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Resistance and tolerance are two alternative strategies hosts can adopt to

survive infections. Both strategies may be genetically controlled. To date,

the relative contribution of resistance and tolerance to infection outcome

is poorly understood. Here, we use a bioluminescent Listeria monocytogenes
(Lm) infection challenge model to study the genetic determination and

dynamic contributions of host resistance and tolerance to listeriosis in four

genetically diverse mouse strains. Using conventional statistical analyses,

we detect significant genetic variation in both resistance and tolerance, but

cannot capture the time-dependent relative importance of either host strat-

egy. We overcome these limitations through the development of novel

statistical tools to analyse individual infection trajectories portraying simul-

taneous changes in infection severity and health. Based on these tools, early

expression of resistance followed by expression of tolerance emerge as

important hallmarks for surviving Lm infections. Our trajectory analysis

further reveals that survivors and non-survivors follow distinct infection

paths (which are also genetically determined) and provides new survival

thresholds as objective endpoints in infection experiments. Future studies

may use trajectories as novel traits for mapping and identifying genes that

control infection dynamics and outcome. A MATLAB script for user-friendly

trajectory analysis is provided.
1. Background
Two alternative host response strategies to pathogen challenge contribute to

survival: resistance, defined as the ability of a host to limit or inhibit pathogen

replication, thus reducing infection severity [1]; and tolerance, defined as the

ability of an infected host to limit the impact of infection on fitness or health.

Tolerance mechanisms reduce or prevent damage associated with pathogen

challenge, but have no direct impact on the pathogen itself [1–4]. In addition,

tolerance is an important mechanism for the coevolution of symbiotic inter-

actions between beneficial commensal microbes and the host, which has long

been recognized in both plants and animals [5,6]. As host strategies, both

resistance and tolerance may be genetically determined [2,7,8]. Assessment

of their relative contribution to survival requires quantitative estimates of

resistance and tolerance based on empirical evidence. Resistance may be

defined as the inverse of infection severity, conventionally quantified by

measures of within-host pathogen burden. Obtaining quantitative estimates

of tolerance has proved difficult in practice, owing to its statistical definition

as reaction norm of health with respect to changes in pathogen burden

[2,9,10] and the high frequency of measurements associated with constructing

and analysing reaction norms [10–13]. Although conceptually defined at the
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Figure 1. An infection severity – health (SH) trajectory for an individual
mouse. (a) Illustration of trajectory phases from start of infection to death.
A trajectory for an individual mouse was produced by plotting longitudinal
pairwise measurements of body weight (BW) and infection severity (bacterial
load measured by log-transformed light intensity plus one; LLI) in a two-
dimensional space, and following their progression over time. The graph
also shows the four characteristic phases of infection associated with distinct
changes in infection severity and health (indicated by arrows), as described in
the text. (b) Illustration of trajectory vectors and resulting sequences. The tra-
jectory vector V_0 with components VH (change in %BW) and VS (change in
infection severity) represents simultaneous change in infection severity
(decrease; S2) and health (increase; Hþ) between 0 and 1 dpi. The
bottom right panel shows the four quadrants (SþH2, S2H2, S2Hþ,
SþHþ) in the SH plane specifying the direction of a trajectory vector,
together with the associated sequence numbers (1 – 4). Each trajectory is
mapped to a sequence comprising 14 numbers, representing the directions
of the trajectory vectors at 14 consecutive daily intervals, and with the
sequence number 0 indicating death. The trajectory of the individual depicted
in this figure corresponds to the sequence f3,2,2,1,1,2,0,0,0,0,0,0,0,0g (i.e. it
died after dpi 6).
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individual level, quantitative tolerance estimates can usually

only be obtained at the level of groups of (related) individ-

uals, which constitutes a major limitation to unravelling the

host genetic regulation of tolerance [10–12].

These static definitions of resistance and tolerance, and

the limitation of estimating tolerance at the group level,

cannot further our understanding of the relative contribution

of resistance and tolerance to individual survival, which is

likely to change over the time course of infection [14].

Recently, individual health trajectories have been introduced

as potentially powerful tools to capture the dynamic nature

of infection and its impact on health in individual hosts

[14,15]. Trajectories are constructed by plotting individual

measurements of infection severity (e.g. pathogen burden)

against health in two-dimensional space at different stages

of the infection. Following this pairwise progression over

time produces a trajectory that illustrates the dynamic inter-

play of resistance and tolerance mechanisms by describing

how changes in within-host pathogen burden are associated

with changes in health throughout the infection period, not

currently captured by static definitions of resistance and tol-

erance (figure 1a). We suggest that using trajectories as an

alternative to conventional statistical analysis of resistance

and tolerance will help describe individuals’ infection paths

towards a specific outcome (e.g. death or survival), and

reveal critical stages of the infection associated with the great-

est impact on health or fitness. It has been postulated that

infection trajectories can be classified into distinct trajectory

types [14,15] that may be linked to genetic background of

the host [14]. It may thus be possible to map host genotypes

to specific trajectory types, and target these for genetic

improvement of host response to infections [15].

Although proved to be powerful on conceptual grounds,

the use of trajectories to study host response to infection has

not previously been supported by experimental data [14,15].

Their wider application in infectious disease research has

been hampered by the lack of statistical methods for quanti-

tative trajectory analyses [12]. Trajectories often display loops

(figure 1a), which implies that they cannot be represented

by mathematical functions, and are thus not amenable to

conventional statistical models.

In this study, we develop a novel statistical framework

for quantitative trajectory analysis, making use of non-

invasive bioluminescent imaging tools to analyse the time

course of listerial infection in four inbred mouse strains.

Listeria monocytogenes (Lm) is a Gram-positive, facultative

intracellular bacterium that causes food-borne infections in

animals and humans. Lm is responsible for the life-threaten-

ing disease listeriosis in elderly and immunocompromised

individuals [16,17]. In healthy individuals, Lm infections are

usually self-limited but can cause acute, febrile gastroenteritis

[18]. Inbred mouse strains differ substantially in their appar-

ent susceptibility to listeriosis, through contributions of

multiple genetic loci [19–21], but genetic variation in toler-

ance to Lm, and the relative contributions of resistance and

tolerance to survival, are currently unknown. We use this

model system (i) to determine whether there is genetic vari-

ation in tolerance to Lm, and whether mouse strains rank

similarly in terms of resistance and tolerance, (ii) to study

the kinetic infection severity–health (SH) relationships

using trajectory analysis, and their association with survival,

and (iii) to assess whether different host genotypes map on to

distinct trajectory types.
2. Material and methods
(a) Mice
The data were obtained from Lm infection challenge experiments

of 84 mice from four genetically diverse inbred mouse strains as

outlined by Bergmann et al. [22]. Briefly, female mice aged

between 9 and 10 weeks from the strains A/J, BALB/cJ (BALB)

and C57BL/6 J (B6 J), and C3HeB/FeJ (C3H) were orally infected

with bioluminescent Lm as described below. The inbred mouse

strains were selected because of known differences in resistance

to listeriosis development, similar mature body weights, and

for their suitability for in vivo bioluminescence imaging (BLI).

All mice were subjected to BLI or analysed for bacterial organ

loads. On 1, 3, 5 and 7 days post-infection (dpi), 3–8 mice per

strain were sacrificed to measure colony forming units (CFU)

of Lm from organ homogenates [22]. This enabled assessment
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of the spread of Lm to different internal organs, and to calibrate

the infection severity measures obtained by the BLI analysis

(see below). Ten mice per strain were maintained after inocu-

lation until 14 dpi, or until they had to be euthanized due to

reaching humane endpoints of infection severity. This was the

case for all mice from strain C3H, 80% of A/J mice and 40% of

BALB mice, which were all euthanized between 5 and 7 dpi

due to onset of clinical signs of advanced listeriosis, according

to established protocols and approved animal welfare regu-

lations [22]. All mice were housed under specific-pathogen-free

conditions. At the start of the experiment, all mice had reached

mature body weights. Thus, any changes in body weight (BW)

post-infection were assumed to be a direct consequence of the

infection challenge.

(b) Infection protocol
Prior to challenge with Lm, the mice were acclimatized for one to

two weeks in the facility. On the day prior to infection, the mice

were starved overnight, with drinking water replaced with car-

bonate buffered water. The next day, mice were intragastrically

challenged with 5 � 109 CFU Lm EGDe-InlA-mur-lux, an inter-

nalin A (inlA) modified strain of Lm as previously described

[22,23]. After infection challenge mice had ad libitum access to

both food and water.

(c) Measurement of infection severity and health
In line with the literature, resistance was quantified as an inverse

measure of infection severity [2], defined here in terms of log-

transformed measures of light intensity (LLI) obtained daily

from bioluminescent in vivo imaging (see electronic supplemen-

tary material, text S1). Higher LLI values correspond to higher

Lm loads, which is indicative of higher infection severity [19].

As Lm infection in adult mice causes a significant drop in

BW, BW was used as an indicator of impact of the infection on

health. BW was recorded for each individual mouse immediately

prior to infection, and daily post-infection over the 14-day dur-

ation of the experiment. The impact of infection on health at a

particular dpi was then represented as percentage of BW

(%BW) loss at that day from the initial BW at 0 dpi, and %BW

maintained at that day was considered as the daily indicator

for health.

(d) Conventional statistical analysis of resistance and
tolerance

The statistical analysis used data only from the 40 mice that had

not been analysed prior to 14 dpi for CFU counts, as only these

provided information about the association of resistance and tol-

erance to survival. Data were analysed with the SAS statistical

package (2010, v. 9.3) using procedure proc MIXED.

(i) Estimating resistance and tolerance based on peak infection
severity and minimum health

In accordance with Råberg et al. [2], we defined resistance in

terms of maximum infection severity, here represented by peak

LLI levels over the two-week observation period. Tolerance esti-

mates were obtained accordingly based on maximum infection

severity (peak LLI) and minimum health (maximum %BW

loss) achieved during the observation period.

To assess genetic variation in resistance, a linear mixed model

was used with peak LLI as the dependent variable, and mouse

strain, binary survival outcome (succumbed to infection within

14 dpi, termed ‘non-surviving’; did not succumb to infection,

termed ‘surviving’), and their interactions as fixed effects.

In line with existing studies of tolerance genetics [2,13], an

analysis of covariance (ANCOVA) was used to assess genetic
variation in tolerance. The ANCOVA was performed using

maximum %BW loss as dependent variable and peak LLI as

independent variable, and mouse strain, survival outcome and

the corresponding interactions as fixed effects. The intercept was

fixed at zero, corresponding to zero %BW loss in the absence

of infection. The ANCOVA slope coefficients resulting from

regressing individual health measures against infection severity

provide group estimates of tolerance, where steeper negative

slopes correspond to less tolerant groups. Differences between

these slope estimates based on the F-test statistics for strain-by-

infection severity interaction thus provide evidence for genetic

variation in tolerance.

(ii) Assessing the sensitivity of resistance and tolerance estimates
to time of measurement

To determine the sensitivity of resistance and tolerance estimates to

the timing of measurement, we replaced the extreme measures of

peak LLI and maximum %BW loss with daily measures of LLI

and %BW loss to obtain daily least square means (LSM) for infection

severity (inverse of resistance) and tolerance slope for every mouse

strain bysurvival outcome using the repeated measurement models

as outlined in the electronic supplementary material, text S2.

(e) Infection severity—health trajectories
Infection SH trajectories were generated by plotting the 14 daily

health measurements (represented by %BW maintained) against

the corresponding infection severity measures (LLI) recorded

until 14 dpi for each individual, or until time of death if infec-

tion-dependent euthanasia occurred prior to 14 dpi. Successive

scatter points were connected using the spline curve and, for

illustrative purposes, smoothed using the SM30 smoothing pro-

cedure in SAS. Figure 1a shows an example of a trajectory;

individual trajectories of all mice in consideration are presented

in the electronic supplementary material, text S3.

(i) Trajectory comparison and numerical representation
Trajectories were first visually inspected to determine common

features and differences related to levels and timing of simul-

taneous changes in infection severity and health. ‘Bad

neighbourhoods’, associated with subsequent death due to infec-

tion, were identified in the two-dimensional phase plane by

simply overlaying trajectories of surviving mice and those that

succumbed to infection.

For statistical comparison of trajectories associated with differ-

ent individuals, trajectories were mapped to numerical sequences,

which were constructed as follows: first, for each individual trajec-

tory, daily two-dimensional vectors V� k ¼ (VðSkÞ, VðHkÞ) were

produced as shown in figure 1b, where VðSkÞ represents the

change in infection severity (in LLI units) from day k 2 1 to day

k, and VðHkÞ represents the corresponding change in health

(%BW change). The magnitude of V_ k (i.e. Vk) given by

V� k ¼
p

(VðSkÞ2 þ VðHkÞ2 )

describes the rate of change in the two-dimensional host state

between days k21 and k (figure 1b). The direction of V2k (deter-

mined by the signs of both vector components) indicates whether

an increase or decrease in infection severity (Sþ/S2) between

days k21 and k is associated with a simultaneous improvement

or deterioration in health (Hþ/H2). Four possible sign combi-

nations give rise to four SH categories (1¼ SþH2, 2 ¼ S2H2, 3 ¼

S2Hþ and 4 ¼ SþHþ) according to which quadrant in the SH

plane the trajectory vector faces (figure 1b). To reduce the impact

of measurement noise in the statistical analysis, Sþ or H2 were

only assigned if infection intensity had increased by more than

0.1 LLI units, and BW had dropped by more than 2% compared

with the last measurements, respectively. Otherwise, changes in
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either direction were assigned to S2 and Hþ, respectively. Finally,

stringing the 14 daily consecutive SH combinations together gener-

ated an SH time series for each individual represented by a

sequence of numbers between 0 and 4, where 0 indicates death of

the host and 1–4 refer to the different combinations of simul-

taneous changes in infection severity and health as specified

above (figure 1b).

(ii) Statistical analysis of trajectory sequences
Representing trajectories by numerical sequences allowed quan-

titative comparison of trajectories associated with different

individuals. For this purpose, Hamming distances between all

pairs of individual trajectory sequences, describing the pro-

portions of non-zero sequence elements that differed between

two sequences, were calculated. To prevent sequences associated

with individuals who succumbed to infection within the 14-day

observation period being assigned shorter distances, sequences

were truncated to the last time point where both individuals of

the pair in consideration were still alive.

In order to determine whether the 40 trajectories could be

classified into few distinct types depending on their patterns as

had been proposed previously [14,15], cluster analysis was car-

ried out using the ‘clusterdata’ function in MATLAB (v. R2013b),

with the truncated Hamming distances as measure of similarity,

and the weighted average distance as distance metric between

clusters. The number of maximum clusters specified was 2, 4

and 6. Resulting clusters were visualized using BIOLAYOUT

EXPRESS 3D [24].

Furthermore, a permutation test (in which trajectory sequences

were randomized) was applied to test statistically significant

differences between (truncated) trajectory sequences belonging to

different clusters, mouse strains or survival groups. The permu-

tation test assessed whether truncated Hamming distances

between any two groups were on average significantly larger

than the corresponding within-group distances. The corresponding

MATLAB script for generating sequences, calculating Hamming dis-

tances, and performing cluster analysis and permutation tests is

provided in the electronic supplementary material, text S5.
3. Results
Infection was established in all mice, as indicated by high levels

of LLI, and all mice experienced a drop in BW at a certain stage

of infection, although at varying levels and duration. None of

the mice were able to clear the infection within the 14-day

experimental infection period. All B6J mice survived the infec-

tion period, whereas all C3H mice succumbed to infection

within 6 dpi. There was within-strain variation in survival out-

come for A/J and BALB mice: two A/J mice and six BALB mice

survived until the end of the experimental observation period.

This led to the following six mouse strains by survival outcome

groups: C3H, B6J, A/J non-survivors, A/J survivors, BALB

non-survivors and BALB survivors.

(a) Estimates of resistance and tolerance
(i) Estimates of resistance and tolerance based on peak infection

severity and minimum health
Analysis of resistance revealed statistically significant strain

and survival effects, as well as strain-by-survival interactions

( p , 0.05; figure 2a). There was no statistically significant

difference in resistance among the non-survivors, but all

non-survivors (non-surviving BALB or A/J mice and C3H)

ranked significantly lower in terms of resistance than any sur-

vivor (figure 2a). The mouse strains also differed significantly
in tolerance to Lm infection, and tolerance varied between

survival groups within the mouse strains (figure 2b). How-

ever, the ranking of the strains differed for the two traits

(figure 2). In particular, non-survivors did not rank consist-

ently lower in tolerance than survivors. C3H and B6J

strains characterized by 0% and 100% survival, respectively,

were at opposite ends of the resistance spectrum, but had

similar tolerance estimates.

(ii) Dynamic trends in resistance and tolerance estimates
Although the actual resistance and tolerance estimates were

sensitive to the timing of measurements, genetic variation

in both resistance and tolerance could be detected throughout

the entire 14-day infection period (electronic supplementary

material, figure S2 and text S2). Ranking in both traits was

relatively time stable, except for a reverse in ranking of A/J

mice, which started the experiment as the most tolerant

strain, and emerged as the least tolerant out of the three

remaining mouse strains. B6J emerged as the most resistant

mouse strain as early as 2 dpi, and eventually was also the

most tolerant strain. In accordance with the results above,

non-survivors differed significantly from survivors in resist-

ance only, indicating that resistance may be more important

than tolerance for survival of Lm infection.

(b) Trajectory analysis
(i) Trajectory characteristics and determinants of survival
Visual inspection of individual trajectories (figure 3; electro-

nic supplementary material, text S3) revealed common

patterns in individuals’ routes of infection and distinct survi-

val characteristics. Four distinct phases over the course of

infection were identified with characteristic changes in infec-

tion severity and health, as represented by different infection

severity and health (SH) combinations (figure 3). Phase 1

described the establishment of infection during 0–1 dpi,

and is related to the initial reduction in infection severity

due to partial clearance of the inoculated pathogen

accompanied by partial recovery in BW (i.e. S2Hþ). This

phase was seen in all mice except C3H mice, most of which

experienced weight loss (i.e. S2H2). Phase 2 corresponded

to a period during which infection severity was stable but

BW continued to drop (S2H2). Phase 3 was associated with

resurgence in pathogen load and continued weight loss (i.e.

SþH2). The final phase 4 differed between survivors and

non-survivors. All survivors regained weight and controlled

infection severity. Non-survivors, by contrast, continued to

lose BW, although some were able to limit pathogen load.

Mice in this phase generally fluctuated between expression

of S2Hþand SþHþ. With the exception of phase 1, which

lasted one day for all mice, the duration of the individual

phases varied between mice. Only mice that survived the

infection experienced an improvement in health (Hþ) at

some stage after 4 dpi.

By overlaying trajectories, an infection severity threshold of

approximately 6.5 LLI units for pathogen resurgence could be

identified that discriminated between survival and death

(figure 4). All mice that had crossed this threshold after 1 dpi

succumbed to infection, regardless of their genotype, the

exact day when the threshold was crossed (which occurred

between 4 and 5 dpi) or whether infection severity temporarily

decreased thereafter. All mice that suppressed pathogen repli-

cation below this threshold survived. Interestingly, there was
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no such discriminating threshold for BW loss within the limits

of animal welfare regulations (figure 4). The results suggest

that trajectories can provide more predictive thresholds for

the definition of ethical experiment terminating endpoints

than arbitrary cut-off values for BW losses.

(ii) Statistical analysis and genetic footprint of infection
severity – health trajectories

Cluster analysis, combined with a permutation test, applied to

the corresponding (truncated) trajectory sequences indicated

that individual trajectories group into distinct trajectory types

(electronic supplementary material, text S4). When the stipu-

lated maximum number of clusters was two, the resulting
clusters comprised either non-survivors or survivors. The per-

mutation test confirmed a highly significant difference in the

truncated SH sequences associated with both survival groups

( p , 0.0001). Hence, infection paths of mice that succumbed

to infection were significantly different to those of surviving

mice at the early stage of infection.

When the stipulated maximum number of clusters was

gradually increased, four distinct trajectory clusters ( p , 0.02,

for all cluster pairs) emerged, with the greatest sequence differ-

ences found between clusters comprising exclusively C3H and

B6J mice, respectively (figure 5). The different clusters corre-

spond to different survival outcomes and SH patterns within

survivors/non-survivors, respectively, rather than to the four
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different inbred mouse strains (figure 5). However, each trajec-

tory cluster is dominated by a specific mouse strain, suggesting

that trajectories are partly genetically determined (figure 5).

The permutation test applied to different mouse strains con-

firmed a statistically significant difference ( p , 0.05) between

trajectory sequences associated with different mouse strains,

except for A/J and BALB mice (table 1). Interestingly, the trajec-

tory sequences of surviving and non-surviving BALB or A/J

mice were statistically indistinguishable ( p ¼ 0.53 and p ¼ 0.06,

respectively), implying that within a mouse strain trajectory

sequences alone are insufficient for predicting survival outcome.
4. Discussion
Host genetic variation in both resistance and tolerance can

account for a substantial part of the observed variation in

host response to infection [2,7,10,25]. Many studies have pro-

vided conclusive evidence for genetic variation in host

resistance to Lm [2,26–29]. We have demonstrated that mice

from genetically distinct inbred strains, previously found to

differ significantly in resistance to the bacteria, also differ in tol-

erance. By convention, resistance and tolerance are considered

as static traits that constitute alternative host defence strategies

against invading pathogens [2,3]. The data show clearly that

expression of resistance (reduction in pathogen load) and

tolerance (damage prevention and repair) and their relative
contribution to survival vary over the time course of infection.

We therefore propose a paradigm shift in considering resistance

and tolerance as dynamic, rather than static traits. In practice,

this can only be achieved through time series measurements

in individual infected hosts, which in turn depend upon non-

invasive technologies, such as imaging. Recently, there have

been rapid advances in the development of such imaging tech-

nologies [30–32], and this has led to increasing demands for

advanced statistical tools to analyse infection dynamics, such

as the trajectory methods proposed here.

The novelty of this research lies in the development of

simple and versatile mathematical tools for capturing the

dynamic development of resistance and tolerance in each indi-

vidual, and their relative importance on the outcome of

infection. The conventional reaction-norm approach to toler-

ance has severe limitations that have hampered progress in

tolerance studies [11]. First, it usually restricts tolerance esti-

mates to group level, which is not helpful for improving

tolerance of individuals or identifying tolerance genes.

Second, the high data demand associated with estimating tol-

erance parameters from this approach limits reaction norms

to linear models, thus ignoring all biological understanding

of the highly nonlinear and time-dependent relationship

between pathogen burden and health [13]. By contrast, individ-

ual trajectories, which can be easily constructed if longitudinal

measurements are available, illustrate how changes in infection

severity are related to health change within each individual
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throughout infection. Although not synonymous with resistance

and tolerance, the two-dimensional trajectory vectors crudely

reflect how resistance and tolerance are coexpressed at different

stages of infection. For example, simultaneous decrease in infec-

tion severity and health (S2H2) reflects expression of resistance

at the cost of deterioration in health, indicating incomplete toler-

ance. As demonstrated in this study, trajectories can reveal

distinct phases of infection associated with different patterns

of coexpression of resistance and tolerance, and illustrate for

each individual the two-dimensional path towards death or sur-

vival. Previous studies of trajectories have defined ‘bad

neighbourhoods’ in the infection-severity health plane that

appear predictive for fatal infection outcome [2,12,15]. In the

mouse data, we identified an infection severity threshold that

discriminated between death and survival (figure 4). All mice

that succumbed to the infection experienced a drastic increase

in infection severity between 3 and 7 dpi, whereas all survivors

managed to restrict pathogen resurgence below this threshold

during this critical phase. The critical infection severity

threshold was independent of host genotypes and timing. Any

mouse that crossed this threshold eventually succumbed to

infection, even if thereafter it managed to reduce infection sever-

ity below the threshold. Interestingly, there was no apparent

health threshold that discriminated between death and survival.

All mice experienced BW loss as a consequence of infection, but

all the survivors and none of the non-survivors managed to

recover some of the lost weight, in some cases despite continued

increase in pathogen load. Our results thus indicate that both

early expression of resistance and tolerance at the later stages

of infection are important determinants of survival to Lm infec-

tions. Discriminatory thresholds, such as those identified here,

can provide more informative criteria than BW for defining

humane endpoints for termination of animal infection.

Individual trajectories have been used previously to classify

and predict host responses to infection, but their assessment was
limited to qualitative analysis [14,15]. By transforming visual

trajectories into numerical sequences that preserve the key topo-

logical trajectory features, we were able to subject trajectories to

rigorous statistical analysis. Our statistical analysis confirmed

that individual trajectories cluster into a limited number of

genetically regulated distinct trajectory types [14,15]. Trajec-

tories thus open new avenues for genetic studies of host

response to infections. Future studies may focus on genetic dis-

section of different trajectory types to identify novel genetic

variants that control infection dynamics at a molecular level.

Despite a clear genetic footprint in trajectory patterns,

trajectory sequences could not capture within-strain differences

in survival outcome. This could be due to several reasons: first,

BW may only be a crude indicator of health [2]. Alternatively, as

mice were euthanized due to welfare considerations based

upon weight loss, some of the mice classified as non-survivors

may actually have survived the infection. Furthermore, survi-

val outcome may be partly determined by individual

differences in the gastro-intestinal flora, which have been

found to show substantial inter-strain variation even in simi-

larly highly controlled environments as used in our study

[33]. Higher-dimensional trajectories comprising other types

of measurements (e.g. related to the immune response or micro-

biota) in addition to measures of health and pathogen load may

shed light on relevant host response mechanisms controlling an

individual’s infection path and its outcome. Note that, although

more difficult to visualize, multi-dimensional trajectories

can still be represented as a series of vectors defined by their

direction and length, and are thus amenable to similar statistical

analyses as those presented here.

Previous studies have estimated an antagonistic relation-

ship between resistance and tolerance at the phenotypic

and genetic level [7,34]. These results led to the notion of a

trade-off between resistance and tolerance mechanisms, and

their consideration as alternative host defence strategies to



Figure 5. Graphical representation of similarities between truncated trajectory sequences associated with different mouse inbred strains and survival groups within
the mouse strains. Each node (ball) represents an individual mouse, and each edge (connecting line) represents the degree of similarity between trajectory
sequences of two mice, represented by 12H, where H is the pairwise Hamming distance. Only similarities 12H . 0.8 are depicted in the graph. Colours represent
different mouse strains and survival groups, respectively. The graph was produced with BIOLAYOUT EXPRESS 3D software [24], which spatially distributes the nodes
according to the similarity measure 12H, so that individuals with similar trajectory sequences (i.e. 12H close to 1) are placed in close proximity to each
other, whereas individuals with different trajectory sequences (i.e. 12H close to 0) are placed far apart. The graph illustrates that differences between trajectory
sequences were on average smallest within each mouse strain, and greatest between C3H mice (light blue; all succumbing to infection) and B6J mice (red; all
surviving infection). Within the A/J (black) and BALB (green) mice, sequences associated with survivors and non-survivors survival (survivors: light; non-survivors:
dark) did not fall into different visual clusters. The graphical results were confirmed by statistical cluster analysis (see text).

Table 1. p-values of permutation test used to assess whether mouse
strains differ significantly in their SH trajectory sequences.

between-
strain A/J C3H B6J BALB

A/J ,1026 0.0003 0.31

C3H ,1026 0.0002

B6J 0.0002

BALB .
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fight infections, and shaped predictions of evolutionary conse-

quences for both hosts and pathogens [35–38]. These studies

do not take account of the dynamic relationships that emerge

from our study. For example, expression of resistance at the

early stages of infection is likely to affect the expression of

tolerance at the later stages as fast pathogen clearance may pre-

vent tissue damage and obviate any requirement for damage

prevention or repair mechanisms associated with tolerance.

Conventional statistical models that do not account for this

kind of interdependence between traits may produce a

spurious antagonistic relationship between traits, on both the

phenotypic and genetic levels [39], even if resistance and toler-

ance are controlled by different sets of genes or genetic

pathways as suggested by immunological evidence [1,4]. Tra-

jectories enable us to bypass the complex relationship

between resistance and tolerance, and may give rise to novel

phenotypes for future genetic analyses that may lead to the

discovery of genes that control an individual’s infection path.
All of the infected mice experienced a substantial BW loss

after the initial reduction in pathogen burden, but of itself, BW

loss did not influence survival. From a resource allocation per-

spective, this would suggest that resistance mechanisms are

costly [40,41]. By reducing resources allocated to other functions,

such as searching for and digesting food, the host may be able to

direct resources to the immune response, resulting in temporary

BW loss. This has been put forward as the evolutionary basis

of pathogen-induced anorexia and ‘sickness’ behaviours

[40,42–44]. Our previous applications of the resource allocation

theory to assess the effect of genetic resistance on the long-term

effects of infection, showed that hosts with greater genetic resist-

ance maysuffer greater performance loss (e.g. growth or BW loss)

in the short term, but are able to revert to original levels of per-

formance faster than non-resistant genotypes [45]. This is

consistent with our study, where the B6J mice emerged as most

resistant genotype after 3 dpi and were the only mouse strain

that managed to fully restore the original BW within 14 dpi.

To study the dynamic coexpression patterns of resistance

and tolerance to Lm in different mouse inbred strains, we

have taken advantage of a bioluminescent Lm infection

model in which the listerial strain EGDe-InlA-mur-lux recog-

nizes the host receptor E-cadherin and intestinal expressed

N-cadherin [22,23,46,47]. Other Lm infection models have

been shown to elicit different host responses [47,48]. It

would be interesting to apply our novel methods to data

from these models to determine whether the dynamic contri-

butions of resistance and tolerance to survival are preserved

across different pathogen and host strains. However, this

would require the introgression of humanized alleles of
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CDH1 (encoding E-cadherin) into the different mouse genetic

backgrounds followed by repeated backcrossing to make

mice permissive to oral Lm challenge [22,26].

In conclusion, our study complements existing evidence for

genetic variation in both host resistance and tolerance, and

for the importance of both host strategies in fighting infections

[1–9,21,45]. However, our study also highlights the potential

benefits that may arise from considering the dynamic patterns

of coexpression of genetic resistance and tolerance over the

time course of infection. Trajectories capture the dynamic

signature and genetic footprint of both mechanisms on the

level of individuals, together with their impact on survival.
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