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Abstract

Osteosarcoma is the most common form of bone cancer. Pivotal insight into the genes involved in human
osteosarcoma has been provided by the study of rare familial cancer predisposition syndromes. Three kindreds
stand out as predisposing to the development of osteosarcoma: Li-Fraumeni syndrome, familial retinoblastoma and
RecQ helicase disorders, which include Rothmund-Thomson Syndrome in particular. These disorders have
highlighted the important roles of P53 and RB respectively, in the development of osteosarcoma. The association of
OS with RECQL4 mutations is apparent but the relevance of this to OS is uncertain as mutations in RECQL4 are not
found in sporadic OS. Application of the knowledge or mutations of P53 and RB in familial and sporadic OS has
enabled the development of tractable, highly penetrant murine models of OS. These models share many of the
cardinal features associated with human osteosarcoma including, importantly, a high incidence of spontaneous
metastasis. The recent development of these models has been a significant advance for efforts to improve our
understanding of the genetics of human OS and, more critically, to provide a high-throughput genetically
modifiable platform for preclinical evaluation of new therapeutics.
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Osteosarcoma
Osteosarcoma (OS) is the most common primary
tumour of bone. It is most frequent in children and ado-
lescents with an incidence of 7.3 per 1 million of the
population [1]. Although OS is mainly classified as a
childhood disease, a second peak of incidence is reported
in the elderly population [1]. The majority of OS tumours
are situated in the long bones with a small proportion
located in the pelvis and axial skeleton [2,3]. OS has a
relatively high metastatic rate, with the lung being the
most common site of spread.
The current treatment for OS revolves around the use

of chemotherapy, radiotherapy and the surgical removal
of the tumour. The chemotherapeutic regimen for OS
patients combines cisplatin, doxorubicin and high doses
of methotrexate [4]. Surgical resection is coupled with
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reproduction in any medium, provided the or
limb salvage procedures to remove malignant tissue and
minimize the impact on quality of life.
The lack of new therapeutic options for the manage-

ment of OS has translated to a stagnation of patient out-
comes [5,6]. Survival and prognosis rates have remained
largely unchanged in two decades despite increased de-
tection and monitoring afforded by advances in clinical
imaging modalities [7-9]. Furthermore, there are difficul-
ties associated with the study of OS in humans, such as
recruiting sufficient patients to allow clinical insights in
trialing new treatment options. A key component to im-
proving patient outcome will be the development and
application of faithful experimental models of human
OS. Such models can serve as a preclinical platform for
the identification of new therapeutic targets and the
in vivo testing and triaging of those proposed for human
trials. Experimentally derived interventions could then
be developed in in vivo models where therapies can be
rigorously evaluated side by side prior to human evalu-
ation. Equally importantly, experimental OS models
serve as a means to further understand the genetics and
biology of OS with an emphasis on metastatic disease.
This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.
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Animal models of osteosarcoma
Robust animal models have the capacity to preclinically
evaluate therapeutic interventions derived from the ex-
tensive basic research efforts underway in OS. To date,
the major species used to deliberately generate experi-
mental OS are the mouse and the rat [10,11]. The
lineage and temporal specificity afforded by murine gen-
etic engineering has lead to a rapid increase in the qual-
ity and fidelity of murine OS models when compared to
the human condition. Spontaneous disease arising in
large breed pet dogs is also of note as a model of human
OS and is useful to understanding OS in humans and
veterinary practice. It is also gaining prominence in the
research environment as a validated model of spontan-
eous OS [12-14].
Rodent models of OS have been established for many

decades and were originally generated through the ex-
posure to chemical and radioactive carcinogens. [15-17].
These models demonstrated the principle of high-
penetrance OS models that histologically resemble human
OS. However, they possessed several caveats regarding
their application to preclinical studies. The majority of OS
in humans is sporadic, while the carcinogen-induced mur-
ine OS are more representative of therapy-induced disease
rather than the primary lesions arising in the majority of
human OS [18,19]. Radiation induced OS models gener-
ally have a longer latency than alternate strategies and can
result in a range of non-mesenchymal tumours due to its
non-specific nature. Furthermore it has not been clearly
defined what genetic lesions occur during the initiation
and maintenance of these tumours. Nonetheless, these
radiation-induced OS models have yielded robust experi-
mental data and gave rise to valuable reagents such as cell
lines to complement human OS studies. Further
characterization of these tumours would enable the ra-
tional application of these alongside the recently generated
tractable genetically engineered models.

Human hereditary disorders: insight into the genetics of
human OS
Rare human hereditary disorders offer powerful insights
into genes that play critical roles in human cancer biol-
ogy in vivo. This is because they offer unequivocal
evidence of defined genetic lesions and their importance
in human disease pathogenesis. There is a cluster of
familial syndromes that predispose to the development
of OS and are of relevance to understanding the under-
lying genetics of OS. Li-Fraumeni syndrome, familial
Retinoblastoma and RecQ helicase disorders such as
Rothmund-Thomson Syndrome (RTS) are caused by
germ-line mutations of P53, RB and RECQL4 respect-
ively. These three kindreds have a greatly enhanced inci-
dence of OS compared to the general population as
documented in a range of clinical studies in affected
families. In particular, Li-Fraumeni Syndrome patients
are highly prone to develop OS, while OS is the second
most common tumour type in Retinoblastoma patients
[20-22]. OS tumours are a frequent feature of the
tumour spectrum affecting RTS patients, however unlike
mutations in p53 and the Rb pathway, RECQL4 muta-
tions are not observed in sporadic OS [23].
A range of approaches has been used to incorporate

information from clinical human OS to model the dis-
ease in the mouse. In particular, transgenic and germ-
line loss of function alleles have demonstrated important
roles for p53 mutations in generating experimental OS.
More recently, lineage-restricted somatic deletion mod-
els that generate high penetrant metastatic disease have
been described [24,25]. These models will provide a de-
finitive assessment on the roles of genes in the initiation
and maintenance of OS. Furthermore they can be
exploited to reveal new therapeutic avenues that can be
targeted for the development of new therapies, with a
particular emphasis on metastatic disease.

Human hereditary disorders and osteosarcoma
Li-fraumeni syndrome (LFS)
Li-Fraumeni syndrome is an autosomal dominant dis-
order with germ-line heterozygous mutation in P53. It is
characterized by a predisposition to a range of cancers
[26,27]. LFS patients have a highly elevated risk of devel-
oping soft tissue sarcoma and osteosarcoma [28], and
mutations in the “p53-pathway” are thought to be essen-
tial for the formation of human cancer.
Mutations in components of the p53 pathway are

found in both familial and sporadic OS. Interestingly,
the P53 allele itself is found to be mutated in human
OS, most commonly as missense mutations [29,30]. P53
mutations are not associated with therapeutic response
or metastatic status [31,32]. Other reported lesions in
the p53 pathway in human OS include amplification of
MDM2 and loss of p19ARF [33-37].

Hereditary retinoblastoma
Patients with familial retinoblastoma possess germline
mutations in the Retinoblastoma (RB) gene [38]. Rb is a
critical co-ordinator of G1-S phase cell cycle progression
through its interaction with E2F and has been implicated
in a wide range of cellular processes [39].
OS represents the second most frequent tumour in

this kindred after retinoblastoma itself, with nearly half
of all patients developing OS [40]. Most cases of spor-
adic OS present with modifications in at least one allele
in the Rb locus [41,42]. The contribution of therapy to
OS development in retinoblastoma patients may be
more significant than that occurring in LFS. In particu-
lar, OS arising from hereditary retinoblastoma is often
located at the site of prior radiotherapy. Studies of
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radiation induced OS has observed mutation of P53 and
retention of the intact RB allele in hereditary retinoblast-
oma patients [43]. As with the p53 pathway, mutations
in the members of the Rb pathway occur frequently in
OS with known mutations including amplifications of
Cyclin E and CDK4 [44-48].

OS mouse models based on p53 and Rb mutations
The majority of murine OS models to date have been
developed based on knowledge of the mutation of p53
and Rb pathways in both familial and sporadic human
OS. Mice with germline mutations of p53 developed OS,
but also succumbed to a wide range of tumours [49,50].
Mice with tumour-associated p53 variants presented
with a higher incidence of OS than germ-line p53 null
animals, amongst the tumour spectrum these animals
develop [51]. Mice with homozygous deletions of RB are
embryonic lethal and their heterozygous counterparts
are not predisposed to OS [50,52]. The role of genetic
compensation by other family members is apparent with
the Rb related p107 and p130 in certain circumstance
[53]. However, neither p107−/− nor p130−/− mice (or
compound mutants that are viable) have a reported sus-
ceptibility to OS and these genes are not frequently
mutated in human cancers based on data available
through the COSMIC database [54].
The move to conditional lineage-restricted alleles of

both p53 and pRb has allowed the development of new
and more faithful models of OS. Utilising Prx1-Cre,
which deletes LoxP flanked alleles in the early budding
mesenchymal tissue of the limbs, 22% of mice with p53
heterozygosity develop OS. Homozygous deletion of p53
had a three-fold increase in OS occurrence. However,
the deletion of Rb alone in mesenchymal progenitors
failed to produce OS tumours [55]. Interestingly the
conditional deletion of both p53 and Rb using Prx1-Cre
resulted in approximately 70% of animals developing a
poorly differentiated soft tissue sarcoma (PD-STS). This
result suggests that the cell of origin is strongly influen-
cing the arising tumour phenotype, with primitive multi-
potential cells favoring the development of PD-STS
whilst committed osteoblast precursors give rise to OS
at high incidence.
A separate group utilized the same transgenic system

and yielded similar results. Over 60% of Prx1-Cre-p53fl/fl

mice developed OS, while the homozygous deletion of
Rb in isolation again yielded no tumours. The com-
pound deletion of one Rb allele with homozygous p53
deletion increased the OS incidence rate to 92%. How-
ever, homozygous deletion of both genes yielded only
18% of OS tumours with a strong preference for hiber-
nomas [56].
Rb has been proposed to have a role in influencing late

osteoblast differentiation by interacting with Runx2 [57].
However, the removal of Rb alone is not sufficient to in-
duce OS in a number of independent studies. Rb muta-
tion does show a profound synergy with p53 mutation in
the induction of experimental OS [24,25]. Similarly,
shRNAs that reduced Rb expression in p53-deficient
OS cell lines (prior to allografts) gave rise to more ag-
gressive and multilineage tumours [56]. The experimen-
tal approaches strongly suggest that mutation on the
p53 pathway can serve as an initiating event in OS with
mutation in the Rb pathway strongly synergizing in the
immortalisation of osteoblastic cells.

Rothmund Thomson syndrome (RTS) and RecQ disorders
RTS is a rare autosomal disorder that consists of epithe-
lial features (skin atrophy, hyper/hypo-pigmentation),
congenital skeletal malformations (leading to short stat-
ure), premature ageing and increased malignant disease
[58]. Most RTS patients have germ-line mutations in the
RECQL4 DNA helicase [59-63]. RTS patients often
present with multiple malignancies. In two separate
studies, significant portions of RTS patients developed
OS with median ages below 11 yrs [23,64]. Conversely,
overexpression of Recql4 was reported in human OS
tumours with chromosomal abberations and instabilities
in the 8q24 locus, which also contains c-Myc [65,66].
RTS patients with truncating Recql4 mutations associate
with a higher risk of developing OS as compared to
non-truncated mutations [67,68].
RECQL4 is a member of a family of DNA helicases in-

cluding Bloom (BLM) and Werner (WRN) helicases, All
three members are associated with familial cancer pre-
disposition syndromes with high frequencies of mesen-
chymal derived tumours, with RTS in particular
developing OS at approximately 30% frequency. As an
ATP-dependent DNA helicase, Recql4 is recruited at the
G1 and S phases of the cell cycle and plays a critical role
in regulating DNA replication. Recql4 deficiency in mice
is associated with karyotypic abnormalities and increased
rates of aneuploidy [69,70]. Strikingly in contrast to p53
and Rb mutations, Recql4 mutations are not associated
with sporadic human OS and appear restricted to famil-
ial RTS OS. The failure to find RECQL4 mutations in
sporadic OS raises several questions regarding the na-
ture of the disease and whether it represents a distinct
entity or subtype of OS. Further efforts characterizing
the RTS- related OS are needed to clarify this and efforts
to model RTS mutations in mouse may be informative.
The contribution of prior chemotherapy/radiotherapy
for other cancers arising in RTS patients may be a con-
founding factor in RTS-associated OS.

Recql4 Mutation in the mouse
Of the familial OS syndromes, the least is known about
the role of Recql4. The expression of Recql4 shares an
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inverse relationship with Rb, although telomere-
lengthening activities are enhanced in cells lacking both
genes [71,72]. Interestingly, Recql4 expression plays a
role in osteoblast proliferation but its reduction is
reported to be needed for full differentiation [73].
The attempts at modeling of Recql4 deficiency in mice

has led to confounding results. Three non-conditional
alleles have been reported. The first allele replaced exons
5 through 8 with a LacZ cassette. The homozygous defi-
cient animals were reported as very early embryonic le-
thal between embryonic days 3–6 [74]. The second
reported allele involved deletion of exon 13. The homo-
zygous mutants were viable but exhibited severe growth
retardation and multiple abnormalities and 95% of the
mice died within 2 weeks of birth [75]. Hetrozygous
Recql4 mutants were viable and had a decreased bone
mass [73]. The third allele involved replacement of part
of exon 9 through to exon 13 with a PGK-Hprt mini
gene cassette [76]. These mice were viable and homozy-
gous Recql4 deficient animals presented with a range of
defects reminiscent of the human RTS alleles. Approxi-
mately 16% of mice with homozygous Recql4 mutations
died within 24hrs of birth. 5.8% of animals displayed
skeletal defects of the animals that survived past 24hrs.
Cancers were detected in 5% of Recql4−/− animals in an
aged cohort of 100 animals compared to 43 age matched
controls, and of these 2 animals developed OS and 3
animals developed lymphoma. This low rate of tumour
formation contrasts with the clinical presentation of
RTS. The development and characterization of new tar-
geted alleles will be needed to resolve the role of Recql4
in the initiation and maintenance of OS.

Werner & bloom syndromes
Werner syndrome is characterized by premature ageing
and cancer predisposition that occurs during adoles-
cence, whereas Bloom syndrome is characterized by
short statures and photosensitive skin [77]. Both disor-
ders are inherited in an autosomal recessive manner, and
are attributed to germ-line mutations of the WRN and
BLM genes respectively.
BLM plays a major role in maintaining genomic stabil-

ity in cells [78]. Likewise, WRN acts against DNA
breakages during chromatin structural modifications
[79]. It is interesting to note that the expression of BLM
and WRN is induced by the loss of Rb. Also, cells that
lack the normal expression of all 3 genes presented with
enhanced telomere lengthening [71,72]. When treated
with chemotherapeutics, cells that were deficient for
BLM or WRN had decreased cell proliferation with
impaired cell viability [80].
Werner Syndrome patients present with a range of

cancers including OS [81,82]. Similarly, patients with
Bloom Syndrome are predisposed to various cancers,
coupled with an early onset of these tumours [83,84]. As
for RTS, the relevance of these mutations to sporadic
OS is also unclear and further work is needed to clarify
the relationship between these OS and their sporadic
counterpart.

BLM & WRN mouse models
Genetically engineered mice that habour null mutations
of BLM were generated by 3 separate groups. Mice with
homozygous deletion of BLM were embryonic lethal by
day 13.5 and presented with an increased level of apop-
tosis and anaemia [85]. However, viable BLM-null mice
were generated with the removal of neomycin plasmid
sequence, of which 30% of these mice presented with a
wide spectrum of spontaneous tumours [86]. Heterozy-
gous mutant mice were also viable, with a predisposition
to develop tumours [87].
Mice with homozygous deficiency for WRN were vi-

able and developed tumours by 2 years of age. Interest-
ingly, the combined deletions of p53 and WRN in mice
resulted in various soft tissue sarcomas, where half of
these mice developed tumours by 3 months of age [88].
However, its strongest link to OS was evident when
WRN and Telomerase RNA Component (Terc) defi-
ciency were combined in mice, with 50% of these mice
developing OS [89]. Of note, these were not lineage-
restricted alleles suggesting that these pathways co-
operate specifically in osteoblasts and strongly synergise
in the development of OS.

Paget’s Disease and p62
Paget’s disease of the bone is characterized by abnormal-
ities in bone growth and destruction, resulting in limb
deformities [90]. It is autosomal dominant in nature, and
affects mainly adults over the age of 55 [91,92]. It is also
often asymptomatic until patients present with fracture
or bone pain [93].
Sequestosome1 (SQSTM1) is the only gene currently

identified and associated with Paget’s disease of the bone
[94]. Also known as p62, this gene contributes to autop-
hagy and removal of abnormal cells [95]. Interestingly,
p62 expression needs to be repressed to suppress
tumourigenesis [96].
The fraction of patients with Paget’s disease presenting

with OS does not exceed 1% [97-101]. This cohort coin-
cide with the second peak of OS incidence rates in the
elderly [1,102]. The survival rate of Paget’s disease-
associated OS is 5% at 5 years [103].

Insights from p62 mouse models
Two separate groups generated transgenic mice that
possessed the p62 mutation present in patients with
Paget’s disease. There were conflicting results with
regards to the histological bone features. However, mice
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from both groups presented with increased osteoclasts
in response to RANKL stimulation, reminiscent of
Paget’s disease patients [104,105]. No OS was reported
in these mice.
Other genes associated with osteosarcoma
A range of other genes have been implicated in OS
pathogenesis based on studies of human OS samples
and cell lines (Table 1). These mutations appear to be
cooperative to the defects in the p53 and Rb pathways.
Their involvement in OS pathogenesis is also supported
by evidence derived from a range of genetically engi-
neered mouse approaches.
Table 1 Additional genes implicated in osteosarcoma (not dis

Gene Human
genetic
disorder?

Gene function / Relevance to
cancer

OS pen

p14ARF No Encoded by the CDKN2a locus; Binds
to MDM2-p53 complex to prevent p53
degradation [106]

Ectopic
chemo
Alterati
tumour
express
methyl
survival

p16INK4a No Encoded by the CDKN2a locus; CDK4
inhibitor; Member of the RB pathway

Loss of
with ge
[44,108
pediatr
[114]; C
OS tum

p21CIP1/
CDKN1a

No Member of p53 pathway; Cell cycle
regulator at G1 phase; Contributes to
DNA replication & repair

Overex
arrest in
express
sample
to inter
OS [120

c-fos No Oncogene; transcription factor Detecti
radiatio
[123]; O
tumour
metasta

Twist Saethre-
Chotzen
Syndrome

Transcription factor, downstream of
Runx2; transient loss in Twist is
required in osteoblast differentiation
[128]; Found to inhibit p53-modulated
apoptosis through the interaction of
ARF [129]

Found
sarcom
deleted
[130,13

Wnt
signaling-
pathway

Tooth
agenesis,
Colorectal
Cancer,
Anonychia
[133,134]

Regulator of cell proliferation and
differentation during embryonic
development

Membe
detecte
links to

WWOX Eosphgeal
Squamous Cell
Carcinoma
[138]

Oxidoreductase, located within fragile
site locus [139]; potential tumour
suppressor gene [140]

Absent
detecte
c-Fos
The overexpression of c-Fos was first noted in human
OS tumour samples, particularly in metastasized
tumours [124,125]. Its expression was also detected in
mouse sporadic and radiation-induced OS [123]. In
addition, genetically engineered mice that overexpressed
c-Fos developed OS, thus suggestive of its role in OS
pathogenesis [126,127]. However, the overexpression of
c-Fos in humans is linked to fibrous dysplasia, of which
less than 2% of patients develop OS [143,144]. Also, a
recent study detected no change in c-Fos gene expres-
sion between human osteoblasts and OS tumours, which
is in conflict with findings from Gamberi and Wu [66].
Therefore, the role of c-Fos in OS requires further
cussed in text)

etrance? OS relevance? Mouse model generated?

expression in OS cells increases
-apoptotic sensitivity [107];
ons of p14 genes detected in OS
samples [108], which its
ion is inverse of p53 [109];
ation of p14 is linked to poor
rates for OS patients [110].

Mouse null for the CDKN2a and
CDKN2b developed soft-tissue
sarcomas [111]

p16 expression in OS tumours
ne deletion detected
,112,113]. Loss of expression in
ic OS is linked to poor survival
oexpression with Rb is linked to
our relapse [109].

Mesenchymal stem cells from p16
null mice with overexpressed cMYC
developed OS tumours [115]; p16 null
mice are larger than wildtype
counterparts, and developed soft-
tissue sarcomas among other tumour
types [116]

pression resulted ion growth
OS cell lines [117]; p21

ion detected in OS patient
s [118,119]; interacts with Runx2
rupt osteoblast differentiation in
]

Normal development with no
tumours detected at 7 months [121];
Spontaneous tumours detected at 16
months, predominantly soft-tissue
sarcomas [122]; Soft tissue sarcoma
detected in mice with deletions in
WRN and p21 [88]

on of c-fos in spontaneous &
n-induced OS samples in mice
verexpression in human OS
s, especially in relapsed and
sised tumours [124,125]

Transgenic mice gave rise to OS
[126,127]

to be expressed in soft tissue
as [129]; Twist found to be
or amplified in OS tumours

1]

Mice lacking the expression of Twist
and APC gave rise to OS tumours
[132]

rs of the Wnt pathway were
d in OS cell lines with suggested
metastasis [135,136]

Inhibition of Wnt signaling (thru the
use of DKK) in MSCs resulted in
sarcoma formation [137]

or reduced WWOX expression
d in human OS samples [141]

OS was detected in juvenile wwox
null mice [142]
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studies to close the gap between transgenic mouse biol-
ogy and human clinical studies.
c-MYC
Amplification of the c-MYC gene is more prominent in
Paget’s disease-related OS as compared to primary OS,
although genetic rearrangement does not appear to be
the cause [145,146]. Clinically, c-MYC expression levels
in OS tumour samples was linked to resistance to
methotrexate, with high c-MYC expression correlating
to worse outcomes in OS patients [147].
A small cohort of transgenic mice developed OS when

c-MYC expression was turned on with a tetracycline
regulated transgene in haematopoietic cells [148]. The
OS arising in these studies was most likely a result of ec-
topic expression of the transgene in osteoblastic cells.
When c-MYC expression was inactivated by doxycycline
administration, tumours transplanted into syngeneic
mice regressed as OS cells differentiated into mature
osteocytes [149]. In a subsequent report from the same
group, the tumour regression from c-MYC inactivation
in OS cells was attributed to the induction of senescence
[150]. The development of OS was also reported in ret-
rovirally transdcued c-MYC-overexpressing mesenchy-
mal progenitor cells derived from Ink4a/Arf mutant
mice [115].
Osteoblast lineage restricted expression of Simian Virus
40 (SV40) T antigen
Antigens of the SV40 virus interact with and inactivate
tumour suppressor genes including both Rb and p53
[151,152]. Interestingly, the SV40 gene was detected in a
portion of human OS tumours, of which the sequence
revealed viral integration in half of these tumours [153].
Early studies of transgenic mice that expressed SV40
antigens presented with OS and other tumours [154,155].
A recent study of mice that expressed the SV40 T antigen
in mature osteoblasts using the osteocalcin promoter pre-
sented with bone tumours and were morbid by 21 weeks
of age. This timeframe for tumour development is strik-
ingly similar to that observed with Osx-Cre p53fl/flpRbfl/fl

animals. The tumours in Ocn-SV40Tag animals were his-
tologically confirmed as OS and possessed various levels
of calcification. Also, the OS tumours metastasized at
high frequency and were found predominantly in the lung
and spleen [156].
Further analysis of tumours derived in this model

revealed a recurrent genomic deletion of the Prkar1a gene
[156]. Correspondingly, deletion of 1 allele of Prkar1a dra-
matically accelerated OS formation in mice with Ocn-SV40
T antigen with tumours arising within 5 weeks of birth.
The analysis of human tumours found a subset of human
OS also habour a Prkar1a deletion, demonstrating the
power of mouse models to uncover new information into
the complex genetics of human OS.
Cell cycle genes: p15INK4b, p16INK4a
Several negative regulators of the G1-S cell cycle phase
transition have been implicated in human OS. These fall
into the “Rb pathway” and provide further support to
the near obligate nature of this pathway disruption in
the genesis of OS. p15INK4b was demonstrated to be
repressed by c-MYC expression [157]. Mice deficient for
p15INK4b (along with p14ARF and p16INK4a) developed a
wide spectrum of cancers, including soft tissue sarcomas
[111]. Genetic alterations were found in human patient-
derived OS cell lines in the p15INK4b locus [112]. Dele-
tions of the p16 genomic locus were apparent in samples
from OS patients [158]. Loss of p16INK4A expression was
found in pediatric OS samples, with its expression level
correlating to survival rates [114].
Translating human cancer into animal models:
issues & challenges
Human cell lines vs animal models?
Experimental studies of OS have involved the use of cell
lines and animal disease models [159,160]. However,
cytogenetic complexity in human OS has confounded
the efforts [161]. In particular, some human OS cell lines
such as U2OS and SAOS-2 have been in use and pas-
saged for many decades [162,163]. The extended passage
and tissue culture can result in the acquisition of adap-
tive mutations from cell-culture conditions, as seen in
long-term culturing of embryonic stem cells and lung
cancer cell lines [164-166]. As such, the drift in gene ex-
pression signatures may make it less representative of
the original tumour tissue and also lead to heterogeneity
of the cell line populations held by different investigators
[167,168]. The recent establishment and description of
new OS cell lines opens up new avenues of study and
hopefully improves the fidelity of tissue culture studies
when referenced back to the human disease.
Murine and canine primary OS-derived cells have an

advantage in this aspect. As a result of the relatively
large amounts of primary, non-treated tumour tissue
being available it is possible to establish early-passage
cell lines for studies. Also, as mice on pure genetic back-
grounds can be used, this will eliminate a significant
source of intra-sample variation. The gene signatures
from these lines would be expected to more closely
mimic their primary tumour counterpart [165]. Also, the
issues of over-passaging and culture-adaptation would
be avoided as a result [169,170]. Most importantly,
paired primary and metastatic disease samples from un-
treated mice can be isolated for robust comparisons of
paired disease. This research aspect would not be readily
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possible from available human samples and canine OS
cell lines.
The recent study in the identification of the Prkar1a gene

performed by Khokha and colleagues highlights the power
of genetically engineered murine models to gain new
insights into human OS genetics [156]. In particular, the
use of high-resolution comparative genomic hybridization
(cGH) in primary tumours among other complementary
analytical techniques was utilized in this project. This
allows biologically relevant genetic changes during OS
pathogenesis to be isolated, defined and validated from an-
euploidy- associated “noise”. Such approaches coupled with
the developed murine models may allow significant
advances in our understanding of the complexity of OS.
The comparison of primary and metastatic disease

from as many of these models as possible would be a
novel approach to develop a better understanding of
metastatic disease. This will be very useful for under-
standing the genetics and cell biology of metastatic OS,
and the epigenetic processes that drive these mechan-
isms. The experimental approach focused on by analysis
of paired primary and metastatic tumours and cell lines
derived from the same animal should provide a strong
basis for identifying key drivers of the progression and
maintenance of metastatic disease. Such an approach
could be a starting point to develop better therapeutic
strategies for treating metastatic disease, the primary
cause of mortality in OS patients.
Different mouse models for different OS conditions
Various technological advancements have been incorpo-
rated into generating transgenic cancer mouse models.
This includes germline & conditional knockouts, alleles
bearing point mutations and tissue/region-specific gene
expression [171,172]. These technologies have allowed
for multiple paradigms in exploring targeted gene ex-
pression and its role in OS pathogenesis. For instance,
the Cre-Lox system is widely used to turn off the expres-
sion of targeted genes [173]. The turning off of desired
genes using Cre-Lox is most often an irreversible step
and is useful for modelling OS related to the partial and
complete loss of gene function. For instance, the occur-
rence of OS in mice with homozygous p53 and Rb dele-
tions mimics the clinical scenario of patients with
autosomal-dominant hereditary disorders as well as
lesions found in the sporadic OS population [24,25].
The mouse models employed by two separate groups

produced varying OS incidence rates, which was corre-
lated with pRb and p53 status [24,25]. This observation
is concordant with various sporadic-OS patient reports
where allelic alterations for both genes were reported
retrospectively [42,174-176]. The murine models have
suggested strongly that deficiency for p53 is a strong
initiating event for the development of OS and that dis-
ruption of the Rb pathway is a strongly synergistic muta-
tion. The recent work from the Lees group provides an
elegant model for the interaction and relative contribu-
tion of the p53 and pRb pathway mutations to the bio-
logical aspects of OS [56]. An unresolved question
which will require analysis of human OS is to determine
if the genetic alterations in OS could be different be-
tween sporadic and those associated with hereditary
disorders.
An outstanding question is do mutations in all mem-

bers of the p53 and Rb pathways contribute equally to
tumour formation? For example, null mutation of the
cyclin-dependent kinase p27Kip1, which results in de-
regulation of the “Rb pathway” did not result in OS in
these mice [122,177]. When coupled with a p53 muta-
tion would p27Kip1 or p21Cip1 deficiency recapitulate all
or only partial aspects of the loss of Rb? This is intri-
guing in light of the spectrum of mutations that have
been reported in human OS. It provides an opportunity
to compare mutations in distinct components of these
pathways directly in the murine models that have been
developed.
The emerging use of RNA interference (RNAi) in

transgenic cancer models presents an exciting avenue to
explore OS genetics and therapeutics. This is because
the expression of targeted genes can be manipulated re-
versibly in a temporally controlled fashion to elucidate
its biological purpose [178-180]. Also, this model pro-
vides the attractive prospect of exploring therapeutic tar-
get inhibition and resistance. As siRNA/shRNA
represents a loss of function allele that are efficient but
rarely complete this technology could be harnessed for
the rapid and large scale in vivo screening of putative
therapeutic targets. As small molecule inhibitors, like
siRNA/shRNA, provide efficient but rarely complete tar-
get inactivation the testing of candidate therapeutic tar-
gets is highly suited to this approach.

The OS cell of origin
The OS cell of origin has been widely discussed in the re-
search literature. Its identity was proposed to be mesen-
chymal stem cells due to its potential to give rise to
osteoblasts [181-183]. It also aligns with the notion that
OS is differentiation-defective, due to the lack of terminally
differentiated osteoblastic cells [120,184,185]. Identified by
expression of Runx2, these mesenchymal progenitors are
purported to be the source of OS initiating cells [186-189].
It is important to note that the cancer cell of origin is not
necessarily related to the origin of the cancer stem cell
[190]. Likewise, the OS cell of origin need not be mesen-
chymal stem cells, despite the various postulations suggest-
ing this. In particular, the deletion of p53 in mesenchymal
progenitor cells only yielded 61% of OS, with the rest being
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poorly differentiated soft-tissue sarcoma [55]. Also, soft-
tissue sarcomas seem most likely to arise from mesenchy-
mal stem/progenitor cells [191,192]. As the multipotent
mesenchymal/skeletal stem cells can give rise to bone, car-
tilage and adipose cell lineages, perhaps it plays a more
realistic purpose as a pan-sarcoma cell of origin.
Data derived from a range of genetic approaches

most strongly favours the OS cell of origin to be found
within the committed osteoblast lineage. In particular,
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Table 2 OS Incidence rates, murine genotypes & its
associated cell lineages

Cell lineage Genotype OS penetrance

Mesenchymal /
Skeletal progenitors

Prx1-Cre-p53fl/fl 61% [55]; 62% [56]

Prx1-Cre-p53fl/fl-Rbfl/+ 92% [56]

Prx1-Cre-p53fl/fl-Rbfl/fl 18% [55]; 29% [56]

Pre-Osteoblasts Osx-Cre-Rbfl/fl 0% [24]; 0% [25]

Osx-Cre-p53fl/fl 100% [24]; 100% [25]

Osx-Cre-p53fl/fl-Rbfl/fl 53% [24]; 100% [25]

Osx-Cre-p53fl/fl-Rbfl/+ 72% [24]; 100% [25]

Col1h13.6-Cre-p53fl/fl 60% [193]

Osteoblasts Col1h12.3-Cre-p53fl/fl 85% [55]

Osteocalcin-SV40 T antigen 100% [156]
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arises from the osteoblast lineage-committed progenitor
population and that the resulting tumour phenotype is a re-
sult of the accumulated genetic mutations that are present.

Metastatic disease – high fidelity and high penetrant
models
The use of cancer mouse models with high penetrance
allows a substantial population of mice with metastatic
disease to be established. In particular, the mice gener-
ated by 3 separate groups developed OS with significant
metastasis to soft tissues [24,25,156]. These models will
be valuable in pre-clinical studies, as primary and metas-
tasized tumours could be procured for the comparative
studies. Advances in small animal imaging techniques
such as μPET and μCT coupled with serology for alka-
line phosphatase make possible the establishment of
cohorts of animals with primary and a small metastatic
disease burden. This strategy makes possible an assess-
ment of therapeutic interventions in the context of
primary and metastatic disease which are the most
pressing clinical need. Longitudinal studies using such
approaches would be an effective means to test and tri-
age candidate therapeutic approaches in a controlled
and reproducible manner. When coupled with xeno-
grafts of human material it may facilitate translation into
rational clinical trials. Also, untreated paired tumour tis-
sue will be useful as it is not readily collected in
humans.

Conclusion
Li-Fraumeni, Retinoblastoma and Rothmund-Thomson
Syndrome are three human familial cancer syndromes
that present with the strongest association to OS.
Amongst sporadic OS, a wider range of genes and mem-
bers of the p53 and Rb pathways are also implicated in
OS pathogenesis. These mutations fulfill a range of the
prerequisite requirements associated with the hallmarks
of cancer, however the genes do not carry equal
importance in tumour biology nor fully account for the
pathogenesis of OS [194]. The integration of genetically
engineered murine models based on familial human gen-
etics of OS and additional experimental models such as
the spontaneous OS arising in large breed dogs combine
to form the basis of a preclinical platform that can serve
to translate the extensive basic research efforts asso-
ciated with OS to a clinically meaningful advantage. The
use of primary human xenografts, in contrast to
approaches using established human OS cell lines, adds
an important component to the preclinical assessment
phase of any new therapeutic options [195]. The under-
lying genetics in OS covers a wide spectrum, ranging
from complete loss of gene function to hypomorphic
mutations and gain of function. Various genetically
modified mouse models of OS are now available and
have demonstrated clearly that these are able to recap-
itulate the clinical spectrum of human OS.
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