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Abstract

In multiple sclerosis (MS), the inflammation and demyelination of the central

nervous system (CNS) develop in distinct ways. This makes diagnosing patients

difficult, imperative to initiating early and proper treatment. Several common

features exist, among them a profound infiltration of monocytes into the CNS

mediating demyelination and tissue destruction. In the periphery, monocytes

are divided into three subsets depending on expression of CD14 and CD16,

representing different stages of activation and differentiation. To investigate

their involvement in MS, peripheral blood mononuclear cells (PBMCs) from

61 patients with incipient, untreated MS and 22 symptomatic control (SC)

patients as well as 6 patients with radiologically isolated syndrome (RIS) were

characterized ex vivo. In addition, paired serum and cerebrospinal fluid (CSF)

samples were analyzed with a panel of biomarkers. In PBMC samples, we

demonstrate decreased levels of nonclassical monocytes with a concomitant

significant decrease of human endogenous retrovirus (HERV) H3 envelope

epitopes on this monocyte subset compared with SC and RIS. The observed

HERV expression is present on nonclassical monocytes irrespective of MS and

thus presumably a result of the inflammatory activation. For the other surface

markers analyzed, we found significantly decreased expression between classical

and nonclassical monocytes. In matched samples of CSF a highly significant

increase in levels of soluble markers of activation and inflammation is shown,

and notably this is not the case for the serum samples. Of the soluble markers

investigated, interleukin (IL)-12/IL-23p40 had the highest discriminatory power

in differentiating patients with MS from SC and RIS, almost comparable to the

immunoglobulin G index.

INTRODUCTION

Multiple factors influence the initiation and progression

of the neuroinflammatory disease multiple sclerosis (MS).

Intense research efforts have so far not succeeded in

identifying a single, defined biomarker for the disease.1,2

Studies of families with MS have defined genetic variants

that may account for up to one-third of the inherent

susceptibility,3 but environmental factors such as Epstein–
Barr virus infection or smoking still account for the

majority of risk factors for MS.4 Without a predominant

exogenous risk factor, it thus remains an open question

whether MS is triggered in the periphery or in the central

nervous system (CNS).5 Despite the considerable

heterogeneity of MS, several disease subtypes have been

recognized, and generally, patients experience either

relapsing-remitting (RRMS) or progressive (PMS) disease

courses. Patients who do not have spreading of

symptoms in both time and space are diagnosed with

clinically isolated syndrome (CIS), of which most (eight

out of ten) eventually progress to MS.6 Newly revised

guidelines for MS diagnostics7 establish the diagnosis of
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MS if the first symptoms with objective neurological

findings and typical MS abnormalities on magnetic

resonance imaging (MRI) are combined with a positive

test for oligoclonal bands or an increased

immunoglobulin G (IgG) index. This emphasizes the

importance of biomarkers in MS diagnostics. A number

of potential biomarkers have thus been investigated in

various body fluids, but given the complex nature of the

disease, only a few candidates have been considered as

contributions to the diagnostic criteria of MS.8

In addition to soluble markers, several key surface

receptors involved in immune regulation are shed from

the surfaces of immune cells as a result of inflammatory

stimuli.9–11 A combination of surface-bound and secreted

molecules may therefore have potential as diagnostic and

prognostic markers of disease and progression.12,13

Multifactorial processes of inflammation and

neurodegeneration can thus be accounted for and

biomarker panels presently hold the best promise for

earlier diagnosis and improved prognostics.14 In

biomarker panels, an individual marker may not achieve

sufficiently high sensitivity and specificity, but combined

with other markers may contribute positively to the

overall diagnostic and/or prognostic value of the test.15

Historically, the main focus in the pathogenesis of MS

has been on autoreactive T cells, but substantial evidence

now also implies other cell types (e.g. peripheral

monocytes) as prominent cell types early in disease,16

mediating both proinflammatory and anti-inflammatory

responses.17,18 In peripheral blood, monocytes are divided

into three subsets, each performing different functions by

differential expression of antigens and cytokines,19,20 and

it has recently been established that the three subsets are

a result of a gradual maturation process.21,22 Expression

levels of CD14 and CD16 are used to distinguish classical

(CD14++CD16�), intermediate (CD14++CD16+) and

nonclassical (CD14+CD16++) monocyte subsets,23 and

similar subsets exist in other species, for example, in mice

based on LY6C, CCR2 and CX3CR1 expression.24

In a number of chronic inflammatory diseases such as

arthritis,25 coronary heart disease,26 MS,27 psoriasis28 or

HIV encephalitis,29 monocytes exhibit characteristics of

activation during periods of disease activity. The different

pathways of monocyte activation predetermine the

immune response in each individual. This may have led

to the inconsistencies in attributing which subsets are

proinflammatory and which ligands elicit migration

toward inflammation.19,30–32 In pathologies involving the

CNS, however, it is recognized that specifically CCR1,

CCR2 and CCR5 are among the most important

receptors for migration.33 These receptors are highly

expressed on classical monocytes, but evidence also

indicates that intermediate and patrolling nonclassical

monocytes are migrating into the CNS and promoting

infiltration of other cells as well as tissue destruction.17

We have previously shown that in patients with MS

compared with healthy controls, there is a significant

increase of nonclassical monocytes with a concomitant

reduction of classical monocytes.34 In addition, a significant

reduction of several surface receptors was found on the

intermediate and nonclassical monocytes, possibly because

of increased shedding activity. By contrast, expression of

human endogenous retrovirus (HERV) envelope (Env)

epitopes, encoded by both HERV-H/F and HERV-W, was

localized to the nonclassical monocytes. Expression of

HERVs has previously been associated with neurological

diseases, notably MS,35 and we have previously

demonstrated expression of these HERV epitopes in

patients with active MS36,37 as well as an HERV-directed

humoral immune response.38–40 In addition to this, our

previous studies of monocytes were accompanied by

analysis of selected markers of inflammation and

neurodegeneration in serum and cerebrospinal fluid (CSF),

establishing the potential of combining several biomarkers

into a single multivariable model.15,34

To further investigate the role of monocyte subsets as

well as HERVs in patients with MS, we here present

further analysis of the circulating monocytes and their

subsets in newly diagnosed patients with MS. In this

study, we compared the newly diagnosed patients with

MS to a group of patients presenting with MS-like

symptoms but without documented objective

neurological findings: symptomatic controls (SCs),

enrolled during the diagnostic workup.

Furthermore, as defining biomarkers for MS remains

elusive, we have investigated a panel of 17 soluble

biomarkers, illustrating essential components in the

pathogenesis of MS focusing on inflammation and

monocyte/macrophage activity (see Supplementary table 1

for a review of the selected soluble markers).

RESULTS

Patients enrolled in this study were undergoing diagnostic

workup for MS and thus largely represent incipient MS.

Patients that fulfill some, but not all of the diagnostic

criteria for MS are often encountered in the clinic. Here,

these patients comprise the SC group if they did not have

another defined neurological disease (please refer to the

Methods for further details). This is an advantage for the

proficiency of the biomarker analysis, as clinically

relevant biomarkers ideally should be able to distinguish

these patient groups. Initially, 92 patients were enrolled

during a period of 2 years (see Supplementary figure 1).

Of those, one opted out and two were excluded after

subsequent diagnoses of anti-AQP4-positive NMO and

550

Monocytes and markers of inflammation in MS M Carstensen et al.



motor neuron disease, respectively. The final cohort

comprises 22 patients with CIS, 33 patients with RRMS,

6 patients with PMS, 6 patients with radiologically

isolated syndrome (RIS) and 22 SCs (see Supplementary

table 2). The demographics of the cohort are presented in

Table 1.

Peripheral blood mononuclear cells (PBMCs) were

isolated by density-gradient centrifugation and subjected

to flow cytometric analysis to characterize the three

distinct monocyte subsets as well as expression of other

markers of activation and cell signaling. The gating

strategy used for the flow cytometric analyses is shown in

Figure 1.

The median levels and range of all the surface markers

analyzed are presented in Supplementary table 3, showing

that the HERV H3 Env epitopes are expressed at a

significantly lower level in patients with MS or CIS than

in SC and RIS. Supplementary table 3 also shows the

existing overlap in the surface marker levels for the five

patient groups. A Kruskal–Wallis test with Dunn’s

multiple comparisons test (a = 0.05) was used to

calculate the significance of differences between groups.

In Supplementary table 4, the variation in cell surface

marker expression between MS groups and correlations

with clinical disease measures are presented. Overall, no

significant differences were seen in surface marker

expression between RRMS and PMS, between MS and

CIS or between RIS and SC, and we thus further grouped

these patients into MS + CIS and SC + RIS. Of particular

interest in comparing patients with MS + CIS versus

SC + RIS is the significant difference between HERV H3

Env epitopes on the nonclassical monocyte population,

making it the only surface marker analyzed that is able to

distinguish between these patient groups (Figures 2 and

3). Furthermore, no differences in surface marker

expression were found in patients with MS + CIS with

regard to gender distribution, oligoclonal band status,

progression or medication at follow-up.

Expression of surface markers on the three monocyte

subsets is shown in Supplementary figure 2. Interestingly,

Table 1. Demographic and clinical data of patients with CIS, RRMS, PMS, RIS and SC.

Characteristics CIS RRMS PMS RIS SC

No. of patients (N = 89) n = 22 n = 33 n = 6 n = 6 n = 22

Gender (M/F) (9/13) (9/24) (1/5) (0/6) (4/18)

Agea 38 37 52 39.5 37

(range) (22–63) (23–54) (45–60) (35–51) (20–58)

EDSSb 2.0 2.5 3.0 N/A N/A

(range) (0–3.5) (0–6.0) (2.5–4.5) N/A N/A

IgG index 0.75 0.77 0.74 0.45 0.44

(range) (0.47–1.72) (0.44–2.22) (0.56–1.28) (0.42–0.47) (0.39–0.56)

OCB positive 16 32 6 0 0

Progressed at follow-upc 9 12 5 0 0

Medication at follow-upd 11 30 0 0 0

Time since last attack (days)e 61 71 N/A N/A N/A

(range) (7–399) (4–307) N/A N/A N/A

Follow-up time (months) 24 28 25 24 25

(range) (17–37) (9–41) (17–40) (17–36) (18–39)

Patients in the TNL categoryf

0 lesions 1 0 0 0 10

1–10 lesions 14 13 2 6 0

11–20 lesions 4 9 1 0 0

>20 lesions 2 11 3 0 0

Unspecific WM lesions 1 0 0 0 12

CIS, clinically isolated syndrome; EDSS, Expanded Disability Status Scale; N/A, not applicable or available; OCB, oligoclonal bands; PMS,

progressive multiple sclerosis; RIS, radiologically isolated syndrome; RRMS, relapsing-remitting multiple sclerosis; SC, symptomatic control;

WM, white matter.
a

Median age (in years), at the time of sampling.
b

Median values of EDSS, determined at diagnostic workup.
c

Progressed at follow-up, estimated on the basis of a clinically defined attack or a sustained increase of more than 0.5 in the EDSS scale

within a follow-up period of 9–41 months (median = 25).
d

Individuals receiving immune-modulating therapy within the follow-up period versus individuals that did not.
e

Time since last attack: the period of time (in days) from latest attack to the sampling.
f

TNL, Total number of white matter lesions determined by fluid-attenuated inversion recovery sequences on magnetic resonance imaging.
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the differences in surface marker expression between the

monocyte subsets indicate a highly coordinated

downregulation or shedding of surface receptors on the

intermediate and nonclassical monocytes compared with

classical monocytes, except for TACE on the intermediate

subset. Mann–Whitney U-tests were used to calculate the

significance of differences between surface marker

expression on the monocyte subsets.

The analyses of cell surface marker expression on

peripheral blood monocytes were accompanied by

multiplex measurements of an extensive panel of relevant

soluble markers in paired CSF and serum samples from

the study cohort. Supplementary tables 5 and 6 illustrate

variations in levels of soluble markers in CSF and serum,

respectively, between the MS-relevant groups as well as

correlations with clinical disease measures. No distinct

differences were seen for the soluble markers in CSF

between RRMS and PMS, between MS and CIS or

between RIS and SC, indicating the suitability of the

grouping of patients into MS + CIS and SC + RIS. When

comparing these patient groups, however, highly

significant differences were seen in CSF for interferon-c,
interleukin (IL)-1b, IL-8, IL-10, tumor necrosis factor

alpha (TNFa), IL-7, IL-12/IL-23p40, IL-17A, macrophage

inflammatory protein-1b and vascular endothelial growth

factor (VEGF), indicating that such biomarkers may be

used individually—or preferably in combination—to

differentiate patients with MS + CIS from SC + RIS (see
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Figure 1. Gating strategy used in the flow cytometric analysis. A sample from a representative patient with RRMS was used for this figure.

(a) From left to right: Total PBMCs (> 300,000 events) were gated according to their size and granularity in forward scatter-area (FSC-A) / side

scatter-area (SSC-A); aggregated cells were removed according to forward scatter-area (FSC-A) / FSC-H and side scatter-area (SSC-A) / SSC-H

leaving only singlets; dead cells as well as NK-cells were removed according to staining with a LIVE/DEAD cell stain and monoclonal anti-CD56

antibody, respectively; monocytes (> 100,000 events) were gated in forward scatter-area (FSC-A) / side scatter-area (SSC-A); and finally the three

monocyte subsets (classical, intermediate, non-classical) were gated according to their CD14/CD16 expression. (b) From left to right: Surface

marker expression of CD11b, CD18, CD40, CD64, CD86, CD163, CCR1, CCR2, CCR5, and TACE were determined by gating on positive cells

(blue). Appropriate isotype controls (red) were used to determine the unspecific antibody binding. (c) From left to right: Human endogenous

retrovirus (HERV) expression was determined on the monocyte population, and on the three monocyte subsets (classical, intermediate, non-

classical) by incubation with sera from rabbits immunized with HERV H3 Env (top row) or HERV W3 Env (bottom row) peptide antigens (blue) as

described previously 36 and with the appropriate control (pre-immune sera) (red) to determine the positive populations (shaded grey area

represent the overlap between the two curves).
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also Figure 4). As seen from Supplementary table 6, this

is not evident for the serum samples, where only serum

IL-7 is significantly different between MS + CIS and

SC + RIS. In the present study, this illustrates that the

levels of biomarkers in serum were not correlated with

the inflammatory processes occurring in the CNS,

whereas levels of biomarkers in the CSF were highly

distinct for the two groups.

Supplementary table 7 shows the median levels and

range of the soluble markers analyzed in CSF and serum

and the CSF-to-serum ratio. This table illustrates that the

biomarker levels differ significantly between the MS
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Figure 3. Differences in the monocyte subsets between patient groups and in the expression of HERV Env epitopes. (a) The differences in the

three monocyte subsets (classical, intermediate and nonclassical) between patient (CIS + RRMS + PMS) and control (SC + RIS) samples,

normalized to the median of the control samples for each subset; (b) expressions of HERV H3 Env and (c) HERV W3 Env on the three monocyte

subsets were determined as the median fluorescence index by calculating the median fluorescence for each sample and dividing by the median

fluorescence of the appropriate control (preimmune sera). Bars represent the median of the subsets and braces indicate a significant difference

(Mann–Whitney U-test) between the median of the patient group (n = 61) and the median of the control group (n = 28). P-values are shown.

Env, envelope; CIS, clinically isolated syndrome; HERV, human endogenous retrovirus; PMS, progressive multiple sclerosis; Pt, patients; RIS,

radiologically isolated syndrome; RRMS, relapsing-remitting multiple sclerosis; SC, symptomatic control.
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Figure 4. Differences in the soluble marker levels in CSF of patient (CIS + RRMS + PMS) versus control (SC + RIS) samples. The soluble markers

were graphed in pg mL�1: (a) the markers with a median between 0 and 1 (pg mL�1); (b) the markers with a median between 0 and 6

(pg mL�1); (c) the markers with a median above 6 (pg mL�1). The CSF IgG index = (CSF IgG 9 serum albumin) 9 (CSF albumin 9 serum IgG)�1

is included here as the index of local IgG production and it serves as a reference biomarker. Bars represent the median of the population and

braces indicate a significant difference (Mann–Whitney U-test) between the median of the patient group (n = 61) and the median of the control

group (n = 28). P-values are shown. CIS, clinically isolated syndrome; CSF, cerebrospinal fluid; Env, envelope; GM-CSF, granulocyte-macrophage

colony stimulating factor; IFNc, interferon gamma; Ig, immunoglobulin; IL, interleukin; MCP-1, monocyte chemoattractant protein; MIP-1b,

macrophage inflammatory protein-1b; PMS, progressive multiple sclerosis; Pt, patients; RIS, radiologically isolated syndrome; RRMS, relapsing-

remitting multiple sclerosis; SC, symptomatic control; TNFa, tumor necrosis factor alpha; VEGF, vascular endothelial growth factor.
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group and the CS + RIS control group mainly in CSF

and CSF-to-serum ratio. Serum IL-2, serum IL-7 and

serum IL-12/IL-23p40 do, however, differ significantly

between PMS and SC; between RRMS, PMS, RIS and SC

and between PMS, RIS and SC, respectively, but only

contribute little to the differences in the ratio. The results

in Supplementary table 7 also illustrate the existing

overlap in the soluble biomarker levels for the five patient

groups.

To further investigate the role of the surface and

soluble biomarkers, the surface and soluble markers in

CSF, serum and their respective ratios were correlated

using Spearman’s correlations. Figure 5 shows the rho

values of the correlations; both positive (blue) and

negative (red) correlations are shown. Correlations with a

significant P-value are marked with black frames (see

Supplementary table 8 for rho and P-values).

Interestingly, several surface markers correlate

significantly with the soluble markers and specifically

surface-bound CD163 correlates significantly with nine of

the soluble markers. Of those, serum IL-7 and CSF VEGF

also differ significantly between the patients with

MS + CIS and the controls SC + RIS. However, the only

surface marker that differs significantly between patients

with MS + CIS and SC + RIS is the HERV H3 Env on

the nonclassical monocyte population, and HERV H3

Env only correlates significantly with the monocyte

chemoattractant protein (MCP)-4 ratio, which does not

differ significantly between any of the five patient groups.

By contrast, the expression of the receptor CCR-5

correlates significantly with three chemotactic proteins/

ligands in serum as well as the proinflammatory INFc.
Similarly, expression of TACE correlates significantly with

IL-12/IL-23p40 and TNFa in CSF but not in serum,

indicating that there are other sources of these proteins

in serum, for example, tissue homing or resident

leucocytes at distal sites of inflammation.

To explore the biomarker potential of the surface and

soluble markers that are significantly different between

patients with MS + CIS and SC + RIS, a logistic

regression analysis with receiver operating characteristic

curve output was performed. Figure 6 shows the receiver

operating characteristic curves with area under the curve

(AUC) as a measure of their respective discriminatory

power. As seen from the graphs, the discriminatory

power of all the markers are higher than 70%, except for

IL-17A in CSF for which this is 68.4%, and are thus fair

markers of disease as defined by Xia et al.14 When all

contributions are combined, the discriminatory power is

98.7% [95% confidence interval (CI) 0.97–1.0]; 6%

higher than any of the individual contributions. Notably,

the contributions from both TNFa and IL-12/IL-23p40 in

CSF are higher than 85%, and in combination these

amount to 94.7% (95% CI 0.90–0.99) (see Supplementary

figure 3). Besides, when HERV H3 Env on the

nonclassical monocyte population and IL-12/IL-23p40 in

CSF are combined with the IgG index with a

discriminatory power of 96.4% (95% CI 0.93–0.99), an
AUC of 99.5% (95% CI 0.99–1.0) is obtained (see

Supplementary figure 4).

Finally, to explore the potential of the investigated

biomarkers to predict disease progression or if patients with

MS + CIS will receive medication after diagnostic workup,

a similar regression analysis was performed for the soluble

markers that were statistically significant for the two

parameters, respectively. Supplementary figure 5 shows the

receiver operating characteristic curves for granulocyte-

macrophage colony stimulating factor andMCP-1 in CSF as

well as their combined contribution to predict disease

progression. As seen from the figure, the AUCs for the three

graphs are all below 68% and are thus the aforesaid are poor

prognostic markers in differentiating patients with

MS + CIS that have progressed from those that have not.

Similarly, Supplementary figure 6 shows the receiver

operating characteristic curves for IL-2 in CSF and serum,

IL-12/IL-23p40 in CSF as well as their combined

contribution to predict if patients receive medication or not

after the diagnosis. As seen from the figure, both IL-2 in

serum and IL-12/IL-23p40 in CSF have AUC > 70% and

are thus fair markers; however, when combined with IL-2 in

CSF, the AUC is 68.8% (95% CI 0.54–0.83) and thus do not

contribute positively to a combined AUC. Lastly, the IgG

index had an AUC of 57.1% (95% CI 0.42–0.72) for

predicting disease progression and 64.5% (95% CI 0.49–
0.80) for predicting whether patients with MS + CIS receive

medication and did not contribute positively to either of the

prognostic assessments.

DISCUSSION

Characterizing monocytes and their subsets in incipient

nontreated MS facilitates important insight into early

mechanisms of disease, and is unaffected by disease

progression or modifying treatment. In addition, the

inclusion of SCs recruited during the diagnostic workup

facilitates the use of any potential, highly specific

biomarkers and panels hereof, directly applicable to a

clinical setting.

In recent years, many new therapeutics or disease-

modifying therapies have been approved for MS therapy,

either immunosuppressants or more specific antibodies

targeting T and B cells in the periphery.41–44 Targeting

monocytes or subsets hereof may also have potential in

MS therapy,45,46 as it is indicated in animal models of

MS that depletion of monocytes inhibit both initiation of

disease and progression.47
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In the present study, we have analyzed the composition

of monocyte subsets and expression of markers of

activation and cell signaling in incipient MS, together

with a comprehensive panel of inflammation-associated

signaling molecules in paired CSF and serum samples.

In samples from patients with CIS, RRMS, PMS, RIS

or SC variations in the median total number of

monocytes were in general low, as were the variation of

the different monocyte subsets between these patient

groups, except for the nonclassical monocytes where a

marked lower median was observed for patients with

MS + CIS than for SC + RIS. In our previous study, we

noted a marked increase in the nonclassical monocyte

subset with a concomitant downregulation of the classical
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subset, compared with healthy controls.34 A detailed

comparison, however, revealed a similar pattern of

monocyte subsets in the two studies, with a large

proportion of patients with MS + CIS having the same

number of monocyte subsets as the SC + RIS or healthy

controls as well as a number of significant outliers. One

striking difference though was the high number of

nonclassical monocytes in some of the SC and RIS

patients in the current study, emphasizing that SC and

RIS are indeed not comparable to healthy controls.

For the surface markers investigated, we found a

significantly lower expression of HERV H3 Env epitopes

on the nonclassical monocytes in patients with MS + CIS

versus SC and MS + CIS versus SC + RIS. In our

previous study comprising incipient and progressed

patients with MS compared with a healthy control group,

the numbers of nonclassical monocytes and the

expression levels of HERV Env were higher for the

patients with MS.34 Our present results on monocyte

subsets are in line with a recent report17 which

additionally found increased numbers of nonclassical

monocytes in the CSF, probably indicating their

migration into the CNS. Furthermore, in our previous

study one-third of the patients included were treated with

immune-modulating therapy, and it is known that

nonclassical monocyte populations may increase after

treatment initiation.17

The HERVs investigated here are associated with a

number of neurologic diseases35,48 and likely also with

the inflammatory processes, and may thus be expressed

because of a defective mechanism of chromatin-

dependent repression.49,50

Interestingly, in both patients with MS + CIS and

SC + RIS, we found a marked downregulation of

expression of all the measured surface markers on the

nonclassical monocytes compared with intermediate or

classical, except for CD40 and TACE, where the

intermediate monocytes have higher expression. This

pattern of expression is in agreement with our previous

study,34 and in the present study, we also show this for

CD11b, CD18, CD64, CD86, CCR1 and CCR5.

Surprisingly, the expression of CD40 and TACE was
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highest in the intermediate monocyte population,

indicating that these monocytes indeed have high

stimulatory and inflammatory potential.51,52

For the soluble biomarkers investigated in CSF and

serum, a highly significant difference was demonstrated

between patients with MS + CIS and SC + RIS in 11 of

17 biomarkers measured in CSF. This was also evident in

the CSF-to-serum ratios. Levels were significantly higher

in MS + CIS samples, except for IL-7, which is a

hematopoietic growth factor that promotes generation

and survival of lymphoid cells.53 In addition, patients

with MS + CIS with the highest levels of, for example,

INFc tended to have high levels of most of the other

biomarkers, except granulocyte-macrophage colony

stimulating factor and VEGF, for which no differences

were seen (data not shown). This illustrates that

multifactorial processes of immune regulation are at play

in any given time point of MS disease, as most of the

biomarkers have relatively short half-lives.54 Interestingly,

biomarker levels in serum were not directly correlated

with the inflammatory process occurring in CNS, and the

only significant difference found was for IL-7, which was

higher in MS sera compared with SC + RIS. Previously,

IL-7 has been shown to be lower in patients with MS, as

well as the IL-7 receptor (IL-7Ra) expression associated

with MS pathogenesis,55 although the mechanisms are

not clear. Furthermore, that study was based on

comparisons with healthy controls, which might explain

the discrepancy.

In the present correlation analysis, several surface

markers were significantly correlated with levels of soluble

markers in both CSF and serum as well as their

respective ratios. Notably, surface-bound CD163, which

correlated significantly with nine of the soluble markers,

is worthy of attention, as we have previously

demonstrated a significant association between CD163

and MS.15,34 In addition, expression of CCR5 correlated

significantly with three proteins for monocyte chemotaxis

in serum, and it has been shown that CCR5+

mononuclear cells accumulates in the CNS of MS

patients.56 Finally, expression of TACE correlated

significantly with several soluble markers, notably TNFa
and IL-12/IL-23p40 in CSF but not in serum. This is

interesting, as treatment with monoclonal antibodies

against TNFa in MS has shown increased disease

activity,57,58 and treatment with neutralizing antibodies

toward IL-12/IL-23p40 can be used to treat several

autoimmune diseases,59 but no effect was seen in MS.60

However, further investigations of this last treatment

could be indicated in selected patients with high levels of

IL-12/IL-23p40 in serum and comorbidity with psoriasis.

In the logistic regression analysis, the HERV H3 Env

expression on the nonclassical monocytes as well as several

soluble biomarkers performed well in differentiating

patients with MS + CIS from HC + RIS, and a combined

regression analysis of 11 biomarkers showed excellent

performance with an AUC of 98.7%. It is noteworthy that

IL-12/IL-23p40 had an excellent performance, even when

used alone, with an AUC of 92.4% almost comparable to the

IgG index with an AUC of 96.4%.

Notably, when IL-12/IL-23p40 was combined with

TNFa with an AUC of 85.4%, the combined AUC was

94.7%, but when combined with HERV H3 Env on the

nonclassical monocytes with an AUC of 70.1% and the

IgG index, the combined AUC was 99.5%, higher than

any other combination of the investigated biomarkers. A

combination of a surface biomarker and two soluble

biomarkers thus performs almost perfectly in

differentiating patients with MS + CIS from SC + RIS.

However, none of the investigated biomarkers could

predict progression, or differentiate between patients with

MS + CIS that received immune modulating therapy and

not, emphasizing that longer follow-up periods may be

needed for some of the patients.

We have previously demonstrated that combinations of

specific biomarkers enable pertinent differentiation

between patients with MS + CIS and SC15 as well as

MS + CIS and HC,34 illustrating that in a multifactorial

diseases such as MS, the combination of multiple

biomarkers into a single multivariable model provides a

high level of diagnostic discrimination.15 Here we

demonstrate an AUC of 99.5% with only three

biomarkers combined, emphasizing the additional

potential of especially IL-12/IL-23p40 as a diagnostic

marker in incipient MS.

Taken together, the present results of significant

changes in expressed inflammation-related cell surface

markers between the three monocyte subsets, as well as

the HERV Env epitopes expressed on the nonclassical

monocyte populations, are interesting. It substantiates

our hypothesis that monocyte subsets recruited to plaque

formations in the CNS carrying viral epitopes maybe

contribute to the recurrent and/or continued

inflammatory activity.34 We do also find these HERV

epitopes expressed in RIS and SC patients, with the

marked difference that these patients likely have intact

blood–brain barriers and thus few nonclassical monocytes

homing to the CNS.61

Importantly, we also present significant changes in 11

inflammation-related signaling molecules in MS + CIS

compared with SC + RIS, illustrating highly coordinated

responses in patients with MS + CIS, and that some of

these molecules are excellent in differentiating MS-like

disease from non-MS.

Overall, the results indicate that clear definition of a

multifactorial disease such as MS is only possible using

558

Monocytes and markers of inflammation in MS M Carstensen et al.



carefully selected combinations of biomarkers and that

development of a small but proficient biomarker panel is

possible.

METHODS

Ethics statement

The study was conducted in accordance with the Ethical
Declaration of Helsinki and all patients gave written, informed
consent. The study and the material for informed consent were
approved by The Central Denmark Region Committee on
Biomedical Research Ethics (journal number: 1-10-72-202-13).

Patients and controls

Patients admitted to the MS clinic, Department of Neurology,
Aarhus University Hospital, were consecutively included from
June 2015 to February 2018. A full diagnostic workup included
medical history, clinical examination, MRI of the entire neural
axis, CSF analyses (cells, protein, IgG index) and evoked
potentials as recommended.62 CSF and MRI examination were
evaluated according to the revised MacDonald criteria62 and an
Extended Disability Status Scale score was assessed according
to Kurtzke.63 Patients were excluded if they had other
neurologic disease, received glucocorticoids or other immune
modulating treatments within the month preceding sampling.
One patient was diagnosed with neuromyelitis optica and one
with motor neuron disease. One patient diagnosed with MS
wanted to be excluded from the study and withdrew her
consent. Total number of MRI white matter lesions were
registered by fluid-attenuated inversion recovery sequences on
MRI. Demographics and paraclinical findings of patients with
CIS, RRMS, PMS, RIS and SCs are summarized in Table 1. A
clinical description of the patients with RIS and SC is
presented in Supplementary table 9.

Patients included as SC have neurological symptoms, but have
no objective clinical or paraclinical findings to define a specific
neurological disease. This specific definition is described in detail
by Teunissen et al.64 and they do not represent early MS.

Patients included as RIS have no neurological symptoms
and are only referred to diagnostic workup owing to the
presence of incidental white matter lesions in MRI suggestive
of MS. Diagnostic criteria for RIS were proposed in 2009 and
include the number, shape and location of the brain lesions.65

Lesions are ovoid and well circumscribed with a size greater
than 3 mm, show dissemination in space and can be
juxtaposed to the corpus callosum. Lesions should not follow a
vascular distribution and do not account for any other
pathologic processes.66,67 Recently, the risk of conversion of
RIS to MS was reported as depending on (1) involvement of
spinal cord, (2) younger age, (3) oligoclonal bands positive
and/or increased IgG index and (4) infratentorial lesions, with
each factor adding to a combined risk score.68 The RIS patients
in the present study fulfill the risk factor 2 (younger age) but
none of the others. The risk of conversion for zero or one
factor present is 29% over 10 years.68 The number of lesions
for the RIS patients is included in Supplementary table 9.

Disease activity was ascribed on the basis of a new clinically
defined attack or a sustained increase of more than 0.5 on the
Extended Disability Status Scale within a follow-up period of
9–41 months (median = 25). Medication at follow-up was
ascribed to those receiving any immune-modulating therapy in
the follow-up period. In total, 89 patients agreed to participate
in this study and in accordance with consensus guidelines,69

serum and CSF were frozen at �70°C until use, while whole
PBMCs were isolated and frozen at �150°C until use.

PBMC isolation

Each collected sample was labeled with a study ID at inclusion
and all the analysis were performed blinded to the clinical status
of the patients. PBMCs were isolated from heparinized whole
blood using Ficoll-Paque PLUS (Amersham Biosciences, Ume�a,
Sweden, Catalog number 17-1440-02) within a few hours after
drawing. In brief, whole blood was mixed with phosphate-
buffered saline (PBS) (Sigma, Welwyn Garden City, UK, Catalog
number D8537) in 1:1 and 20 mL Ficoll-Paque was layered
underneath about 25 mL of the diluted blood. The tubes were
centrifuged at 750g for 25 min at room temperature, and PBMCs
were collected from the interface layer. Then PBMCs were
washed three times with 20 mL PBS and centrifuged at 450g for
15 min, 280g for 10 min and finally at 190g at 10 min, to remove
the sugar gradient and impurities (platelets). PBMCs were frozen
in Roswell Park Memorial Institute-1640 medium
(BioWhittaker, Bornem, Belgium, Catalog number BE12-702F)
supplemented with 20% (heat-inactivated and sterile-filtrated)
human serum and 10% dimethyl sulfoxide (Sigma, Lyon, France,
Catalog number D4540). Before use, each portion of frozen
PBMCs was quickly thawed (37°C); washed once in 10 mL ice-
cold Roswell Park Memorial Institute-1640 medium containing
10 mM HEPES, 0.03% w v�1 glutamine, 0.2 mio IU L�1

penicillin–streptomycin and 10% (heat-inactivated and sterile-
filtrated) human serum and resuspended to a concentration of
40 9 106 cells mL�1.

FLOW analysis

Before staining PBMCs with antibodies, samples were first
incubated with the amine-reactive reagent LIVE/DEAD Fixable
Near-IR Dead Cell Stain (Life Technologies, Eugene, OR, USA,
#L10119), then washed with PBS (pH 7.4) and blocked in
PBS + 0.2% human serum albumin (CSL Behring, Marburg,
Germany, #109697) + 100 µg mL�1 h-IgG (human serum
albumin; Privigen 10%, CSL Behring) + 0.09% NaAz
(Ampliqon, Odense, Denmark, #AMPQ52310.0250) for 15 min
at 4°C. Samples were then washed two times and labeled by
incubating with a mixture of different monoclonal antibodies for
30 min in the dark at 4°C, washed two times in PBS and
resuspended in 100 µL PBS + 0.2% human serum
albumin + 0.09% NaAz. The following monoclonal mouse
antibodies were used to stain 1 9 106 PBMCs in 100 µL PBS:
5 µL anti-CD14 Brilliant Violet 421 (BD, San Jose, CA, USA;
clone M/P9, IgG2b, #563743), 10 µL anti-CD16 PC7 (Beckman
Coulter, Chaska, MN, USA; clone 3G8, IgG1, #6607118), 10 µL
anti-CD18 Per-CP (Abcam, Cambridge, UK; clone GRF1, IgG1
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#GR3187629-1), 5 µL anti-CD11b BV-510 (BioLegend, San
Diego, CA, USA; clone ICRF44, IgG1, #301334), 5 µL anti-CD40
PerCP (eBioscience, San Diego, CA, USA; clone 5C3, IgG1, #17-
0409-42), 5 µL anti-CD64 PE-CF594 (BD; clone 10.1, IgG1,
#565389), 5 µL anti-CD86 BV-650 (BD; clone 2331, IgG1,
#563412), 2 µL anti-CD163 PE (Trillium Diagnostics, Bangor,
ME, USA; clone Mac2-48, IgG1, #CD163-48P), 5 µL anti-CCR1
PE (BioLegend, San Diego, CA, USA; clone 5F10B29, IgG1,
#362904), 5 µL anti-CCR2 FITC (BioLegend; clone K036C2,
IgG2a, #357216), 5 µL anti-CCR5 BV-650 (BD; clone 3A9,
IgG2a, #564999) and 5 µL anti-CD56 AF-750 (Beckman Coulter;
clone 3G8, IgG1, #B46024).

Detection of HERV H3 and HERV W3 expression was
performed using polyclonal antisera as previously described.36 In
brief, antibodies against an HERV-H/F Env peptide epitope
(HERV H3) and an HERV-W/MSRV Env peptide epitope (HERV
W3) were raised in New Zealand White rabbits, and preimmune
sera were collected from all rabbits before immunization and used
as background staining/control. The peptide epitopes are localized
at equivalent positions in open reading frames at the respective
HERV loci. Both peptides and antisera were made by Sigma
Genosys (UK). Polyclonal antibody binding to target cells was
visualized using 10 µL diluted goat antirabbit Alexa Flour 488
(Life Technologies, #A-11034) for 30 min in the dark at 4°C,
washed two times in PBS and resuspended in 100 µL PBS + 0.2%
human serum albumin + 0.09%NaAz.

Flow cytometric analyses were performed using an
LSRFortessa (BD) equipped with four lasers [a violet (405 nm),
blue (488 nm), yellow (561 nm) and a red (640 nm)]. FlowJo
software version 10 (FlowJo LLC, Ashland, OR, USA) was used
for data analysis. More than 100 000 events were collected for
further analysis. For each surface marker, all of the flow data were
collected in one run. To validate the compensation matrices and
gating strategy, appropriate fluorescence-minus-one controls
were made (not shown).

Multiplex

Multiplex electrochemiluminescence immunoassays from Meso
Scale Discovery (Rockville, MD, USA) was used to measure
levels of 17 selected cytokines and growth factors in paired
samples of CSF and serum from all the included patients. The
measured soluble factors were interferon-c, IL-1b, IL-2, IL-6,
IL-8, IL-10, TNFa, granulocyte-macrophage colony stimulating
factor, IL-5, IL-7, IL-12/IL-23p40, IL-15, IL-17A, macrophage
inflammatory protein-1b, MCP-1, MCP-4 and VEGF. The
soluble factors can be divided into a proinflammatory panel
consisting of interferon-c, IL-1b, IL-2, IL-6, IL-8, IL-10 and
TNFa; a cytokine panel comprising granulocyte-macrophage
colony stimulating factor, IL-5, IL-7, IL-12/IL-23p40, IL-15
and IL-17A; a chemokine panel consisting of macrophage
inflammatory protein-1b, MCP-1, MCP-4 and finally the
growth factor VEGF. All factors were measured according to
the manufacturer’s instructions, and concentrations were
calculated by reference to a standard curve for each molecule.
Standards were assayed in the same manner as the CSF and
serum samples. The lower and upper limits of detection were
calculated based on the concentration of signal equal to
2.5 9 s.d. above the zero calibrator and below the upper

plateau of the standards curve, respectively. All samples were
analyzed in duplicate.

Collection of data and statistical analysis

Personal data were stored and handled according to the Danish
law. Collection of demographic and biochemical data was done
using the Electronic Patient Journal (EPJ). Descriptions of MRI
were conducted by a neuroradiologist and confirmed by a senior
neurologist at the Department of Neurology, AUH, who viewed
all scans in the IMPAX system. For data collection we used
Microsoft Excel (Microsoft, Redmond, WA, USA) and all
statistical analysis was performed using STATA version 15
(StataCorp LLC, College Station, TX, USA).
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