculated for both delay
epochs and choice epochs, and classifiers were trained and tested
on data from both of these epochs separately.

2.4.3. Power Spectral Density
In addition to pre-defined oscillation bands and bandpass
filtering signals, we performed the same classifier-based analysis
of neural data using power spectral density (PSD) estimates
as features instead of the curated oscillation features. For this,
we used MATLAB’s periodogram function (version 2018 B;

MathWorks, Nattick, MA), with a Hamming window over the
duration of the signal, a frequency resolution of 1 Hz, and
a range of 1–100 Hz. To maintain consistency with curated
oscillation features, we use the z-transformed HPC oscillation.
PSD estimates are kept as original values, as opposed to the
common decibel conversion. Classifiers were trained on PSD
estimates obtained from choice epoch data.

2.5. Classifier Implementation
2.5.1. Classifier Models
We used the scikit_learn library from Python to create
and test k-nearest neighbor (KNN) and support vector machine
(SVM) models. All instances of the KNN model used 5
neighbors for classification, though results for 3–10 neighbors
did not lead to different conclusions. All instances of the SVM
model used a radial basis function (RBF) kernel for assessing
distance/similarity. A γ parameter dictates the width and shape
of the RBF, with lower values giving wider kernel functions and
higher values giving narrower kernel functions. We chose to
search γ values between 0.01 and 1 for all classifiers. Values
between 0.01 and 0.1 were incremented by 0.01, and values
above 0.1 were incremented by 0.1. Another parameter, the
C parameter, controls the trade-off between the size of the
decision function margin and classification accuracy, which can
be thought of as a way to control overfitting the decision function.
Low values of C favor a larger margin, high values of C favor a
more complex decision function. We tested a range of C values
from 0.1 to 10. Values between 0.1 and 1 were incremented by
0.1, and values above 1 were incremented by 1. Hyper-parameter
selection for SVM classifiers trained on each type of data
were optimized individually, meaning each classifier’s parameter
values were optimized for the data it was tested on. The pair of γ
and C parameters that maximized the area under the ROC curve
were used for testing the models. Supplementary Figure 2 shows
the output of this procedure. Data used to train the models were
standardized and scaled. Testing data given to the model were
transformed based on the scalings calculated for the training data
(see section 2.5.3 for more details on how data were used for
classifier training and testing).

2.5.2. Evaluating Classifiers
We used several standard metrics for assessing classifier
performance (Lever et al., 2016), all of which describe different
combinations and/or weightings of true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN). For
VTE identification, a TP is trial correctly classified as a VTE, a
TN is a trial correctly classified as a non-VTE, a FP is a trial
incorrectly classified as a VTE, and a FN is a trial incorrectly
classified as a non-VTE. Accuracy measures the number of trials
assigned to the correct class (VTE or non-VTE) out of the total
number of trials, and is defined as:

accuracy =
TP + TN

TP + TN + FP + FN
(9)

such that accuracy equals 1 if every trial, VTE and non-VTE,
is correctly classified, and 0 if no trials are correctly classified.
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Precision measures the number of correctly classified VTEs out
of the total number of trials classified as a VTE, i.e.,:

precision =
TP

TP + FP
(10)

meaning precision takes a value of 1 if all of the trials classified
as a VTE are in fact VTEs, even if it does not identify all VTEs
in the dataset. As a complimentary metric, recall (also called the
true positive rate) takes FN into account:

recall =
TP

TP + FN
(11)

and is thus a measure of howmany VTEs were correctly classified
out of the total number of VTEs in the dataset. For a binary
classifier with equal numbers of each class, chance performance
for each metric would be 0.5 on average.

We summarize performance by calculating the area under the
ROC curve for each classifier. The ROC curve plots true positive
rate (recall) and false negative rate for different probability
thresholds, above which the sample is assigned to the positive
class (i.e., classified as a VTE). The false negative rate is defined as:

FNR =
FN

TP + FN
(12)

with values of zero indicating that all VTEs were found by the
classifier, and values of 1 indicating that none of the things
classified as a VTE were actually VTEs. An idealized, perfect
classifier will have an area under the ROC curve equal to 1, and
randomly binary classification will have an area under the curve
equal to 0.5 on average.

2.5.3. Cross Validation
To ensure our classifiers were generalizable and performance was
not biased by a particular ordering of our dataset, we performed
cross-validation on randomly sampled test/train splits of the
dataset. For each evaluation, we used 67% of data for supervised
training, and used the remainder for testing performance. For
reproducibility, and tomake comparisons across classifiermodels
and feature modalities, we created a (seeded) matrix of randomly
shuffled trials where each column contained a distinct ordering
of trial values to use for one split of model training and testing
(Liu, X.-Y. et al., 2009). For a given assessment, we used 100
distinct splits of testing and training data, giving a matrix with
100 columns. Since VTEs occur on roughly 20% of trials, every
VTE in the dataset was present in each column, and a randomly
drawn, equal number of non-VTEs made up the rest of the
column, meaning each distinct split used the same VTE trials,
but was allowed to contain different non-VTE trials (Liu, X.-Y.
et al., 2009). This same matrix was used any time we evaluated
classifier performance, meaning all evaluations were done using
the exact same 100 iterations of test/train splits. Put another
way, we assessed performance with 100 iterations of randomly
selected trials constituting each test/train split, but ensured that
assessments for different classifier models and feature modalities
were performed on the exact same data. The figures in this paper
were generated using seed = 1.

2.6. Dataset Curation
Training and assessing performance of the supervised classifier
required manual VTE scoring to assign labels to trials. Because
it is difficult to define an exact set of criteria for scoring a
VTE (hence the need for a classifier), we instead chose to have
four trained raters score each trial, and used their consensus to
determine the label. All raters were told to score a trajectory
as a VTE if there was an indication that the rat looked toward
the reward arm it did not end up choosing at least once during
its trajectory. Trials where two raters scored the trajectory a
VTE and two scored the trajectory a non-VTE were excluded
from analysis. As shown in Supplementary Figure 1, all sessions
in this dataset have an average inter-rater percent agreement
above 90% and average pairwise Cohen’s kappa scores above 0.7
(Hallgren, 2012; Gisev et al., 2013).

We also excluded trials based on several criteria of the
hippocampal oscillation. First, we checked that the overall central
tendency of the AI distribution was positive for a given session.
Note that other studies have reported generally negative AIs
(Amemiya and Redish, 2018; Schmidt et al., 2019). We suspect
this is due to systematic shifts in theta shape characteristics
across the different hippocampal axes (Buzsáki et al., 1985, 1986;
Buzsáki, 2002). We also excluded trials where a 4 SD noise
threshold, calculated based on the SD of the entire timeseries, was
exceeded. If any session had more than 20% of its trials excluded,
we did not use any of the data from that session.

2.7. Statistics
We performed two-sample, two-tailed Kolmogorov-Smirnov (K-
S) tests to evaluate whether empirical distributions are likely
drawn from the same underlying population distribution. To
test whether a distribution of differences is centered at zero (i.e.,
to test for differences between paired groups), we performed
one-sample, two-tailed Wilcoxon signed-rank tests. To assess
which features exhibit statistically distinct empirical distributions
when testing a number of features, we follow K-S testing with
Benjamini-Hochberg (BH) false discovery rate correction to
adjust p-values. Criteria for significance is set at p = 0.01 (1
divided by the number of iterations) for comparing distributions,
and 0.05 for corrections. We also used Cohen’s d metric to
assess effect size, and note the suggestions that a value of 0.2 is
considered a small effect, a value of 0.5 is considered a medium
effect, and values above 0.8 are considered large effects (Sullivan
and Feinn, 2012; Calin-Jageman, 2018). Effect sizes are denoted
in text by d.

3. RESULTS

3.1. Trajectory-Based Classification
A VTE occurs when rats vacillate between options before their
final choice. Behaviorally, this manifests as a trajectory with
curves or sharp angles at choice points, where reorientations
occur (Figure 1A). We analyzed a dataset with 828 trajectories
from rats running a SDA task (Baker et al., 2019; Kidder et al.,
2021). Each trajectory was scored as VTE (n = 142) or non-
VTE (n = 686) by four trained annotators. We calculated zIdPhi
(Papale et al., 2012), the z-scored, integrated change in heading
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FIGURE 1 | Example VTEs and zIdPhi distribution. (A) Example trajectories showing VTEs (yellow) and non-VTEs (black). Trajectories are shown on top of outlines of

the decision-point, coming from each possible direction (shown by dashed arrow). (B) Empirical cumulative distributions of zIdPhi scores for VTEs (yellow) and

non-VTEs (black). Note the prominent rightward shift for VTEs (p < 0.001, two-sample K-S test, d = 0.65). Cumul. Prob., cumulative probability; K-S,

Kolmogorov-Smirnov.

angle, for each trajectory, as well as several other features (see
2.4.1 for more details). As expected, we saw statistically distinct
empirical distributions for zIdPhi values on trials scored as VTE
compared to non-VTE (Figure 1B, p < 0.001, two-sample K-S
test; d = 0.68). When compared to manual scoring, however,
using zIdPhi did not reliably separate VTE and non-VTE trials
(Figure 2A).

We reasoned that we could obtain more accurate and reliable
VTE detection by assessing multiple aspects of the trajectory
instead of just one. As such, we calculated seven trajectory-
based features (see Classifier Implementation for details) with
the expectation that these features would allow for separation of
VTEs and non-VTEs in a higher dimensional space. Like zIdPhi,
many of these features formed distinct empirical distributions for
VTEs and non-VTEs, which suggested to us that this feature set
could be used to buildmachine learning classifiers for algorithmic
VTE detection.

Classifiers are often evaluated for their accuracy, precision,
and recall scores (Malley et al., 2011; Lever et al., 2016, see
Classifier Implementation for detailed descriptions). In the
context of VTE identification, accuracy measures the proportion
of correctly labeled trials (i.e., VTE or non-VTE), precision
measures the proportion of trials labeled VTE that are actually
VTEs, and recall measures the proportion of VTEs found out of
the total number of VTEs present. We compared performance of
two widely used machine learning models—k-nearest neighbors
(KNN) and support vector machines (SVM)—to zIdPhi alone
in Figure 2. To generate distributions for each of these metrics,
we scored 100 permutations of randomly sampled splits of data,
with mutually exclusive testing and training trajectories (see
Classifier Implementation for further details). To ensure scores
were not influenced by the fact that we had many more non-
VTE trials than VTE trials, we equalized the number of VTE
and non-VTE trials for each data split. Both KNN and SVM
classifiers show scores well above what would be expected by

chance for accuracy (Āknn = 0.86, Āsvm = 0.86; bars above letters
denote mean), precision (P̄knn = 0.89, P̄svm = 0.92), and recall
(R̄knn = 0.82, R̄svm = 0.79) on our trajectory data. Both classifier
models lead to highly leftward shifted ROC curves (Figure 2B),
and comparing their distributions for area under the ROC curve
shows that the performance for the SVM classifier is generally
higher ( ¯AUCknn = 0.93, ¯AUCsvm = 0.95; p = 0.0001, two-sample
K-S test; d = 0.78). Overall, these results suggest that we have
defined a feature set suitable for VTE classification, that both
KNN and SVM models provide more accurate, sensitive, and
precise VTE classification than a single metric alone, and that the
SVMmodel has a slight performance edge over the KNNmodel.

3.2. Oscillation-Based Classification
Previous research has suggested HPC involvement in decisions
where VTEs occur. Early work showed that rats with bilateral
HPC lesions perform less VTEs during initial learning in a visual
discrimination task than rats with their hippocampi intact (Hu
and Amsel, 1995). More recent research did not find differences
in VTE rates for lesioned and non-lesioned animals during
visual discrimination, but showed that lesioned rats exhibit
fewer VTEs during early learning when performing a spatial
decision-making task. In particular, lesioned rats showed fewer
VTEs before finding a new reward location after it had been
moved (Bett et al., 2012). Additionally, multiple studies have
shown that HPC place cell activity is more likely to represent
future locations during decisions involving a VTE than when
no VTE occurs (Johnson and Redish, 2007; Papale et al., 2016).
Furthermore, several features of the hippocampal local field
potential oscillation appear to be different when decisions are
made with, as opposed to without, VTEs (Amemiya and Redish,
2018; Schmidt et al., 2019).

We tested how well-features of the HPC oscillation
(Figure 3A) could identify VTEs using the same approach
we employed for trajectory-based VTE classification. Consistent
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FIGURE 2 | Multi-feature classifiers outperform a single metric. (A) Classification performance on 100 random splits of manually scored data using zIdPhi (orange), an

SVM model (gray), and a KNN model (blue). Colored patches are kernel density estimates of the underlying distributions, with boxplots representing the same data

inside the patches. (B) Receiver operating characteristic curves for KNN (blue) and SVM (gray) classifiers. Averages across splits are bold lines, 95% confidence

intervals surround means, but are not visible. (C) Cumulative distributions of AUC scores for SVM in gray and KNN in blue. Note the rightward shift for the SVM model

(p < 0.0001, two-sample K-S test, d = 0.78). SVM, support vector machine; KNN, k-nearest neighbor; AUC, area under the curve; TP, true positive; FP, false positive;

Cumul. Prob., cumulative probability.

FIGURE 3 | Example oscillation data and feature distributions. (A) Sample HPC oscillation. Data are normalized (z-scored), so amplitude is measured in standard

deviations (see scale bar). Blue-green circles and line show the ascending duration of one theta cycle, and black circles and line show the descending duration of the

next theta cycle. The ascending and descending durations within a single theta cycle are use to calculate the AI. (B) Normalized power timeseries for low gamma

(blue) and high gamma (orange) for the oscillation shown in (A). (C) Cumulative distributions for 3 (of 12) curated features of the HPC oscillation. Asterisks denote

significantly different distributions between VTE and non-VTE trials (AI, p = 0.041; LG Power, p < 0.001; HG Power p = 0.049). AI, asymmetry index; SD, standard

deviation; ms, millisecond; LG, low gamma; HG, high gamma.

with previous work, we found several oscillatory features with
different empirical distributions for VTE and non-VTE trials
(Figures 3B,C). To test whether an SVM classifier could identify
VTEs above chance levels when trained with features of the

HPC oscillation, we calculated classifier metric 1 scores. We
compared classifier performance on hippocampal data from
two distinct behavioral epochs—one where rats actively made
choices (i.e., when VTEs would occur), or during the delay
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FIGURE 4 | VTE classification is better for oscillation-based features from choices than delays. (A) Classification performance when using oscillations from the delay

epoch (green) compared to oscillations from the choice epoch (purple). Each 1 score is a difference between performance using data from either epoch and

corresponding randomly labeled data. (B) Scatterplots of 1AUC score distributions for oscillations taken from the delay and choice epochs. Dotted vertical line shows

the mean choice 1AUC score, dotted horizontal line shows the mean delay 1AUC score. Dashed diagonal line marks where equal departures from chance would

occur. Individual distributions and kernel density estimates for 1AUC scores are shown in the marginal distributions. Note skew below the diagonal, indicating

significantly higher choice 1AUC scores (p < 0.0001, two-sample K-S test, d = 1.21).

interval that preceded the choice epoch. Each score shows how
far above chance the classifier performed when oscillations
were taken from the choice or delay epoch (Figure 4A, also see
Supplementary Figure 3B). Chance estimates were obtained
by training a classifier on oscillations from the choice epoch,
but randomly labeling each trial as VTE or non-VTE. Thus, a
score of zero indicates that the classifier performed the same
as would be expected if randomly labeling trials. Classifier
performance on the HPC oscillation during choices is above the
performance for classifiers trained on the HPC oscillation during
the delay epoch of the task (Figure 4B; 1 ¯AUCdelay = 0.004,

1 ¯AUCchoice = 0.11; two-sample K-S test, p < 0.0001; d = 1.21;
also see Supplementary Figure 3B, pink vs. green ROC curve).

Though the highly curated features used in the classifier for
Figure 4 have been shown to differ during VTEs and non-VTEs
(Amemiya and Redish, 2018; Schmidt et al., 2019), these features
are only a small subset of attributes that could describe the HPC
field potential oscillation. As such, we used arguably the most
common descriptor of oscillations, the power spectrum, in an
attempt to increase classifier performance. We first compared
average power spectral density (PSD) estimates for different
frequencies, calculated for different splits of data, to identify
which frequencies had significantly different average power
on VTE and non-VTE decisions (Supplementary Figure 4).
Frequencies that survived false discovery rate correction (see
section 2.7) were used as features for an SVM classifier trained
on PSD estimates. Interestingly, although these classifiers utilized
a much higher dimensional feature-space (roughly seven-fold
more features using PSD estimates than curated oscillation-based

features), 1AUC scores were no different from those obtained
with the highly curated features (Figure 5B, p= 0.70, two-sample
K-S test; d = 0.20).

It is possible that features of the HPC oscillation contain
information about VTE occurrence that complements the
information contained in trajectory data. In other words, VTEs
that are difficult to classify based on trajectories alone may have
accompanying HPC oscillatory dynamics that, when combined
with the trajectory features, lead to improved VTE classification.
To examine this possibility, we trained an SVM classifier on
combined trajectory- and oscillation- based features from the
choice epoch that had significantly different distributions onVTE
and non-VTE trials (see Supplementary Figure 4). Interestingly,
combining feature sets does not change performance when
compared to trajectory features alone (Figure 6; mean AUC
difference = −0.001; p = 0.65, Wilcoxon signed rank test;
d = 0.08). Thus, we conclude that, although features of the HPC
oscillation can be used to some extent for classifying VTEs, these
features do not contain novel or complementary information
beyond what can be extracted from the trajectories.

4. DISCUSSION

The purpose of this study was to improve upon current methods
of VTE identification and build on our understanding of
hippocampal involvement during VTEs. We show that VTE
behavior can be robustly and reliably separated from non-
VTE behavior using a small set of trajectory-based features.
Additionally, we show that classifiers trained on features of
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FIGURE 5 | Full power spectra do not outperform highly curated oscillation features. (A) Classification performance when using PSD estimates (dark red) compared

to curated features from the choice epoch (purple). Each 1 score is measured as a difference between performance using either PSD or oscillation-based features

and corresponding randomly labeled data. (B) Scatterplots of 1AUC score distributions for PSD estimates and oscillation-based features, both calculated for choice

epochs. Dotted vertical line shows the mean choice oscillation-based 1AUC score, dotted horizontal line shows the mean PSD 1AUC score. Dashed diagonal line

marks where equal departures from chance would occur. Individual distributions and kernel density estimates for 1AUC scores are shown in the marginal plots. 1AUC

scores are not significantly different for SVMs trained on PSD-based and curated feature sets (p = 0.70, two-sample K-S test, d = 0.20). PSD, power spectral density.

FIGURE 6 | Combining oscillation- and trajectory- based features does not increase classifier performance. (A) Comparison of SVM classifier performance using

combined oscillation- and trajectory- based features (blue) or trajectory features alone (gray, same as Figure 2A—SVM). (B) Distribution of AUC scores for classifiers

trained on trajectory only features subtracted from AUC scores for classifiers trained on combined feature sets for corresponding data splits. Values below zero

indicate worse performance using combined features. Scores are centered around zero (p = 0.65, Wilcoxon rank sum test, d = 0.08). Comb., combined; Traj.,

trajectory alone.
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the dorsal HPC field potential oscillation separate VTEs from
non-VTEs more than would be expected by chance, supporting
previous research linking the HPC to VTEs. Moreover, we
show that when oscillations are taken from the delay epoch
that precedes the choice epoch, oscillation-based features no
longer enable above chance VTE classification, which suggests
a brief temporal window underlying HPC involvement in
VTE processing. We also caution, however, that despite above
chance VTE identification using oscillation-based features, our
results also clearly show that population level HPC dynamics
are prone to VTE misclassification (Figures 4, 5), especially
when compared to trajectory-based features. In particular we
demonstrate that combining neural features and trajectory
features does not improve performance compared to using
trajectory features alone.

Not only do the small set of hippocampal oscillation features
previously reported to differ between decisions where VTEs
do and do not occur provide modest performance for VTE
classification, using the roughly seven-fold larger feature space
of the 1–100 Hz hippocampal power spectrum does not improve
performance. We see this as further evidence that population
level HPC dynamics only partially explain VTEs. We suspect
that examining HPC interactions with other areas, such as the
mPFC (Brown et al., 2016; Voss and Cohen, 2017; Schmidt et al.,
2019; Hasz and Redish, 2020; Kidder et al., 2021), would be
a fruitful next step for improving our ability to classify VTEs
based on neural activity. Schmidt et al. have shown that rats
perform fewer VTEs when faced with difficult decisions if their
mPFC has been inhibited chemogenetically. Furthermore, the
window in which the HPC oscillation is best able to identify
VTEs is during choices, which is when brief increases in theta
coherence between the dorsal HPC and mPFC occur (Jones
and Wilson, 2005; Benchenane et al., 2010), suggestive of cross-
regional communication (Fries, 2005, 2015). Finally, experiments
using optogenetics to perturb the mPFC in a task-epoch-specific
manner during the SDA task showed that stimulation decreased
the proportion of VTEs rats engaged in, with a trend toward
choice epoch mPFC disruption having a greater effect than
stimulation in other epochs (Kidder et al., 2021).

Methodologically, we find comparing classification
performance between behavior and neural activity an intuitive
way to understand how well the activity under scrutiny relates
to the behavior in question. The level of performance for
behavior classification can often be thought of as an upper
bound for assessing how well neural activity describes the
behavior, while randomly labeled classifiers can set the lower
bound. This may provide a more nuanced picture of how well
neural activity relates to a behavior than hypothesis testing
alone. For example, while we and others show multiple features
of the HPC oscillation form distinct empirical distributions
for VTEs and non-VTEs, the fact that classifier performance
using these features does not meet classification performance
of the behavior itself suggests that these features only provide
a partial description about the neural substrate of the behavior.
Additionally, feature-based classification allows for very
flexible control of what parameters—behavioral or neural—
one wishes to examine, as well as the size of the parameter
space one would like to search. Moreover, as demonstrated

by comparing HPC power spectra with curated oscillation
features, feature vectors can be arbitrarily sized with surprisingly
little influence on classifier performance, as long as the
classifier is constructed to protect against overfitting (e.g.,
with proper hyper-parameter selection and cross-validation).
For these reasons, we see this framework as extremely flexible
in terms of feature selection and use, as well as an intuitive
way of gauging how well neural activity measurements
describe behavior.

A limitation of our study is that we do not explicitly test which
features of the hippocampal oscillation are the best indicators
of VTE behavior, nor do we claim that the features we test
are an exhaustive list of possible features. Rather, we ask if
oscillation-based features suggested by prior work can identify
VTE behaviors, and to what extent they match the ability of
a classifier using trajectory-based features. Similarly, this study
does not address whether there is an optimal subset of power
spectral density features for VTE identification. Instead, we
specifically ask to what extent the range of frequencies from 1
to 100 Hz is able to identify VTE behaviors. Thus, we leave open
the possibility that the hippocampal oscillationmay be better able
to explain VTE behaviors than is reported in this study, while
suggesting a framework that others can build on to test their
own hypotheses.

Altogether, our results expand previous efforts to
algorithmically identify VTEs using choice trajectories from
a given behavioral task, improving our ability to detect these
important variants of decision-making behavior. In addition,
we provide further evidence for hypotheses that situate the
hippocampus as one element in what is likely a broader network
of interacting neural structures supporting VTEs. We believe
future decision-making research will benefit from tracking VTEs
and VTE-like behaviors, such as saccades and head movements
in humans and non-human primates (Voss and Cohen, 2017;
Santos-Pata and Verschure, 2018) and hope our classification
scheme enables more wide-spread VTE analysis. Additionally,
we encourage future VTE research to expand beyond the HPC
and further our understanding of the neural system(s) involved
in this decision-making behavior.
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